
Evolutionary Computation on the Connex Architecture
István Lőrentz

Electronics and Computers Department
Transylvania University

Braşov, Romania
istvan@splash.ro

Mihaela Maliţa
Computer Science Department

Saint Anselm College Manchester
Manchester, NH, USA
mmalita@anselm.edu

Răzvan Andonie
Computer Science Department
Central Washington University

Ellensburg, WA, USA
and

Electronics and Computers Department
Transylvania University

Braşov, Romania
andonie@cwu.edu

Abstract

We discuss massively parallel implementation issues of the
following heuristic optimization methods: Evolution Strat-
egy, Genetic Algorithms, Harmony Search, and Simulated
Annealing. For the first time, we implement these algorithms
on the Connex architecture, a recently designed array of 1024
processing elements. We use the Vector-C programming en-
vironment, an extension of the C language adapted for Con-
nex.

Introduction
Evolutionary Algorithms (EA) are a collection of opti-
mization methods inspired from natural evolution (Bäck
1996), (Back, Fogel, & Michalewicz 1997), (Back, Fogel,
& Michalewicz 1999). The problem is formulated as find-
ing the minimum value of an evaluation function over a set
of parameters defined on a search space. Well known evolu-
tionary techniques are: Evolution Strategy (ES), Genetic Al-
gorithms (GA), and Evolutionary Programming (EP). These
techniques are also related to stochastic search (e.g., Simu-
lated Annealing (SA)), and they share the following charac-
teristics:

• Start with a random initial population.

• At each step, a set of new candidate solutions is generated
based on the current population.

• Based on some criteria, the best candidates are selected to
form a new generation.

• The algorithm is repeated until the solution is found, or a
maximum number of iterations reached.

EAs aremeta-heuristic, as they don’t make many assump-
tions of the function being optimized (for example, they
do not require known derivatives). From a meta-heuristic
point of view, the function to be optimized is a ’black-
box’, only controlled by the input parameters and the output
value. Meanwhile, EAs are parallel by their nature. Paral-
lel implementations of optimization algorithms is generally
a complex problem and this becomes more challenging on
fine grained architectures with inter-processor communica-
tion burdens.

Our study focuses on implementation issues of EAs on a
recent massively parallel architecture - the Connex Archi-
tecture (CA). The CA is a parallel programmable VLSI chip

consisting of an array of processors. Functionally, it is anar-
ray/vector processor. It is not a dedicated, custom-designed
(ASIC) chip, but a general purpose architecture. The CA is
now developed by Vebris1. An older version was developed
in silicon by BrightScale, a Silicon Valley start-up company
in (see (Ştefan 2009)).

Several computational intensive applications have been
already developed on the CA: data compression (Thiebaut
& Ştefan ), DNA sequences alignment (Thiebaut & Ştefan
2001), DNA search (Thiebaut, Ştefan, & Maliţa 2006), com-
putation of polynomials (Thiebaut & Maliţa ), frame rate
conversion for HDTV ( Ştefan 2006), real-time packet fil-
tering for detection of illegal activities (Thiebaut & Maliţa
2006), neural computation (Andonie & Maliţa 2007), and
Fast Fourier Transform (L̋orentz, Maliţa, & Andonie 2010).

We do not intend to compare the efficiency of different
EAs on the CA, but to provide the implementation build-
ing blocks. The motivation and novelty of this work are
to expose the CA’s vector processing capability for meta-
heuristic optimization algorithms. We will provide the re-
sulted performance results (instructions/operators) forsev-
eral optimization benchmarks. The code is written in C++,
using Vector-C, available at (Maliţa 2007), a library of func-
tions which simulate CA operations. We use simulation be-
cause the floating-point version of the chip is still under de-
velopment.

Review of Evolutionary Algorithms
We will first summarize the following standard optimiza-
tion algorithms: Evolution Strategy, Genetic Algorithms,
and Harmony Search, and Simulated Annealing. We will
describe them in a unified way, in accordance to the EA gen-
eral scheme from the Introduction.

Genetic Algorithms

In the original introduction of the ’Genetic Algorithm’ con-
cept, described by (Holland 1975), the population of ’chro-
mosomes’ is encoded as binary strings. Inspired from bio-
logical evolution, every offspring is produced by selecting
two parents (based on their fitness), the genetic operators
are the cross-over and single-bit mutation. The theoretical

1http://www.vebris.com/



foundation of GA is the Schema Theorem. Since the orig-
inal formulation, GA evolved into many variants. We will
consider here only the standard procedure:

Algorithm 1 Genetic Algorithm

Initialize population, as M vectors over the{0, 1} alpha-
bet, of length N.
repeat

Create M child vectors, based on:
1. Select 2 parents, proportionate to their fitness
2. Cross-over the parents, on random positions
3. Mutate (flip) bits, randomly
The created M child vectors will form the new popula-
tion, the old population is discarded.

until termination criterion fulfilled (solution found or
maximum number of iterations reached).

Evolution Strategy
Evolution Strategy is also a population based optimization
method, with canonical form written as(µ/ρ+λ)-ES. Here
µ denotes the number of parents,ρ the mixing number (num-
ber of parents selected for reproduction of an offspring),λ
the number of offspring created in each iteration (Beyer &
Schwefel 2002).

Algorithm 2 Evolution Strategy algorithm (µ, λ)-ES

Initialize populationVµ = {v1, . . . ,vµ}. Each indi-
vidual v of the parent population represents a vector of
N numbers encoding the decision variables (the search
space) of the problem. The population is initialized ran-
domly.
repeat

Generateλ offspring ṽ forming the offspring popula-
tion {ṽ1, . . . , ṽλ} where each offspring̃v is generated
by:
1. Select (randomly)ρ parents fromVµ.
2. Recombine the selected parentsa to form a recom-
binant individualṽ.
3. Mutate the parameter sets of the recombinant.
Select new parent population (using deterministic trun-
cation selection) from either
- the offspring populationṼλ (this is referred to as
comma-selection, usually denoted as(µ, λ)-selection),
or
- the offspringṼλ and parentVµ population (this is
referred to as plus-selection, usually denoted as(µ+λ)-
selection)

until termination criterion fulfilled (solution found or
maximum number of iterations reached).

The specific mutation and recombination operations will
be presented later in this paper.

Harmony Search
Harmony Search (HS) is a meta-heuristic algorithm inspired
by musical composition (Geem, Kim, & Loganathan 2001).

According to (Weyland 2010), HS is a particular case of the
(µ + 1) ES algorithm. In HS, the population, encoded as
vectors of real or integer numbers, is stored in a matrix. The
population size (number of rows) is fixed. Each new candi-
date is created by a discrete recombination (identical to the
recombination of ES), or as a random individual. Mutation
is performed with given probability. A key parameter is the
the mutation ’strength’ (or bandwidth). The new individual
will replace the worst individual in the actual population if
it is ’better’ than this one.

Simulated Annealing
Inspired from the physical process of annealing, SA allows
unfavorable decisions, when a controlling parameter called
’temperature’ is high.

Over the iterations, the temperature is decreased and
the algorithm will asymptotically approach a stochastic hill
climbing. SA (Kirkpatricket al. 1983) can be implemented
over a population of (1 parent + 1 descendant), using the
uniform mutation presented later in this article.

Algorithm 3 Simulated Annealing
Initialize a random candidate solutionV
Set initial temperature,T = T0
repeat

mutate (perturb) the existing solution, to create V’
compute∆ = f(V ′)− f(V )
if ∆ < 0 or U(0, 1) < exp(−∆/T ) then

accept new candidate: V = V’
end if
ReduceT

until termination criterion fulfilled (Acceptable solution
found or maximum iterations reached)
return V, f(V)

U(0, 1) denotes an uniform random variable between
[0, 1].

The Connex-BA1024 chip
We implement the previous optimization algorithms on the
CA, a massively parallel architecture known as the Connex
BA1024 chip. In this section we briefly introduce some of
the hardware characteristics of BA1024. As a first CA im-
plementation example, we will describe a random number
generator program. This generator will be used in our sub-
sequent applications.

The CA is a Single Instruction Multiple Data (SIMD) de-
vice with 1024 parallel processing elements (PEs), as well
as a sequential unit, which allows general purpose compu-
tations. It contains standard RAM circuitry at the higher
level of the hierarchy, and a specialized memory circuit at
the lower level, the Connex Memory, that allows parallel
search at the memory-cell level and shift operations.

Several CA chips can be integrated on the same board,
extending the length of processed vectors in increments of
1024, while receiving instructions and data from only one
controller. A controller oversees the exchange of data be-
tween the two levels. Just as regular memory circuits, the



operations supported by the CA can be performed in well-
defined cycles whose duration is controlled by the current
memory technology, which in today’s technology is in the
1.5 ns range.

The 1024 cells are individually addressable as in a regu-
lar RAM, but can also receive broadcast/instructions or data
on which they operate in parallel at a peak rate of 1 op-
eration per cycle. This general concept fits the Processor-
In-Memory paradigm. The cells are connected by a linear
chain network, allowing fast shifting of data between the
cells, as well as the insertion or deletion of data from cells
while maintaining the relative order of all the data. All these
operations are performed in a single memory cycle.

The hardware performances of BA1024 are:

• Memory cycle: 1.5 ns.

• Computation: 400 GOPS at 400 MHz (peak performance)

• External bandwidth: 6.4 GB/sec (peak performance)

• Internal bandwidth: 800 GB/sec (peak performance)

• Power:≈ 5 Watt

• Area: ≈ 50 mm2 (1024-EU array, including 1Mbyte of
memory and the two controllers).

• 65nm implementation

Using a 16-bit arithmetic, the BA1024 computes the
scalar product of a 1024-tuple vector in 37.5 ns (26 million
scalar products/sec), and performs1024× 1024 matrix mul-
tiplications in 40 ms (25 operations/sec). Adding up to 1024
numbers is done in 5 cycles. Multiplication is done in 10 cy-
cles. TheP = 1024 processing elements, each containing
512 registers, are interconnected in a ring. From an algo-
rithmic point of view, the chip can be considered as an array
of P = 1024 columns andM = 512 rows. By convention,
we represent it as an array of horizontal vectors. In C-style
row-major notation,A[i][j] denotes thei’th register inside
thej-th processing element.

An important component of evolutionary algorithms is the
pseudo-random number generator. An ideal random number
generator should be (Quinn 2003): uniformly distributed,
uncorrelated, cycle-free, satisfy statistical randomness tests,
and reproducible (for debugging purposes). In addition, par-
allel generators must provide multiple independent streams
of random numbers. We used the xorshift generator, intro-
duced by (Marsaglia 2003), with period2128 − 1. The ran-
dom seed needs 4 integer vectorsX[0], X[1], X[2], X[3] of
1024 elements each. Here is the C++ code of this pseudo-
random generator, using the Vector-C library:

vector<u i n t> xor128 (vector<u i n t> X [ ] ) {
vector<u i n t> T ;
T = x [ 0 ] ˆ (X[ 0 ] << 1 1 ) ;
T ˆ= (T ˆ (T >> 8 ) ) ;
T ˆ= X[ 3 ] ˆ (X[ 3 ] >> 1 9 ) ;
X[ 0 ] = X [ 1 ] ;
X[ 1 ] = X [ 2 ] ;
X[ 2 ] = X [ 3 ] ;
X[ 3 ] = T ;
re turn T ;

}

Vectors are in represented in uppercase and initial-
ized with seed values from the host computer (in Linux,
/dev/urandom). It is essential that each component of
the seed vector has a different, independent value. Once ini-
tialized, the presented function generates 1024 independent
pseudo-random streams.

On the CA, generating in parallelN <= 1024 uniformly
distributed random numbers results in a linear speedup:
Sxor128 = Tsequential/Tparallel = N , whereTsequential is
sequential execution time andTparallel is parallel execution
time.

The randvN(σ) function returns a vector. Each com-
ponent of this vector is an independent random variable
with Gaussian distribution, 0 mean andσ standard devi-
ation. The CA lacks trigonometric and logarithmic func-
tions, used by the Box-Muller method for generating nor-
mal distributed random numbers. Therefore, we used an
approximation method, based on the central limit theorem:

N(0, σ) ≈ σ
(

∑12
k=1 U(0, 1)− 6

)

, whereU(0, 1) is the

uniform random number generator in the [0, 1] interval.

Evolutionary operators on the CA
We present the building blocks of an evolutionary algorithm
using the CA vector instructions. The control flow of the
algorithm is still sequential, but mutation and evaluationop-
erators are vectorized. The population is represented as a
matrix. Rows (individuals) are mapped as CA vectors and
use vectorial instructions for mutation, recombination, and
evaluation. A population is evaluated sequentially. The vec-
tor length (max. number of decision variables of the search
space) is limited to 1024, while the population size is lim-
ited by the number of CA rows. Horizontal mapping allows
efficient computation of fitness functions via the parallel CA
reduction operator.

Recombination

The recombination operator forms a new individual, based
on a set of parents in the existing population. Typically
the offspring will get a combination of the parents features.
There are many variants for the recombination, we will
present the commonly used ones in GA and ES: crossover
and discrete recombination.

Crossover The crossover operation creates a new individ-
ual by combining the features of two parents. In one-point
crossover, elements from the first parent vector are copied
up to a random position. Continuing from that position,
elements from the second parent vector are further copied.
We implement this using a vector selection mask of random
length (Fig. 1).

vec to r c r o s s o v e r (vec to r X, vec to r Y) {
i n t p o s i t i o n = rand ( VECTORSIZE ) ;
where( i < p o s i t i o n )
C = X; e lsewhere C = Y;

re turn C;
}



Figure 1: Parallel one-point crossover using predicate vec-
tor.

The rand(n) scalar function returns a random integer
in the range [0, n-1]. The statementwhere(condition) ...
elsewhere... is a parallel-if construct available on CA. Index
i denotes the processor element. The expression is evaluated
in parallel on eachPEi, and a selection flag (predicate) is
set, which conditions the execution of the statements inside
thewhere block. Theelsewhere block is executed after
the selection predicates are negated. For brevity, we omit
the vector element data type, which can be either integer or
float.

To obtain a two-point crossover, we need to change the
condition insidewhere to use 2 parameters, denoting the
start and end splicing points:

where ( i >=a && i <b ) C = X;
e lsewhere C = Y;

The above code can be generalized for uniform crossover
(Sywerda 1989). In this case, for each position, a bit is ran-
domly selected from one of the parents. Uniform crossover
can implemented by changing the condition to

where ( randvb ( 0 . 5 ) ) { . . . . }

whererandvb(p) creates a Boolean vector, each bit hav-
ing value ’1’ with probabilityp.

Discrete Recombination In ES, the recombination opera-
tor uses information fromρ individuals. In discrete recom-
bination, each position of the candidate individual vectorv

′

is copied from the same position of a randomly chosen par-
ent: v′(i) = vk(i). In this case, the HS algorithm uses a
recombination of the entire population.

CA supports matrix-vector addressing (selecting a differ-
ent cell from each column, to form a new vector), which is
used for discrete-recombination.

ForN <= 1024, the parallel speedup of the two recom-
bination operators is linear:Scrossover = N .

Mutation
Mutation involves changing a single, random position by a
given amount. In horizontal mapping, first we create a se-
lection mask, with a single ’1’ bit, on the k-th position, then
perform a vector + scalar operation, which will add only the
elements on the k-th position:

Figure 2: Discrete recombination. A new vectorV
′ is cre-

ated from 3 parents.

vec to r muta te (vec to r X) {
i n t pos = rand ( VECTORSIZE ) ;
f l o a t amount = rand11 ( ) ; / / [ −1 . . . 1 ]
where ( i == pos )

X += amount ;
re turn X;

}

In ES, the mutation operator alters the vector by a ran-
dom amount:v′ = v + N(0, σ2), whereN(0, σ2) denotes
a random variable with normal distribution. Our Vector-C
function name israndvN(sigma). Theσ2 variance pa-
rameter controls the mutation strength:

vec to r mutateES (vec to r X) {
re turn X + randvN ( sigma ) ;

}

Since the single-bit mutation’s serial execution time is
constant, there is no speedup achieved by parallelization:
Smutate1bit = 1. On the other hand, the speedup for ES-
mutation is linear:SmutateES = N , since each vector ele-
ment is affected.

Fitness Function Evaluation
In evolutionary techniques, evaluating the fitness functions
usually consumes most of the time (compared to the mu-
tation, selection), so it is crucial to implement it most effi-
ciently. The class of functions that can be efficiently com-
puted using vectorial instructions on the CA has the form:

f(x1, x2, ...xN ) =

N
⊕

i=1

hi(xi−k, ..., xi, ..., xi+k) (1)

where
⊕

is the parallel-reduction operator,k defines a
fixed-size neighborhood (independently ofN ). Currently,
the CA supports parallel sum reduction. Thehi() function
should depend only on thei-th variable and optionally on a
small local neighborhood,i− k, ..., i+ k. This is due to the
constrain that processing elements (PEs) are interconnected
by a ring bus, so efficient communication is done only by
neighboring PEs (data-locality).

In (Maliţa & Ştefan 2009), it is described how to com-
pose such a function on the CA, by combining data-parallel
and time-parallel computations, illustrated in Fig. 3. Such



Figure 3: Parallel computation followed by reduction.

generic functions can be evaluated onP processors as fol-
lows (ti are partial results):

for everyi = 1...P do in parallel
ti = hi(...)

end for
result =reduce(t1, ..., tp)

For a one-to-one mapping ofh() invocations to process-
ing elements,f() is computed inTf = Th + Tred time,
whereTh is serial time to computeh() andTred is reduction
time (which is a CA machine instruction).

Assuming data-parallel computation, for sequentially pro-
cessingN items the speedup isS = N(Th+T+)

Th+Tred
, whereT+

is serial execution time of the associative operator used for
reduction.

Due to the constant parallel evaluation time (up to the
maximum vector size 1024), we use functions that can be
expressed this way.

Selection

Given the ’horizontal’ mapping of the population in the CA,
after evaluation, the fitness value (a scalar) is available to
the sequential unit. The selection decision operation is not
vectorized, it is done by the sequential unit by comparing or
sorting the scalar fitness values.

Selection in Simulated Annealing To implement SA on
the CA, we use themutate() andevaluate() func-
tions already presented. The SA-specific selection operation
(to choose between two solutions Vold, Vnew) is:

vec to r s e lec tSA (vec to r Vold , vec to r Vnew ,
f l o a t t )

{
df = e v a l u a t e (Vnew)− e v a l u a t e ( Vold ) ;
i f ( d f < 0 | | r a n d f ( ) < exp(−df / t ) )
re turn Vnew ;

e l s e
re turn Vold ;

}

Theexp(−df/t) scalar function (Boltzmann factor) is evalu-
ated by the CA’s sequential unit. Functionrandf() returns
an uniform random variable in the [0,1) interval.

Experimental Results
In our experiments, we use two benchmark problems: the
generalized Rosenbrock function and the geometric distance
problem.

The generalized Rosenbrock function
This is a standard benchmark function used in optimization,
illustrated in Fig. 4. The generalizedN -dimensional form
is (De Jong 1975):

f(x) =

N−1
∑

i=1

[

(1− xi)
2 + 100(xi+1 − x2

i )
2
]

∀x ∈ R
N

(2)

-3
-2

-1
 0

 1
 2

 3-3
-2

-1
 0

 1
 2

 3

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

Figure 4: The Rosenbrock function of two variables.

The evaluation of the multi-dimensional Rosenbrock
function can be performed using vector arithmetic, shifting
and sum-reduction. The following code snippet shows the
implementation:

f l o a t Rosenbrock (vec to r X) {
vec to r A, X2 , Xsh ;
Xsh = 0 . 0 ;
where ( i<N )

Xsh = r o t a t e L e f t (X, 1 ) ; / / x1 , x2 , . . .
where( i <(N−1) ) {
X2 = X ∗ X; / / x0 ˆ 2 , x1 ˆ 2 , . . .
Xsh −= X2 ; / / ( x1−x0 ˆ 2 ) , . . .
Xsh ∗= Xsh ∗ 100;
X2 = 1 − X; / / 1−x0 , 1−x1 , . . .
X2 = X2 ∗ X2 ; / / (1−x0 ) ˆ 2 , . . .
X2 += Xsh ;
re turn sumv (X2 ) ;

}}

Geometric distance problem
The geometric distance problem arises in molecular geom-
etry: given a set of distances between pairs of atoms space,
determine each atom’s (x,y,z) coordinate. Although various
solutions exist, the problem can be tackled also as a global
optimization problem (Grosso, Locatelli, & Schoen 2009).



We implement a simplified form of this problem, where each
coordinate is assumed to take onlydiscretevalues inside a
given bounding rectangle. The aim is to minimize

f(x1, ...xN ) =
∑

i6=j

(||xi − xj || − dij)
2
; (3)

for all (i, j) pairs for whichdij is known, wherexi ∈
D ⊂ Z

3.
To parallelize the evaluation function, we notice that the

list of distances must be distributed for each processing el-
ement, since the CA does not support random-access inter-
processor communication. The pairs of points for which the
distances are known (as input data) represent the edges of
an undirected graph. We label the edges ase1...eN and the
vertices asx1, ...xV . Each edge is mapped onto its own pro-
cessor:ep ⇔ PEp.

To computef(), we need for each pair thexi, xj , dij vari-
ables. Thei, j vertex indexes for processorp are noted byip
andjp, (p = 1...N).

Note that some of the vertices must be shared between
processors. To implement this sharing, we use the following
method: Each PEp will hold the distancedp and the vertices
of the two nodes it connectsxip ,xjp . For example, in a
simple triangle case with three vertices, we have three edges
with labelse0: A - B, e1: B - C, e2: A - C (Fig. 5). To avoid
inter-processor communication during the iterations, since
each PE stores vertex data into private variables, we must
assure that the variables which represents the same vertex
on a different processor have identical values. We do this in
the following way:

1. The vertices are initialized to random values, at the pro-
gram initialization.

2. The vertices are distributed to each processor, each pro-
cessor stores a private copy.

3. Each vertexxi will have also associated a random number
generator streamri.

This data representation allows parallel evaluation of the
sum of the distances and parallel mutation of the vertex co-
ordinates. We present the flowchart of the computation in
Fig. 6.

For example, to load the graph represented in Fig. 5, we
assign to each edge the correspondingPE. PE0 will re-
ceive the data corresponding to edge 0: the coordinates of
points A,B and the distance d(A,B).

To evaluate the distances, no inter-processor communica-
tion is required. Each PE computes the distance between
the vertices it holds and subtracts from the known, input
distance. The parallel reduction step computes the sum of
squared differences, resulting a scalar fitness value.

vo id e v a l u a t e D i s t (vec to r Xi , Yi ,D)
{

vec to r Dx , Dy ;
Dx=Xi [ k] −Xj [ k ] ;
Dy=Yi [ k] −Yj [ k ] ;
Dx ∗= dx ; Dy ∗= dy ;
Dx += dy ;
re turn sumAbsDif f (Dx ,D ) ;

}

Figure 5: Example of a graph loaded into the Connex Array.
The edge labels are the indexes, for which the distances are
known. When new edges are added, the table extends hori-
zontally, while the number of rows is kept constant. There
are also two additional rows (Ri, Rj), not shown in the figure,
which contain the seeds for the random generators

Figure 6: Flowchart of the parallel evolution of vertices.
Note that apart from the evaluation (sum-reduction) there is
no inter-communication between the processors

In the above listing, the input vectors are:

Xip, Y ip - first vertex belonging to edge p,

Xjp, Y jp - second vertex belonging to edge p,

Dp = (known) length, squared, of edge p.

sumAbsDiff(Dx,D) sums the absolute differences of two
vectors:

f l o a t sumAbsDif f (vec to r A, vec to r B) {
vec to r V;
V = A − B;
where(V < 0)
V= −V;

re turn sumv (V ) ;
}



Results
We measured the number of vectorial operations, for each
specific evolutionary operator, as well as some test functions
(see Table 1).

Operation TPar TSeq S
A+=B 1 1024 N
xorshift 128 13 13312 N
sumAbsDiffs 7 4096 0.5 N
1-Point Crossover 3 2048 0.6 N
Uniform Crossover 15 14350 0.9 N
Uniform Mutation 33 21172 0.6 N
HS Mutation 107 71506 0.6 N
Rosenbrock 14 14325 N
evaluateDist 13 10240 0.7 N

Table 1: Vector instruction count by evolutionary operators

Tpar is parallel execution time, measured in units of vec-
torial operations,Tseq is sequential execution time (number
of sequential operations; we used the instruction count in-
stead of physical time). The last column containsS, the
speedupTseq/Tpar, running onN <= 1024 processing el-
ements. We use a one-to-one data element - PE mapping.

To accurately interpret these results, we have to empha-
size that we used instruction counts instead of cycle counts
simply because the floating-point version of the chip is still
under development. The results give a theoretical achievable
speedup when using the presented algorithms.

Conclusions
The meta-heuristic algorithms presented above are depen-
dent on the way initial data is organized. We used hori-
zontal mapping. Another choice is to map the population
vertically, by loading the population data as columns in the
CA. The vectorial instructions will operate in this case over
the corresponding variables of the entire population. By this
transposition, the previous parallel operations will become
serial, and parallelism will operate over the entire popula-
tion. However, in vertical mapping we cannot speed-up the
evaluation function by using the parallel sum instruction.
Since the evaluation function is the most time-critical, we
did not explore further the vertical mapping method, to ver-
ify if there are benefits in other evolutionary blocks.

The CA offers vectorial computational facilities which
are well suited for the implementation of evolutionary al-
gorithms. We plan to continue our experimental work and
test the efficiency of meta-heuristic optimization, including
on the CA itself (not just on the simulator).

References
Andonie, R., and Maliţa, M. 2007. The Connex ArrayTM as
a neural network accelerator. InCI ’07: Proceedings of the
Third IASTED International Conference on Computational
Intelligence, 163–167. Anaheim, CA, USA: ACTA Press.
Back, T.; Fogel, D. B.; and Michalewicz, Z., eds. 1997.
Handbook of Evolutionary Computation. Bristol, UK, UK:
IOP Publishing Ltd., 1st edition.

Back, T.; Fogel, D. B.; and Michalewicz, Z., eds. 1999.
Basic Algorithms and Operators. Bristol, UK, UK: IOP
Publishing Ltd., 1st edition.
Bäck, T. 1996. Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary programming,
genetic algorithms. Oxford, UK: Oxford University Press.
Beyer, H.-G., and Schwefel, H.-P. 2002. Evolution strate-
gies A comprehensive introduction.Natural Computing
1:3–52.
Ştefan, G. 2009. One-Chip TeraArchitecture. InProceed-
ings of the 8th Applications and Principles of Information
Science Conference, Okinawa, Japan.
De Jong, K. A. 1975.An analysis of the behavior of a
class of genetic adaptive systems.Ph.D. Dissertation, Ann
Arbor, MI, USA.
Geem, Z. W.; Kim, J. H.; and Loganathan, G. 2001. A
New Heuristic Optimization Algorithm: Harmony Search.
SIMULATION76(2):60–68.
Grosso, A.; Locatelli, M.; and Schoen, F. 2009. Solving
molecular distance geometry problems by global optimiza-
tion algorithms.Comput. Optim. Appl.43(1):23–37.
Holland, J. 1975.Adaptation in natural and artificial sys-
tems. University of Michigan Press.
Kirkpatrick, S.; Gelatt, C. D.; Jr.; and Vecchi, M. P. 1983.
Optimization by Simulated Annealing.Science220:671–
680.
Lőrentz, I.; Maliţa, M.; and Andonie, R. 2010. Fitting FFT
onto an energy efficient massively parallel architecture. In
Proceedings of the Second International Forum on Next-
Generation Multicore/Manycore Technologies, IFMT ’10,
8:1–8:11.
Maliţa, M., and Ştefan, G. 2009. Integral parallel architec-
ture & Berkeley’s Motifs. InASAP ’09: Proceedings of the
2009 20th IEEE International Conference on Application-
specific Systems, Architectures and Processors, 191–194.
IEEE Computer Society.
Maliţa, M. 2007. The Vector-C library on Connex
(A software library for a Connex-like multiprocessing
machine). http://www.anselm.edu/internet/
compsci/Faculty_Staff/mmalita/HOMEPAGE/
ResearchS07/WebsiteS07/.
Marsaglia, G. 2003. Xorshift RNGs.Journal of Statistical
Software8(14):1–6.
Ştefan, G. 2006. The CA1024: SoC with integral paral-
lel architecture for HDTV processing. In4th International
System-on-Chip (SoC) Conference & Exhibit, November 1-
2.
Quinn, M. J. 2003.Parallel Programming in C with MPI
and OpenMP. McGraw-Hill Education Group.
Sywerda, G. 1989. Uniform crossover in genetic algo-
rithms. In Proceedings of the third international confer-
ence on Genetic algorithms, 2–9. Morgan Kaufmann Pub-
lishers Inc.
Thiebaut, M., and Ştefan, G. Ziv-Lempel compression with
the Connex Engine. Tech. Rep. 077, Dept. Computer Sci-



ence, Smith College, Northampton, MA, 01063, January
2002.

Thiebaut, M., and Ştefan, G. 2001. Local alignment of
DNA sequences with the Connex Engine. InThe First
Workshop on Algorithms in BioInformatics WABI 2001.

Thiebaut, D., and Maliţa, M. Fast polynomial computation
on Connex Array. Technical Report 303, Smith College,
November 2006.

Thiebaut, D., and Maliţa, M. 2006. Real-time packet fil-
tering with the Connex Array. InProceedings of the Inter-

national Conference on Complex Systems, 501–506.
Thiebaut, D.; Ştefan, G.; and Maliţa, M. 2006. DNA search
and the Connex technology. InProceedings of the Interna-
tional Multi-Conference on Computing in the Global Infor-
mation Technology (ICCGI’06).
Weyland, D. 2010. A rigorous analysis of the harmony
search algorithm: How the research community can be
misled by a ”novel” methodology.Int. J. of Applied Meta-
heuristic Computing1(2):50–60.


