

Robotic Dancing: Exploring Agents that use a Stratified Perceive-

Decide-Act Cycle of Interaction
James Benze and Jennifer Seitzer

Department of Computer Science

University of Dayton, Dayton, OH 45469-2160

benzejaa@gmail.com, seitzer@udayton.edu

Abstract

An autonomous agent is any intelligent entity that engages
in a perceive-decide-act cycle of interaction with its
environment. In this paper we present a formalism using a
stratified percept chain that renders an augmented
interactive cycle. In particular, we identify two kinds of
agents: a “lead” agent, who gains the percepts directly

from the environment, and a “follow” agent, who gains its
percepts from the lead agent (as well as the environment).
In this work, the lead agent procures percepts from the
environment, makes decisions based on this input, and
passes these new orders in the form of secondary percepts
onto the “follow”.

We exemplify this formalism in the application area of

robotic dancing using models programmed in Alice, a
programming IDE/language that facilitates the creation and
visualization of autonomous agents.

Introduction

Autonomous agents achieve a level of intelligence by

participating in a continual feedback loop to and from the

environment. At the onset of the cycle, a percept is sent to

the agent from the environment; the agent then internally

makes a decision as to the action to perform next in the

environment, and then lastly, the agent performs the

action. In this work, I have expanded this cycle of

interaction by involving two agent types: a “lead” who

gets the percept directly from the environment, and a

“follow” who gets its percept from the lead. This

stratification of percept sources is new and affords many

interesting challenges in multi-agent intelligent systems.

Stratified Percepts

 In this paper we are defining “stratified percepts” to be a

chain of percepts originating from the environment that are

interpreted by an intelligent agent, and then received by

another intelligent agent. We label the standard agent type

receiving its percept from the environment as the “Lead”

agent. Additionally, we identify the “Follow” agent as the

agent which gets its percepts from the Lead, and executes

its actions in response to the Lead’s actions.

This kind of percept chain is applicable in many human

interaction situations. For example, these percept chains

are found in many kinds of partner dancing (Jitterbug,

Lindy Hop, Waltz, Tango, etc.), however any chain-of-

command domain houses many problems and applications

that could benefit from the work and insights gleaned from

studying percept chains. Standard organizational structure

houses tiers of commands that are relayed down to lower

members of the organization. For example, the

Commander in Chief is the head of the American Armed

Forces. Any decisions made by him must be passed down

through the organization until it reaches the battlezone.

Being able to simulate this effect would lead to more

effective military simulations.

Obviously, when chaining stratified percepts together,

one must be careful to keep the lines of communication

clear. For example, consider the “Telephone game” played

by children. One child at the head of a line of children

whispers something in the ear of the next child. This child

tries to whisper the same message to the next person, and

so on until the entire line of children has been exhausted.

Finally the last child announces the message aloud. This

game becomes fun since rarely is message pronounced

clearly between all children, and the message received by

the last child is usually not even similar to original. In

order to circumvent this problem, this project does not deal

with a chain of intelligence agents, simply looking at the

relationship between one “lead” and one “follow.”

mailto:benzejaa@gmail.com
mailto:seitzer@udayton.edu

Cycle of Interaction

Figure 1: Single Agent vs. Multiple Agents

The actions of an intelligent agent are traditionally defined

by a “Perceive-Decide-Act” cycle, as described above.

When multiple agents are to be chained together, the cycles

of one agent depends on the other, as demonstrated in

Figure 1.

Implementation of System DANCER

We exemplify this formalism in the application area of

robotic dancing using models programmed in Alice, a

programming IDE/language that is geared towards an

instructional computer programming and also facilitates

the creation and visualization of autonomous agents. Two

models of humans in Alice represent the Lead and the

Follow. The two models are then made to dance in the

style of East Coast Swing. The Lead interprets the “beat”

given by the environment, and chooses dance moves to

portray, and tries to demonstrate them to the Follow

through body movement. The Follow then takes this body

movement and interprets it so that she can do the correct

move.

Alice

Alice was developed at Carnegie Mellon University in

order to provide an easy environment to teach beginner

computer science topics to introductory computer science

students. However, Alice also contains an integrated

graphics environment, allowing the easy placement of

lighting, human models, etc with minimal effort from the

developer. It was this factor that was crucial in our choice

of Alice as the development environment.

One of the most challenging aspects in using Alice,

however, is its lack of synchronization objects. Although

Alice allows for many threads to run simultaneously (Alice

is based on Java), it provides no method of protecting

shared data. Because of this, creative ways had to be

employed to circumvent race conditions.

East Coast Swing

East Coast Swing was chosen as our application area for

several reasons: (1) the moves are relatively easy to
model, (2) it is typically an introductory dance, and (3) the

authors are both dancers and know East Coast Swing.

In the swing dances, such as East Coast Swing, one

dancer is called the “Lead” (typically a male) and one

dancer is called the “Follow” (typically a female). The

Lead prepares the dance moves, and executes them at the

given time. He should also make it obvious to the follow

what he is doing. The Follow does her best to interpret the

information given to her by the Lead (this information is

also called a “lead”). This dance is therefore an excellent

representative of a stratified percept chain, since it

inherently requires a lead and a follow.

System Design of DANCER

In the Alice architecture, everything is contained within a

global class called “World”. The World, in this project,

acts as the environment, and provides the original source

for the percepts.

Contained inside the world are the two intelligence

agents, once again designated the Lead and the Follow.

Each of these two classes are created with the Alice he/she

builder, and is constructed of many smaller classes, each

representing a body part (forearm, neck, etc). This allows

for the animation of individual body parts, so that the

follow and lead are each able to move in a dancing fashion.

The Directional Light and the Bedroom classes are

relatively unimportant. The directional light exists to give

a visual indication to the user of the beat created by the

world. The Bedroom is pure decoration, and was added so

that the Lead and the Follow would be on a wooden floor

(dancing is not often done on grass or sand, the two default

ground textures for Alice worlds).

Finally, there are many “dummy objects” used in the

system. These are invisible placemarkers that contain only

a location and orientation (yaw, pitch, roll). These are

used as markers for the Lead and the Follow, and provide

points of reference for their movement.

Figure 2: Classes in the East Coast Swing Enviornment

The East Coast Swing Environment

The Lexicon of Moves

In order to execute dance moves, both the lead and the

follow agent had to be programmed with a vocabulary of

movements that could be performed. Both the lead and the

follow agents were programmed with the ability to perform

the following dance moves:

 East Coast Basic

 Inside Turn

 Outside Turn

 Tuck Turn

 Repeaters (a variation on a tuck turn)

By programming these moves into the library each agent

would be able to visually demonstrate its decision based on

the percepts it received.

The System Algorithm and Environment

The purpose of the environment in this project is to

provide the music for the lead to interpret. However, one

of the limitations of Alice is a limited ability to interpret

music in the project. Although an audio file could be

played in the Alice environment, there was no way for any

object to intelligently interact with it.

As such, a substitute for the music had to be found.

Instead of playing music in the background, a flashing light

was used instead. This can serve the same purpose as a

musical beat, since a musical beat is just a repeated

auditory impulse. A repeated visual impulse creates the

same effect but through a difference sense. Since one

sense is as good as any other for this project, a flashing

light was deemed to be an acceptable substitute.

Figure 3: System Algorithm

Lead

The Lead agent has two primary responsibilities: to

interpret and act upon the information from the

environment, and to provide a clear percept to the Follow

dictating her actions.

Clear interpretation of the beat of the music can be

challenging for many humans. In our system, the Lead

uses Alice’s internal timing function to record the time of

each beat. By viewing the difference between each time,

the Lead can accurately predict when the next beat would

occur. This is essential in determining the speed in which

to dance.

One problem was occurred due to the lack of

synchronization ability in Alice. Due to other system

processes running on the processor, there exists a

discrepancy between the pulses of light and the time that

they are recorded by the Lead agent. However, when no

other projects were actively running on the system, the

extra time variation was only about 0.06 to 0.09 seconds.

By subtracting 0.1 seconds from each recorded beat, and

by keeping the number of processes low, the recorded beat

by the lead is at or slightly below the beat provided.

It was determined that having a recorded beat less than

the provided beat was preferable than having the recorded

beat to be greater than the provided beat. When the

recorded beat is less, the lead can simply pause, and wait

for the action to “catch up”, whereas if the lead was too

slow, he would simply be slower and slower until he has

fallen noticeably behind.

To determine the specific move that the lead executes,

the lead simply uses Alice’s random number generator, and

randomly chooses a move. It then passes on this percept to

the Follow.

Figure 4: DANCER preparing a turn

Follow

The follow program receives its variables through a

function call. There are four different variables that are

passed to the function as forms of “leads”: The lead from

the left hand, the lead from the right hand, the beat of the

music, and the distance between the two agents. The first

two inputs should be obvious. These are the physical

connect between the head and the follow. With is left and

his right hand, he provides motions to direct the follow.

The beat parameter is slightly more subtle, but in leading,

the Lead pulses slightly, and in this way can transfer his

knowledge of the beat to the Follow.

The distance parameter represents the translational

velocity that the lead transfers to the follow. Doing certain

moves the lead doesn’t just cause the follow to spin, but

causes her to translate as well. The distance parameter

represents this type of lead.

The follow uses a nested if statement to determine

further course of action. She also takes her current

momentum into account while determining further courses

of action. The momentum is a variable set from previous

moves.

Figure 5: DANCER during a turn

Lead-Environment Lag

As mentioned before, a lack of priority functions in Alice

causes the timer function not be entirely accurate. As such,

the timer between the lead and the environment had to be

adjusted with a 0.1 second reduction in time to account for

this. In addition, causing the processor to work a large

number of tasks will cause this timer to displace even

more. As such, the program should only be run in parallel

with as few other programs as possible. No lag exists

between the Lead and the Follow, since no system clock is

used, only a function call.

Multiple Threads Between Lead-Follow

Originally, the plan was to have the Lead and the Follow

run in separate threads, and for the Lead to send some sort

of signal containing the leads to the Follow in order to start

her motion. However, the lack of synchronization

elements available in Alice made this unfortunately

impossible. There was too much lag between the

interactions between the two agents, which caused either

too great of a delay in the Follow’s actions. As such, a

simple function call was used to pass percepts between the

two agents.

Figure 6: DANCER during the East Coast Basic

Conclusions and Future Work

An example of an interaction between two hierarchical

agents was successfully modeled between the Lead and the

Follow. However, many of the challenges have inspired us

to probe further in future work as we describe here.

Clearer Communication between Agents

Currently, all percepts are passed directly and digitally

between the Lead and the Follow, guaranteeing clear and

precise communication. However, in real world scenarios,

the communication between agents may become unclear.

An example of this is perfectly clear in the Telephone

game mentioned earlier. The specifics of a whispered

message will become garbled over time, since one is

difficult to hear.

Because of this potential problem methods should be

implemented so that the Follow will approximate the

closest action based on the decisions given. The other

agents should be able to gracefully recover from a

mistaken decision.

Recovery After a Delayed Response

One of the problems experienced in programming this

project was that the Follow would sometimes have

drastically delayed responses from the Lead. This could

cause a desynchronization between the two Agents.

Methods should be employed so that the Lead agent could

gracefully recover from this separation.

Multiple Inputs

In this situation, each agent has a clear superior: The

Lead’s actions are governed by the environment and the

Follow’s action are governed by the Lead. However, in

many situations, the Agents must receive input from

multiple sources. For example, what if the Follow was

able to receive input from the environment as well as the

Lead? This input could be constructive (the Follow using

the input musical beat in addition to the beat received by

the lead to more accurately dance), or destructive (A fire

alarm sounds, and the Lead ignores it. Does the follow

obey input from the Lead and dance, or from the

Environment, and leave the room. Both types of input will

have to be considered.

Whisper-Down-the-Lane Agents

Here, an agent relationship was successfully demonstrated

between a single Lead agent and a single Follow agent.

This interaction could be expanded to chain of lead-follow

Agents. Care would have to be taken to further reduce the

risk of the other problems listed here.

Summary

Although this project accurately can portray a stratified

percept chain, further testing and modeling is required

should be performed in order to more accurately and

effectively model this style of relationship between

intelligent agents. The temporal aspect of decision making

is much more important in hierarchical agent relationships,

and methods of communication must remain remarkably

clear in order for lower agents on the hierarchy to remain

effective. Experimenting with ways to recover from these

kinds of errors will vastly improve the robustness of

hierarchical agents and will allow us to more accurately

understand this style of interaction.

References

Alice.org, Available: http://alice.org [Accessed: March 22,

2010].

Alice—Project Kenai, Available: http://kenai.com/projects/alice

[Accessed: March 22, 2010].

W. Dann, S. Cooper and R. Pausch, Learning to Program with

Alice, Upper Saddle River, New Jersey: Pearson Education, Inc.

2006.

LEGO.com MINDSTORMS: Home, Available:

http://mindstorms.lego.com/en-us/Default.aspx [Accessed:

March 22, 2010].

http://alice.org/
http://kenai.com/projects/alice
http://mindstorms.lego.com/en-us/Default.aspx

