
 

 

 

Hybrid Direct Neural Network Controller With Linear Feedback Compensator 
 

Dr.Sadhana K. Chidrawar
1
, Dr. Balasaheb M. Patre

2 

1Dean , Matoshree  Engineering, Nanded (MS) 431 602 

E-mail: sadhana_kc@rediff.com 
2Professor  S.G.G.S. Institute of Engineering and Technology, 

Nanded (MS) 431 606 

E-mail: bmpatre@yahoo.com 

 

 

Abstract 

In this paper Hybrid Direct Neural Controller (HDNC) with 

Linear Feedback Compensator (LFBC) has been developed. 

Proper initialization of neural network weights is a critical 

problem. This paper presents two different neural network 

configurations with unity and random weight initialization 

while using it as a direct controller and linear feedback 

compensator. The performances of these controller 

configurations are demonstrated on the two different 

applications i.e. Continues Stirred Tank Reactor as nonlinear 

and DC Motor as linear. In this work a direct neural control 

strategy with linear feedback compensator is used to control 

the process. Error back propagation algorithm based on 

gradient algorithm is used to minimize the error between the 

plant output and desired output signal. The Direct Neural 

Controller (DNC) and Hybrid Direct Neural Controller 

(HDNC) are compared in terms of the Integral Square Error 

(ISE) and Integral Absolute Error (IAE).  Addition of a 

linear feedback compensator helps to improve both the 

transient as well as steady state response of the system 

  

Introduction 
 

                  There are many industrial applications where the 

direct and coordination control strategies are required. 

Different types of controller are in use to provide appropriate 

control inputs to process plants to obtain desired outputs by 

changing its parameters. Neural network has been applied 

successfully in the identification and control of dynamical 

systems (Wang et al.2005). (Yuan et al. 2006) give the 

methodology of design of a conventional model reference 

adaptive control system extended to design a direct neural 

control for a class of nonlinear system. (Peng and Huang 

2006) has given a novel hybrid forward algorithm (FA) for 

the construction of radial basis neural network with tunable 

nodes. (Huang and Lee 2002) develop a decentralize neural 

network controller for a class of large scale nonlinear high 

order interconnections. He also proves that this NN 

controller can achieve for large scale systems. (Castilo and 

Melin 2002) has describe a new method for estimation of the 

fractal dimension of a geometry fuzzy logic technique.  

 

 

 

They also develop a hybrid intelligent system combining 

neuro fuzzy logic and fractal dimension for the problem of 

time series prediction. (Xianzhong and Shin 1993) presented 

a novel method using direct adaptive controller and a 

coordinator using neural network. The developments in 

neural network based control systems for real time control 

applications are still in early stage. There is still necessity of 

carrying out lot of work to reach a stage of perfection, the 

stage after which, the ANN based networks may be freely 

used for all types of process control applications in the 

industry. This paper presents a work carried out to develop a 

hybrid direct neural controller that may find wider 

applications in different types of industrial control 

environments. 

                 The specific contribution in this paper is respect 

to (i) The development of a direct Neural Network 

Controller for studying the effect of initialization of unity 

and random weights in neural network control structure. (ii) 

The development of a Hybrid Direct Neural Controller. The 

HDNC has been developed by modifying a Direct Neural 

Controller (DNC) by adding a Linear Feedback 

Compensator (LFBC) in parallel with the neural network 

controllers. The comparison of both the controllers i.e. DNC 

and HDNC in terms of the Integral Square Error (ISE) and 

Integral Absolute Error (IAE). The test results are highly 

encouraging and establish the superiority of HDNC over the 

other controller being used in the process industry for linear 

as well as nonlinear systems. 

  

 

 ANN Techniques 

 

         Fully connected neural network used in this work, 

consists of an input layer with six neurons, one hidden layer 

with seven neurons and a single neuron in output layer as 

shown in Fig. 1. To reflect the status of the controlled 

system, the inputs of the neural network controller are 

chosen as the desired system outputs, actual output and the 

output errors: YD(k), YD(k-1), Y(k), Y(k-1), e(k), e(k-1) . 



 

 

 

Fig. 1. Neural Network Architecture 

 

   ANN Method For Direct Control 
 

                 A control system with DNC is shown in Fig. 2 

Error Back Propagation Algorithm (Nahas, Henson and 

Seborg 1992) based on gradient algorithm is used to 

minimize the error between plant output and the desired 

output signal. Without a specific pre-training stage the 

weights of the neural network are adjusted online to 

minimize the error. 

 

 
 

Fig. 2.   Direct Neural Control System 

 

YD (k) is the desired process output, Y(k) is the actual process 

output, u(k) is the output of the neural network and  e(k) is 

the network error output. 

 

DNC With Linear Feedback Compensator 
 

In order to overcome problems associated with direct neural 

controller architecture a linear feedback compensator 

(LFBC) is placed in parallel with the neural controller. The 

application arrangement of the proposed hybrid scheme is 

shown in fig 3. 

 

Fig.3. Direct neural controller with linear feedback compensator 

             Addition of a LFBC helps to improve both the 

transient as well as steady state response of the system. The 

hybrid combination of neural network and LFBC helps to 

eliminate the need of auto tuning of constants K1, K2 and K3 

as required in conventional PID and Adaptive controllers. 

Once the values of constants are selected properly at one 

operating point, then these help to produce good results 

throughout the operating region of the systems. The hybrid 

combination of the neural network and the linear feedback 

compensator helps to compensate the limitation of individual 

controllers. The actual controlling signals u(k) is the sum of 

output of neural controller and LFBC and is expressed as 

follows: 

 ( ) ( ) ( )n fu k u k u k                                                    (1)                                                                                               

 Where ( )nu k   is the output of the neural network controller 

and ( )fu k  is the output of the linear feedback compensator 

(LFBC). Linear feedback compensator is a three term 

controller and expressed as  
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 Where, ( ) ( ) ( )De k Y k Y k and 

 

( ) ( ) ( 1)e k e k e k  

 And K1, K2 and K3 are the constants. The limitation of using 

LFBC with ANN configuration is in the initial selection of 

values of the fixed constant K1, K2 and K3 to get the best 

performance. The constants K1, K2 and K3 are the basic 

design parameters of LFBC. The values of these constants 

can be obtained by trial and error procedure by observing the 

effect of these constants on the performance of the system. 

 



 

 

Result
 

To evaluate the applicability of the controller, the 

performance of the controller has been studied on a 

simulated system. 

 

  Effect of Neural Network Weights Initialization 

for Non linear Application 
 

Example 1   

In this section neural controller is applied to a highly 

nonlinear CSTR system given in (Mitra and Pal 1996). A 

schematic of the CSTR system is shown in Fig. 4. A single 

irreversible, exothermic reaction A→B is assumed to occur 

in the reactor.  

 

 

 
 

Fig. 4.   Continuous Stirred Tank Reactor 

 

Here objective is to control the effluent concentration by 

manipulating coolant flow rate in the jacket. Following 

differential equations given in Equation (3) describes the 

behavior of this CSTR: 

0( )
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dC q
C C k C e
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q Cc pcA RT

f c cf

p p

CH k CdT q
T T e q e T T

dt V C C V
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             Where, CAf  is feed concentration, CA is product 

concentration. TF, T and Tc are feed, product and coolant 

temperature respectively. q and qc are  feed and coolant flow 

rate. Here temperature T is controlled by manipulating 

coolant flow rate qc. Initially operating conditions are set to: 

q=100 lit/min, CAF=1mol/lit, TF=350 K, TCF=350 K, V=100 

lit, hA=7x10
5
 cal/min K, k0=7.2x10

10 
/min, T=440.2 K, 

E/R=9.95x10
3
 K, -∆H=2x10

5 
cal/mol, ρ, ρc=1000 gm/lit, CP, 

CPC=1 cal/gmK, qc=103.41lit/min, CA=8.36x10
-2 

mol/lit 

 

             In Fig. 5, the set point tracking behavior of neural 

controller with unity weights initialization is shown. 

  

 
Fig. 5.   Set point Tracking Performance of CSTR using 

DNC when Initial Weights of Network are 1 

 

 
Fig. 6.   Set point tracking performance of CSTR using 

DNC when initial weights of network are Random 

 In Fig. 6, the set point tracking behavior of neural 

controller with random weights in the range of 0 to 1 is 

shown. In order to complement the visual indications of 

performance for the simulation runs was made using ISE 

(integral of square errors) and IAE (integral of absolute 

error) criteria, which demonstrate the tracking ability of the 

system. Table I gives the ISE and IAE values for both the 

neural configurations. 

Table I 
Comparison Of Performance Of CSTR Process using  DNC When 

Initial Neural Weights Are 1 And Random 

 

Set point All Initial Network 

Weights are 1 

All Initial Network 

Weights are Random 

ISE IAE ISE ISE 

0.0700 0.0050 0.8538 0.0046 0.8800 

0.0836 0.0002 0.1850 0.2695 8.8873 

0.0850 0.0075 1.0442 0.0071 1.0562 

0.1000 0.0077 0.9988 0.0073 0.9363 



 

 

In Fig. 7, the set point tracking behavior of neural controller 

with LFBC for unity weights initialization is shown and in 

Fig. 8, the set point tracking behavior of neural controller 

with LFBC for random weights in the range of 0 to 1 is 

shown. 
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Fig. 7.   Set point tracking performance of CSTR using Direct 

Neural Controller with LFBC when initial weights of network are 1 
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Fig. 8.   Set point tracking performance of CSTR using Direct 

Neural Controller with LFBC when initial weights of network are 

Random 

 Table II gives the ISE and IAE values for both the neural 

configurations.  

Table II 
Comparison Of Performance Of CSTR Process, Using DNC With 

LFBC When Initial Neural Weights Are 1 And Random 

Set point All Initial Network 

Weights are 1 

All Initial Network 

Weights are Random 

ISE IAE ISE ISE 

0.08 1.9740 0.0817 1.1895 0.0398 

0.09 1.9730 0.0816 1.1894 0.0397 

0.10 1.9720 0.0815 1.1893 0.0396 

0.11 1.4694 0.953 2.3870 0.0465 

Effect of Neural Network Weights Initialization 

for linear Application  
 

Example 2 

 

 In this section the neural controller is applied to a linear 

system. Here a DC motor is considered as a linear system 

from (Dorf and Bishop, 1998). A simple model of a DC 

motor driving an inertial load shows the angular rate of the 

load, ω(t), as the output and applied voltage, Vapp, as the 

input. The ultimate goal of this example is to control the 

angular rate by varying the applied voltage. Fig. 9 shows a 

simple model of the DC motor driving an inertial load J. 

 
Fig. 9.  DC motor driving inertial load 

 

    In this model, the dynamics of the motor itself are 

idealized for instance, the magnetic field is assumed to be 

constant. The resistance of the circuit is denoted by R and 

the self-inductance of the armature by L. The important 

thing here is that with this simple model and basic laws of 

physics, it is possible to develop differential equations that 

describe the behavior of this electromechanical system. In 

this example, the relationships between electric potential and 

mechanical force are Faraday's law of induction and 

Ampere’s law for the force on a conductor moving through a 

magnetic field. 

 A set of two differential equations given in 

Equation (4) describes the behavior of the motor. The first 

for the induced current, and the second for the angular rate, 

1
( ) ( )b

app

Kdi R
i t t V

dt L L L
 

( ) ( )mF
KKd

t i t
dt J J

                                                   

                                                    (4) 

 Here objective is to control angular velocity ω by 

manipulating applied voltage, Vapp. Initially operating 

conditions are set to: R=2Ω, L=0.5H, Km=0.015 (Torque 

Constant), Kb=0.015 (emf Constant), KF=0.2Nms, J=0.02 

Kg.m
2
/sec

2
. 

In Fig. 10, the set point tracking behavior of neural 

controller with unity weights initialization is shown and in 

Fig. 11, the set point tracking behavior of neural controller 

with random weights in the range of 0 to 1 is shown.  



 

 

.  
Fig. 10.   Set point tracking performance of DC Motor using DNC 

when initial weights of network are 1 

 

 
Fig. 11.  Set point tracking performance of DC Motor using DNC 

when initial weights of network are Random 

              

Table III gives the ISE and IAE values for both the neural 

configurations in DC Motor application.  

  

Table III 
Comparison Of Performance Of DC Motor Using DNC When 

Initial Neural Weights Are 1 And Random 

 

Set point All Initial Network 

Weights are 1 

All Initial Network 

Weights are Random 

ISE IAE ISE ISE 

0.4 0.648 7.926 0.676 8.208 

0.6 8.437 27.356 18.490 44.684 

0.7 2.049 15.303 2.159 16.108 

0.9 1.365 19.294 1.426 20.049 

 

In Fig. 12, the set point tracking behavior of neural 

controller with LFBC for unity weights initialization is 

shown. In Fig. 13, the set point tracking behavior of neural 

controller with random weights in the range of 0 to 1 is 

shown. 
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Fig.12.   Set point tracking performance of DC Motor using Direct 

Neural Controller with LFBC when initial weights of network are 1 
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Fig. 13.  Set point tracking performance of DC Motor using Direct 

Neural Controller with LFBC when initial weights of network are 

Random 

     Table IV gives the ISE and IAE values for both the 

neural configurations in DC Motor application. 

 

Table IV 
Comparison Of Performance Of DC Motor Using DNC With 

LFBC When Initial Neural Weights Are 1 And Random 

 

Set point All Initial Network 

Weights are 1 

All Initial Network 

Weights are Random 

ISE IAE ISE ISE 

0.4 0.0016 0.9941 0.0017 0.9958 

0.6 0.0019 1.1598 0.0019 0.1618 

0.7 0.0033 1.9883 0.0033 1.9917 

0.9 0.0019 1.1598 0.0019 1.1618 
 

 



 

 

 

Conclusion 
 

In this paper, a Hybrid Direct Neural Control configuration 

has been proposed. A Linear Feedback Compensator is used 

to improve the performance of the Direct Neural Controller. 

The DNC and proposed HDNC have been tested on a 

nonlinear application of CSTR and a linear application of 

DC Motor. The performance of these two controllers was 

tested when neural networks are initialized with all unity 

parameters and random parameters. It is found that neural 

network with unity weight initialization is always better 

choice for any linear or nonlinear applications in DNC 

configuration while random weight initialization is better 

choice for nonlinear application using HDNC configuration.         

The unity or random weight initialization for linear 

application in HDNC configuration gives similar results. It is 

found that for all set point changes, neural controller with 

LFBC yields a fast response with little overshoots. In 

contrast with the direct neural controller has sluggish 

behavior for every set point. The test results of hybrid direct 

neural controller with linear feedback compensator are 

highly encouraging and establish the superiority of HDNC 

over the other controller being used in the process industry 

for linear as well as nonlinear systems.  
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