
Using a Genetic Algorithm to Evolve a D* Search Heuristic

Andrew Giese and Jennifer Seitzer

University of Dayton

gieseanw@gmail.com, seitzer@udayton.edu

Abstract

Evolutionary computation (EC) is the sub-discipline of

artificial intelligence that iteratively derives solutions using

techniques from genetics. In this work, we present a

genetic algorithm that evolves a heuristic static evaluation

function (SEF) function to be used in a real-time search

navigation scheme of an autonomous agent. This coupling

of algorithmic techniques (GAs with real time search by

autonomous agents) makes for interesting formalistic and

implementation challenges. Genetic evolution implies the

need for a fitness function to guide a convergence in the

solution being created. Thus, as part of this work, we

present a fitness function that dictates the efficacy of a

generated static evaluation function. In this work, we

present algorithmic and formalistic designs,

implementation details, and performance results of this

multi-layered software endeavor.

Introduction

The A* Algorithm is a greedy best-first search algorithm
that is used to calculate an optimal path between two
points, or nodes, on a graph (Hart et. al 1968) The
algorithm can be adapted to a run in real-time by way of
restarting execution as new environment information
becomes available, called a Dynamic A* (D*) search. The
A* search uses a static evaluation function (SEF) that uses
heuristics to find a path of state transformations from a
start state to a goal state. The SEF assesses the merit of
each child state as it is generated by assigning it a numeric
value based on information about that state. The score
allows the A* to direct its search by prioritizing the
expansion of child nodes that could potentially expand into
a goal state while neglecting child nodes that are less likely
to lead to a goal.

In a real time environment, information about the actual
goal state is unavailable and unobtainable for any given
iteration of the search for an agent (because it is out of
range of the agent’s sensors). Therefore, the SEF must
direct the search to the most appropriate state that
anticipates system information as it becomes available. In
our work, the SEF seeks to maximize some aspects of an
agent’s state while minimizing others. By evolving a
weight on each “aspect-variable”, we are able to create
offline a highly effective SEF that can predict obstacles
and challenges that occur in real time during the execution
of D*. In this paper we present the offline pursuit of using
a genetic algorithm as a mechanism to evolve an optimal
SEF to be used in the real-time execution of A*.

Additionally, we use the simulator that will eventually
benefit from this optimized SEF to provide feedback in the
evolution process. That is, the simulator serves as the
fitness function for the evolving SEF.

This work is novel in that it combines techniques of
evolutionary computation using genetic algorithms and the
use and refinement of a heuristic for the D* algorithm.
There are many applications of genetic algorithms in
diverse domains such as bioinformatics (Hill 2005),
gaming (Lucas 2006), music composition (Weale 2004),
and circuit optimization (Zhang 2006). Additionally, work
in D* has been studied and developed in theory
(Ramalingam 1996) as well as specific applications such as
robotics (Koenig 2005). We are using the all-inclusive
examination that genetic algorithms affords us to find the
perfect (or near perfect) heuristic function for a derivative
of the very traditional AI search, A*.

The A* and D* Algorithms

In this work, the evolution of a static evaluation function
using a genetic algorithm is applied to an autonomous
agent operating in an environment provided by Infinite
Mario Bros., an open-source, faithful recreation of
Nintendo’s Super Mario World. The agent (Mario) uses a
realtime execution of an A* search, called D*, to direct its
movement through the environment to ultimately reach the
goal (the end of the level). Mario may use information
about what is currently visible onscreen, but beyond that
nothing is known, making a calculation of an actual path to
the goal impossible. Therefore, the SEF of the D* must
direct Mario towards states that are on the path to the goal.

Mario has a total of thirteen distinct action combinations
that allow him to negotiate the environment. These are
move left, move right, duck, and two others—jump and
speed—that can be used in combination with the other
actions and each other. Jump allows movement along the
y-axis, and can be used in combination with right, left, and
duck. Speed allows for faster movement left or right, and
higher jumps. This means that from any state, there could
be up to thirteen child nodes. Since the agent must operate
at 24 frames per second, the agent is allotted approximately
40 milliseconds to perceive its current state, decide what to
do next, and return a chosen action. With up to thirteen
child nodes from any node in the search tree, any algorithm
that decides what Mario is going to do next must do so
quickly and efficiently. A “brute force” approach that
analyzes all possible children was infeasible given

mailto:gieseanw@gmail.com
mailto:seitzer@udayton.edu

available computing machinery, and therefore a dynamic
D* search is more appropriate.

The SEF of a D* search uses information about a state to
direct the search efficiently. For Mario, much information
is immediately available from each percept provided by
the environment. This information includes the position of
Mario, the amount of damage Mario has taken, the
positions and types of enemies onscreen, and position and
types of obstacles onscreen. Other information can be
tracked over time, like number of kills, X velocity, Y
velocity, coins collected, time remaining, etc. The task of
our system was to discover what effects, if any, the values
of these variables should have on the valuation performed
by the SEF of a node in the search graph. A high value for
a variable might proportionally increase the cost to
transition to that state, or conversely could proportionally
decrease the transition cost.

The System

In 2009 and 2010 Julian Togelius of the ICE-GIC held a
competition for entrants to create an autonomous agent
(bot) that would play Markus Persson’s Infinite Mario
Bros. the best. “Best” in this sense means the distance a
bot could travel within a given level and time limit. If two
bots finished a level they were awarded equal scores, but if
neither finished, the bot that travelled furthest was deemed
better. In both iterations of the competition, the same bot
was victorious. This bot was written by Robin Baumgarten
(Baumgarten). Robin’s bot used a D* search coupled with
an accurate method for expanding child nodes, and a
human-generated static evaluation function for the D*. Our
system is a heavily modified version of Robin’s, with the
majority of the A* rewritten for legibility and efficiency
while the means to produce child nodes was mostly
preserved.

Every 24 frames, the environment provides the agent with
a percept that includes the locations and types of all sprites
on the screen, including Mario. The agent must return an
action to the environment that the environment then effects
upon Mario. For each percept received, the agent runs an
A* search for 39ms or until the agent has planned out to 15
levels of the search tree. The agent keeps an internal
representation of the world, and tracks Mario’s x and y
velocities among other things not provided by each
percept.

After ensuring that its internal representation is consistent
with the environment-provided one, the agent begins an
A* search from Mario’s current position and velocity.
Children are generated by considering which actions are
available to Mario at any node. That is, a child state
reflects where Mario would be and how fast he would be
moving if performed action A from node M. (Figure 1) A
child state also informs the search of whether Mario would
take damage, die, kill an enemy, collect a coin, etc. upon

performing action A from node M. A static evaluation
function provides weights on Mario’s X position, X
velocity, Y position, Y velocity, Mario’s damage taken,
whether Mario is carrying a shell, Mario’s X position
multiplied by X velocity, and Mario’s Y position
multiplied by Y velocity. These weights are values between
-1 and 1. After multiplying weights to their associated state
variables, the sum of products forms the final SEF score for
that node.

Figure 1

This SEF score is an estimation of the amount of work
required to reach a goal state from the current node, and as
such nodes with lower SEF scores are preferable. As an A*
algorithm dictates, the level of the search tree at which the
node was discovered is also added to the score. This is the
“greedy” part of an A* search where not just a solution is
desired, but the best solution. For Mario, the cost to
transition from one state to another is uniform; all
neighboring states have the same arc cost to travel to a
neighbor. Adding the sum of arc costs into the SEF score
for a node is a means by which the “work” required to
reach a node in the graph is represented, so that if the same
node is reached by two separate paths, the shortest path is
favored. Since the D* search operates in a partially
observable world, an admissible heuristic is difficult to
discern, hence the motivation for a Genetic Algorithm to
search for the optimal weights to apply in the SEF.

During the D* search, children nodes are generated from
the current state of the agent. Generated children are placed
on an open list sorted from lowest to highest scores. The
child with the lowest score is taken from that list, and its
children are generated. This process repeats until the agent
has searched for 39ms or has searched 14 states (empirical
number), at which point it returns the action that leads to
the most optimal path for the current available information.

The values for the weights used in the agent’s SEF
mentioned above are deemed to be “unknown” to the
system, and are provided via parameters supplied by an
external entity, in this case a Genetic Algorithm. The

genetic algorithm is implemented as defined in (Russell
and Norvig 2003). The chromosome being evolved is an
array of 8 floating point values, each between -1.0 and 1.0.
The mutation rate was 1%.

Each generation of chromosomes was tested for fitness by
running a simulation on a training level where the agent
used the chromosome’s genes as the weights on state-
variables evaluated by the SEF in a D* search. The fitness
of the chromosome was a summation of Mario’s distance
travelled, and if he completed the level, also the remaining
time Mario had to complete the level. A higher fitness
score indicates a better, or more fit, chromosome. This is
in contrast to the Static Evaluation function where a lower
score indicates a more ideal state.

The test level that each bot was scored on had a variety of
characteristics. The most important of these is that the
level was short. As each chromosome needed to be used in
an actual bot, a single fitness test could last upwards of a
minute even if the bot could finish the level successfully.
A short level guaranteed that if a bot was going to finish a
level, it could do so without much time spent. The second
characteristic of the level was an imposed time limit. This
time limit places an upper bound on the possible time a bot
could spend in a level. Slow bots, bots that stood still, or
bots that got stuck therefore all required a maximum of N
seconds to evaluate.

An ideal level must also contain challenges and obstacles
that a full level will have on its maximum difficulty. These
challenges include portions with a high volume of
enemies, some which that cannot be destroyed by landing
on their heads; portions with Bullet Bill towers of varying
heights; gaps of varying width; pipes with Piranha Plants
leaping out of them; and portions with mixtures of these
scenarios.

Optimization to D* and GA

The D* search still performed sub-optimally given
computing hardware, so the search tree needed to be pared
down. Paring the tree followed a simple formula: if two
child nodes generated the same score from the SEF, the
first child node was kept and the other discarded. In a
further endeavor to pare the tree, the maximum degree for
a node was reduced from 13 to 11 by discounting nodes
reachable through the action of ducking by the Agent. In
an effort to avoid a bias in the reproduction phase of the
genetic algorithm, a generated and tested chromosome was
only added to the population if either its fitness score was
unique or, failing that, the genes on the chromosome were
unique among the chromosomes with the same fitness. If
this precaution was not taken, a glut of identical
chromosomes with the same score could skew the parental
selection process unfairly.

The Experiment

The Experiment was conducted across two iterations of the
Genetic Algorithm. For the initial one, a starting population
of 10 chromosomes instantiated with random values was
created. A total of 800 generations were iterated over, with
five children produced per generation. The test level had a
time limit of 36 in-game seconds (~26 seconds in realtime),
and a length of 300 blocks (~4800 pixels). The level’s
“seed” used by the level generation engine was 4 and the
difficulty was set to 15. The program execution lasted over
20 hours.

After this initial iteration completed, five of the top-scoring
agents were used as the starting population for the second
iteration of the Genetic Algorithm. The level length was
increased three-fold to a length of 900 blocks (~14400
pixels), the time limit set to 100 in-game seconds, the
“seed” to 65, and the difficulty retained at 15. 320
generations were evaluated, again with five children
produced for each generation. As this test level’s length
and time were much larger than the first iteration of the
GA, the execution time prolonged to about 30 hours.

Results

The technique of using a GA to evolve the SEF of a D*
search allowed a system to generate an effective SEF in the
absence of a priori knowledge about what makes one agent
state more desirable than another. The results of this
experiment demonstrate little to no direct correlations
between individual weights and bot scores, implying a
trial-and-error search for a human would be difficult and
time-consuming.

For the initial iteration of the GA, over three thousand
unique bots were evaluated over the course of 800
generations. 285 of those tied for the top score of 3955. An
interesting note is that the first bot to score this amount was
produced during the 11

th
 generation of the GA.

The weights used in the bot’s SEF that the GA iterated on
varied greatly. Figures 2 and 3 show typical scatter plots
for the values of weights over the course of the GA’s
execution.

Figure 2

Figure 3

The weights on state-variables may appear to quickly
converge to a few values and remain there. However, over
time the amount of variance for any weight does not
decline linearly. Figure 4 shows a plot of the amount of
variation for each weight grouped by 50 generations. No r
declination of the standard deviation among populations of
weight values is present.

Figure 4

The scores that bots received likewise reached a local
maximum early (generation 11), and were unable to
improve thereafter (Figure 5).

Figure 5

Upon examining the possible correlation between weight
values and bot scores, a similar quandary is encountered
where bots received top scores despite the weight values
(Figures 6 and 7), save for the case of the weight on X
Position multiplied by X Velocity (Figure 8). In the case of
the value of the weight on the agent’s X Position multiplied
by the agent’s X Velocity, a negative weight positively
correlates to a higher score, and every single positive
weight has a score of 0.0 or less (a negative score indicates
the agent travelled backwards).

Figure 6

Figure 7

Figure 8

For the second iteration of the GA, similar results to the
first iteration were obtained. However, only 3 bots out of a
population of over a thousand shared the top score. Figure
9 presents the distribution of scores that bots received
during the course of execution. Since the initial population
of this iteration comprised top-scoring bots of the first
iteration, it is understandable that so many bots scored so
well so early, however a clear ceiling to the scores is
visible, indicating the algorithm likely could not escape a
local maxima.

Figure 9

Figures 10 and 11 almost perfectly mirror Figures 6 and 7
in their distribution of scores for weight values on X
Position and Y Position. Figure 12 likewise mirrors the
data in Figure 8 that indicates negative weights on the
agent’s X Position multiplied by the Agent’s X Velocity
correlate to higher scores.

Figure 10

Figure 11

Figure 12

Although the weight values produced by the Genetic
Algorithm for the top bots were distributed across the
gamut of possible values, the end result was in fact bots

that performed roughly as well as Robin Baumgarten’s bot
that won the ICE-GIC competition two years in a row.

Table 1 displays a comparison of bot scores between
Robin’s Bot (AStarAgent) and our bot
(AStarAgentEvolved) for a variety of levels whose
difficulties were set to 15.

 Table 1

Conclusions

In this work, we presented the novel technique of using a
genetic algorithm as an offline meta-search for an optimal
static evaluation function to be used by the D* search of a
real-time autonomous agent. The end results were Static
Evaluation Function parameters that, upon use in the SEF
for a real-time agent, enabled the agent to perform as well
as the current best in its environment.

The fact that our agent performed as well as the current
best is significant because we made very few assumptions
about the valuation of agent states in a static evaluation
function. That is, the algorithms presented in this paper
automated this task. The implication is that similar
techniques could be employed for autonomous agents in
other, possibly real-world, environments with high
confidence in the end result.

Future Work

The work presented here has much potential for expansion.
Future work should include utilizing parallel computing
clusters like Beowulf to take advantage of the natural
independence between the analyses of members in a
population by the GA’s fitness function, as well as the
evaluation of nodes in the open list of the D* algorithm by
the algorithm’s SEF. This sort of capability will allow for
not only a deeper D* search, but shorter generations in the
Genetic Algorithm and therefore the ability to run the
algorithm for more generations in the same amount of
time.

Potential future work could also include employing pattern
matching techniques to identify a discrete set of distinct
scenarios an agent would encounter. An agent could then
utilize a separate SEF for each scenario.

Under the notion of pattern-matching, even further future
research would focus on generating probability tables for
the likelihood of scenarios occurring after each other.
Knowing the probability of a scenario to occur next would

allow an agent to make an accurate prediction of an optimal
path before receiving its next percept.

References

Baumgarten, Robin. Infinite Super Mario AI. 9 September

2009. 8 February 2011

<http://www.doc.ic.ac.uk/~rb1006/projects:marioai>.

Hart, Peter E., Nils J. Nilsson and Bertram Raphael. "A

Formal Basis for the Heuristic Determination of Minimum

Cost Paths." IEEE Transaction of Systems Science and

Cybernetics SSC-4, No. 2 (1968): 100-107.

Hill T, Lundgren A, Fredriksson R, Schiöth HB (2005).

"Genetic algorithm for large-scale maximum parsimony

phylogenetic analysis of proteins". Biochimica et

Biophysica Acta 1725 (1): 19–29.

Koenig S. and Likhachev M. Fast Replanning for

Navigation in Unknown Terrain. Transactions on Robotics,

21, (3), 354–363, 2005

Lucas, S., and Kendell, G. (2006). Evolutionary

computation and games. IEEE Comput Intell Mag., pp. 10–

18

Mitchell, M. (1998). An introduction to genetic algorithms.

MIT Press.

Ramalingam G., Reps T., An incremental algorithm for a

generalization of the shortest-path problem, Journal of

Algorithms 21 (1996) 267–305.

Russel, Stuart J. and Peter Norvig. Artificial Intelligence: A

Modern Approach. Upper Saddle River: Prentice

Hall/Pearson Education, 2003.

Zhang, J., Lo, W.L., and Chung, H.

(2006).Pseudocoevolutionary Genetic Algorithms for

Power Electronic Circuits Optimization. IEEE Trans

Systems, Man, and Cybernetics, 36C (4), pp. 590–598.

