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Abstract

In this paper we contribute two novel methods that simplify
the demands of knowledge elicitation for particular types of
Bayesian networks. The first method simplifies the task of ex-
perts providing conditional probabilities when the states that
a random variable takes can be described by a fully ordered
set. In this order, each state’s definition is inclusive of the
preceding state’s definition. Knowledge for the state is then
elicited as a conditional probability of the preceding state.
The second method leverages the Dempster-Shafer theory of
evidence to provide a way for the expert to express the degree
of ignorance that they feel about the estimates being provided.

Introduction
Currently, system administrators must be intimately familiar
with their cyber assets and their organization’s missions. But
as the network of cyber resources continues to grows, it be-
comes exceedingly difficult to adequately prioritize time and
resources across possible threats as the crucial tie between
cyber assets and organizational missions is absent from most
cyber monitoring tools. As business needs and market pres-
sures are causing cyber systems to become more intercon-
nected and thus more susceptible to cyber attacks, organiza-
tions require a tool that allows them to gauge risk exposure
from multiple risk perspectives, such as public safety, envi-
ronmental impact, and shareholder return.

This need motivated us to develop Carim, a decision-
support methodology that provides an assessment of the
consequences of threats to components of cyber systems so
that security personnel can better allocate resources to pro-
tect key components. Because of the evolving nature of cy-
ber attacks, we’ve relied on non-probabilistic techniques to
allow us to characterize the completeness of the knowledge
used to make risk assessments.

Carim models each asset in a system as a particular asset
type. Asset types have known mitigating relationships with
other asset types. The mitigating relationships are elicited
from domain experts and best practices and encompass a
consensus view on the types of actions that can be taken to
reduce an asset’s vulnerability. For example, a workstation
might have mitigating relationships that include the instal-
lation of anti-virus software, a backup server and related
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software, and a procedure for installing operating system
patches. Each mitigating relationship involves other assets
that might have mitigating relationships that require analy-
sis. This network of mitigation relationships gives us a tool
to elicit best practices from domain experts. It is similar to
the causal mapping approach used for constructing Bayesian
networks, where expert knowledge is represented as causal
maps that are then, in turn, used to construct Bayesian net-
works (Nadkarni & Shenoy 2004). However, the elicitation
of the conditional probabilities necessary for Bayesian net-
works proved difficult. This drove us to develop new meth-
ods for eliciting knowledge from experts.

Our Contributions In this paper we present two novel
methods to simplify the demands of knowledge elicitation
on certain types of Bayesian networks. The first method de-
scribes the values of a random variable using a fulled or-
dered set of states. In this order, each state’s definition is
inclusive of the preceding state’s definition. The second
method uses Dempster-Shafer theory of evidence to provide
a way for experts to express uncertainty in the estimates be-
ing provided.

Related Work Domain experts are heavily relied on to pro-
vide information about probabilistic networks. Yet, these
experts often struggle with the complexity of this respon-
sibility. The problem of eliciting probabilities attracted the
attention of many Bayesian network community (Druzdzel
& van der Gaag 1995; van der Gaag et al. 1999; Olumuş &
Erbaş 2004). The elicitation of the probabilistic values for
reasoning under uncertainty is a critical obstacle (Druzdzel
& van der Gaag 1995; van der Gaag et al. 1999; Olumuş &
Erbaş 2004). Various methods have been designed to elicit
probabilistic relations. But these methods tend to be very
time consuming and are difficult to apply when many thou-
sands of probabilities must be assessed.

While Bayesian networks have been used previously to
reason about beliefs (see, for example, (Simon & Weber
2006; Simon, Weber, & Levrat 2007)), we generalize these
methods and formally tie them to Dempster-Shafer (DS) the-
ory of evidence. We simplify DS theory such that the focal
elements of a node (i.e., the subsets with non-zero mass) are
confined to the singleton plus a general “don’t know.” No
other subset is assigned mass.

Organization The paper is structured as follow. In Sec-



Figure 1: A man-in-the middle attack scenario in which
the attacker can eaves drop on the wireless communication
channels.

tion we describe a scenario for which the Carim method-
ology was applied and discuss approaches in eliciting expert
knowledge and representing uncertainty in the estimates that
they provide. In Section we provide the background neces-
sary to understand our contributions. We discuss our con-
tributions in Section , which are novel methods for eliciting
knowledge for Bayesian networks. Finally, we summarize
and conclude in Section .

Eliciting SCADA Domain Knowledge
for Carim

Carim has been applied to security in the domain of super-
visory control and data acquisition (SCADA) networks, the
networks used to control industrial processes. In this do-
main, we were particularly concerned with the possibility
of a man-in-the-middle attack when a SCADA network in-
cluded unsecured links between nodes. Figure 1 is a rep-
resentation of this scenario. Our resident expert suggested
two technical fixes that could be used, either independently
or together, to protect against such an attack: SecureDNP, an
encrypted wire protocol, and SSCP, a protocol that ensures
data integrity. The effectiveness of these techniques depends
on the “Rekey” policy used: how often the encryption and
authentication keys are changed. Finally, the vulnerability
to a man-in-the-middle attack depends on the capabilities of
the attacker: an insider might have access to the required
keys, and a state-backed attacker may have access to enough
computing power to break the encryption scheme. The fac-
tors considered by Carim in assessing vulnerability to this
attack are summarized in Figure 2.

In order to assess the vulnerability of the SCADA net-
work using traditional Bayesian techniques, we would be re-
quired to elicit from our expert conditional probabilities for
each combination of mitigation states and attacker expertise.
In approaching our expert with this task, we realized that
the expert was much more comfortable providing some val-

Figure 2: The elements for assessing the vulnerability of
substation communications to an attack.

ues than others—for example, the relative effectiveness of
rekeying policies was unknown, but the traffic authentication
were clearer. When encoding these values into a Bayesian
network however, the uncertainty of our expert disappears.
While there is a good deal of controversy on the subject, the
traditional approach of handling this problem with Bayesian
networks is to ensure that the elicited probabilities encom-
pass the doubts of the expert, and to not support additional
“second order probabilities” (Pearl 1988, p. 360–363). We
desired, however, to explicitly model uncertainty so that the
end-user would have a measure of the applicability of the
results. The method described here allows the expert to ex-
press uncertainty without forcing them to further analyze the
factors causing their uncertainty so they can be expressed in
one probability distribution.

We also realized that we were putting undue burden on
the expert by requiring them to state probabilities that had to
match the constraints of the problem: it is always required,
for example, that the vulnerability not decrease when the
only change is that the expertise of the attacker increases.

We are charged then, with the following requirements:

1. Devise procedures to simplify the elicitation of probabili-
ties that are constrained by additional factors

2. Model the uncertainty of the knowledge used to provide a
measure of applicability of the model

A Technique to Simplify Elicitation
In order to apply a Bayesian network to this problem, the
expert was required to provide conditional probabilities for
each state of compromise of the asset for each combination



Figure 3: Elicitation requirements for man-in-the-middle attack on substation communications. The left pane is the state space;
the right is the sample space of the variable.

Table 1: The reduced elicitation requirements for substation
communication security. These values are for the case when
keys are changed every 12 months, both SecureDNP and
SSCP are enabled, and the attacker has medium expertise.

Secure 1
Eavesdrop 60%
Inject 10%
Join 50%
Control 10%
Unknown 0.25

of the random variables that can affect the asset’s state, as
illustrated in Figure 3.

As described above, the expert is also allowed to specify a
probability for the special state Unknown, which is probabil-
ity they do not feel comfortable assigning to any particular
state.

As can be seen in the Figure 3, the elicited probabilities in
this problem have some interesting characteristics because
of additional constraints on the state spaces of the variable.
In particular, it is assumed that some states of compromise
are “more difficult” to achieve then others; attackers with
“higher” levels of expertise are accorded more probability
of moving the asset into the more difficult states.

Because of these considerations we simplified our elici-
tation technique. For given states of the values of the mit-
igations and a specific level of expertise, we first have the
expert give a estimate of the “uncertainty” they have in as-
sessing the hypothesized situation. They are then asked to
give, for the given level of expertise l, an estimate of the
percentage of attackers with expertise l that can achieve the
lowest level of compromise c0 on the asset. (Since the low-
est level of compromise is “completely secure”, this value
is 100 percent). Then, for each succeeding level of compro-
mise ci, they are then asked to estimate what percentage of
attackers with expertise l who can achieve level of compro-
mise ci−1 can also achieve level of compromise ci. Section
describes how we then convert these elicited values to prob-
abilities used in a Bayesian network.

Using Figure 3 as an example, we are eliciting values
for when keys are changed every 12 months, and both Se-
cureDNP (encryption) and SSCP (authentication) are used.
Using our technique, we elicited the values given in Table 1

for the case when the attacker has medium expertise. The
values are elicited as percentages of the potential attackers
with the given level of expertise that can move an asset to
a more compromised level given the state of mitigations.
Since we assume that all such attackers can leave the asset in
the “Secure” state, the first elicited value is the percentage of
attackers that can change the state to “being eavesdropped”.
In our example, the expert asserts a value of 60 percent. The
next value we elicit is the percentage of attackers who can
change the state to “inject messages.” An attacker who can
effect this change also has the expertise to eavesdrop. The
expert testifies that 10 percent of all attackers who can eaves-
drop can also inject messages. We continue eliciting values
in this fashion in the order that the states are specified. Fi-
nally, we ask the expert to quantify her confidence in the
values she provided. If the expert feels the amount of infor-
mation given in the constraints is sufficient to determine the
elicited values, than the “unknown” value would be zero. If
the expert feels that they have no basis for their judgments,
then “unknown” would be be one. Viewed this way, the “un-
known” value is the portion of information required to make
a judgment that is missing.

Background
In the following we briefly describe the foundations,
Bayesian networks and Dempster-Shafer theory of evidence,
on which we build our contributions.

Bayesian Networks Qualitative Bayesian Net-
works (Halpern 2003, p. 135), as a special case of
discrete influence diagrams (Kjaerulff & Madsen 2008, p.
ix), are convenient to elicit and encode an expert’s impres-
sions of factors that influence values in their domain of
expertise. In order to be operational, quantitative Bayesian
network requires a myriad conditional probabilities to be
specified for each combination of values in an expert that
they may not feel comfortable in estimating.

A Bayesian network N = (G,P ) over a set of random
variables X = {X1, . . . , Xn} consists of a directed acyclic
graph (DAG) G that encodes a set of conditional indepen-
dence assertions and local probability distributions P for
each variable. Together, G and P form a joint probability
distribution over X .

To be a Bayesian network, N must possess the local
Markov property. Denote by pa(Xi) and nond(xi) the set
of parents and non-descendants, respectively, of Xi. A net-
work possess the local Markov property if, for each Xi ∈ X ,



Xpa ∈ pa(Xi), and Xnond ∈ nond(Xi), the proposi-
tion (Neapolitan 2004, p. 37)

P (xi) = 0 ∨ P (xpa|xnond) = 0∨
P (xi|(xpa|Xnond)) = P (xi)

evaluates to true. In words, the local Markov property states
that each variable is conditionally independent of its non-
descendants given its parent variables.

The local Markov property makes Bayesian networks an
effective technique for eliciting knowledge: by viewing the
network, an expert can determine if all factors are being con-
sidered when determining the probability of an event.

Dempster-Shafer Theory The inability to express uncer-
tainty is a drawback of the approaches based on probability
theory (Halpern 2003, p. 24). However, expressing uncer-
tainty is a necessity when attempting to elicit understand-
ing in knowledge-poor domains (see, for example, (Forester
et al. 2004; Donell & Lehner 1993; O’Hagan & Oak-
ley 2004)). In contrast to purely probabilistic methods for
capturing domain knowledge, Dempster-Shafer theory (DS)
provides a rich mechanism for describing the range of be-
liefs about a result (Gordon & Shortliffe 1990). This rich-
ness comes at the expense of complexity in both eliciting the
values for expressing the different types of ignorance and in
the combination of multiple pieces of evidence (Ai, Wang,
& Wang 2008).

In the following we summarize DS theory. We refer the
reader to (Gordon & Shortliffe 1990) for a reference on DS
theory. Let X be a random variable specified by the finite
set X of its values. Set X is also called the frame of discern-
ment. A basic probability assignment (BPA) mX over X is
a function

mX : 2X → [0, 1],

where 2X is the power set of X, for which

mX(∅) = 0 and
∑
S⊆X

mX(S) = 1.

The mass or degree of belief mX(S) of S is a measure of
that portion of belief that is committed exactly to S by mX

and not to any particular subset of S. Each subset S such that
m(S) > 0 is called a focal element. There are two measures
that bound the interval that m(S) resides. The function

belX(S) =
∑
T⊆S

m(T )

computes the belief (or support) for all S ⊆ X. The plausi-
bility of each S ⊆ X is given by

plX(S) =
∑

T∩S 6=∅

m(T ).

Belief measures the total mass that is constrained to move
within the set of interest, while plausibility measures the to-
tal mass that can visit somewhere in the set of interest but
can also move outside it. From the definitions, we see that
belX(S) ≤ mX(S) ≤ plX(S).

In the next section, we discuss our methods for eliciting
knowledge from experts.

Secure

Eavesdropped

Injection

Joined

Controlled

Figure 4: The inclusive compromise states of the substation
communications using set theory.

Method
We next discuss our contributions to eliciting knowledge
from experts. The first contribution is when the states of
a variable can be described by a fully ordered set. In this set,
a state implies all the preceding states. Our second contri-
bution is using Dempster-Shafer theory of evidence to allow
experts to express uncertainty of the estimates that they pro-
vide.

Simplifying Conditional Probability Elicitation in
Bayesian Networks
Our goal is to elicit values in the form shown in Table 1
and calculate conditional probabilities that can be used in
a Bayesian network. As an example, consider Figure 3 in
which we need to elicit the probability of compromise con-
ditioned on the Rekey policy, wire protocol, data integrity
protocol, and the attacker’s level of expertise.

The elements of the sample space of the random variables
in a Carim model often belong to a simple order. For ex-
ample, when considered in terms of the progression of an
attack, the states of compromise in Figure 2 can be ordered
as Secure ≺ Eavesdropped ≺ Injection ≺ Joined ≺
Controlled . What this says is that for the attacker to con-
trol devices, she must have joined the network, and to join,
she must have the ability to inject traffic, and so on. The
implication of states can be represented as inclusive sets as
we have done in Figure 4.

An advantage of this constraint when eliciting knowledge
is that we can state our elicitation in terms of an already
elicited value, which eases the cognitive load on the subject
matter expert. For example, instead of asking: “What is the
likelihood that that a person with high skill level can eaves-
drop on the network”, and then separately asking “What is
the likelihood that a person with high skill level can inject
traffic into the network”, we can ask “What is the likelihood
that a person with high skill level who can eavesdrop the
network can also inject traffic into it?”



Let s1, . . . , sn be states of X such that state si+1 im-
plies si (i.e., si+1 is a subset of si). We elicit beliefs
P (s1), P (s2|s1), . . . , P (sn|sn−1) from experts given the
parents of X . But in probability theory, the elements of the
sample space of a random variable must be disjoint. We ob-
tain the disjoint sample space by defining xi to mean for
si ∧ ¬si+1. Treating the beliefs as probabilities, the proba-
bility P (xi) of X taking the value xi given X’s parents is:

P (xi) = (1− P (si+1|si))P (s1)

i∏
j=2

P (sj |sj−1), (1)

for i = 1, . . . , n− 1, and

P (xn) = P (s1)

n∏
j=2

P (sj |sj−1). (2)

If X is conditionally dependent on other variables, we have
all the necessary values to construct a Bayesian network to
compute P (xi).

Implementing Subset of Dempster-Shafer Theory
with Bayesian Networks
The greatest disadvantage of DS theory is that in contrast to
probabilistic models, which are described by their respec-
tive density functions, DS models must be described by a
set, which grows exponentially with the number of variable
values. It would be difficult to elicit degree of belief for
each and every set. If we can represent that problem with a
graph that satisfies the Markov property, we then can use the
computational efficiency of Bayesian networks to compute
degrees of belief.

Beliefs are elicited from experts for each value x of vari-
able X and also the element Unknown, which is equiva-
lent in DS theory to the set X. All other sets have no mass.
Given these conditions, P (x) satisfies the requirements of
mx as

∑
x̄∈X∪{Unknown} P (x̄) = 1. A Bayesian network

can be constructed such that the node that represents X has
a state for each of its focal elements. The node’s conditional
probability table comprises the elicited conditional proba-
bilities of X given its parents. The network output for the
node computes P (x̄), for each x̄ ∈ X ∪ {Unknown}. The
belief in x is simply belX(x) = P (x) and the plausibility is
plX(x) = P (x) + P (Unknown).

We now consider an example. There are three vari-
ables X , Y , and Z, where X conditionally depends on Y
and Z and Y and Z are conditionally independent. From
the definition of joint probability, the probability P (x̄) of
X ∪ {Unknown} is

P (x̄) =
∑

ȳ∈Y ∪{Unknown}
z̄∈Z∪{Unknown}

P (x̄|ȳ, z̄)P (ȳ)P (z̄).

This is the probability computed by the Bayesian network.

Conclusion
In eliciting knowledge for Carim, we frequently came upon
the situation where we needed to determine the subjective

probability of a member of a simple order according to a
domain expert. For example, the probability that a threat
will compromise an asset at a particular level of compro-
mise. Additionally, the domain expert may have the ability
to know when their knowledge about an area is incomplete,
but be unable to further describe the characteristics of the
incomplete knowledge. For these reasons, we wanted our
users to be aware of the completeness of the knowledge in
decisions.

We solved these problems by using Bayesian networks
constructed using knowledge gained via our elicitation
methods described in this paper. The first method simpli-
fies the elicitation of conditional probabilities when the sam-
ple space of a random variable can be described by a fully
ordered set of inclusive states. The conditional probability
of a state is dependent only on is predecessor. The second
method implements a subset of Dempster-Shafer theory us-
ing a Bayesian network. This allows the network to provide
a measure of uncertainty along with its output.
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