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Abstract 

Unit conversion is often considered a straightforward task 
using analytical knowledge like the definition of centimeters 
in terms of meters.  However, conversions like the 
computation of a photon’s frequency from its wavelength 
implicitly use domain knowledge.  We present an update on 
ongoing work on how a scientific reasoning system may 
intelligently convert between units using domain knowledge 
and tag data thus produced as dependent upon this domain 
knowledge.  This is part of a project to intelligently use 
meta-data for scientific value manipulation (Phillips 2010). 

1. Introduction 

Computers should be made to understand scientists, not 
other way around!  Unfortunately scientists are far from 
uniform in their notation, even within a single domain. 

A good example of this non-uniformity is with unit 
usage.  True, the metric system is widely used.  However 
even here there are some applications where 
meters/kilograms/seconds (giving energy units Joules) are 
preferred, and others where centimeters/grams/seconds 
(giving energy units dynes) are common. 

Beyond this we see some applications where different 
units are used, even for the same dimension, to keep the 
system on a common or intuitive scale and/or so that 
values naturally fall between ranges 0.1 to 1.0, or 1.0 to 10.  
Examples include the agricultural rainfall or irrigation unit 
hectare-mm (as opposed to liters), the electrical energy unit 
kilowatt-hours (as opposed to Joules), and the astronomical 
unit parsecs, from parallax seconds (as opposed to meters). 

A third class of units actually changes dimensions.  
Domain knowledge is needed implicitly to convert 
between the dimensions.  This is often seen with light, 
where a photon's wavenumbers (in inverse centimeters), 
wavelength (in meters, millimeters, microns, or 
nanometers), or its energy (in electron-volts) all may be 
taken as stand-ins for its frequency. 

Relying on domain knowledge is particularly tricky 
because it can change.  For example, since the 
development of special relativity we believe that the speed 

of light, the “c” in the equation =c/ needed to convert 
from wavelength or wavenumbers to frequency, is constant 
for all observers in any reference frame.  Prior to Einstein 
this would not have been a common belief. 

Lastly, some units are actually for dimensionless values 
that have been normalized by being divided by some 
common standard.  For example, the masses of planets in 
locations other than in orbit around our own Sun are 
commonly given in terms of how many “Jupiters” they are, 
rather than in kilograms.  Also, the energy released in 
powerful events like large detonations is commonly given 
in kilotons of trinitrotoluene (TNT). 
 

Herein we describe knowledge and algorithms to 
interconvert between pairs of units of the four cases given 
above.  This work is a continuation and elaboration of on 
going work into writing a computer language which can 
reason about scientific meta-data intelligently (Phillips 
2010). 
 

The outline is as follows.  We briefly discuss previous 
attempts to handle meta-data in the next section and follow 
with a brief description of the language we are building for 
scientific representation and reasoning.  With this 
background we then present our approach and algorithms.  
We follow with a discussion of its limitations, and then 
conclude. 

2. Prior Work 

Several extensions exist to popular numeric and symbolic 
packages like Mathematica (Khanin 2001) and Matlab 
(deCarvalho 2006) enabling them to do dimensional 
analysis and unit conversion.  Prior to that the Unix™ 
command units could do some multiplicative dimension 
and unit recognition, like converting 1000 cm

3
 to 1 liter 

(SunOS 1992) (Mariano 2004).  Also, systems that do 
scientific discovery like the Bacon series of programs are 
able to invent new units to describe new phenomena 
(Langley et al 1987). To the best of our knowledge, 



however, such systems do not tag the resulting calculations 
as dependent upon the correctness of the domain 
knowledge used to convert between dimensions (e.g. from 
wavenumbers to frequency), or are unable to do such 
dimension-changing conversions at all. 

Fundamentally all these systems make the same mistake 
that Logical Positivists philosophers of science made when 
ignoring the extent to which data is theory-laden.  They 
strive to carry forward only as much meta-data as needed 
to ensure the numeric or algebraic stability of the answer.  
They do not, however, even bother to capture, ask for, 
carry-forward, or exploit much domain knowledge1. 

3. A Brief Introduction to StructProc 

StructProc is our language for a frame representation for 
scientific knowledge.  Like other frame representations, 
StructProc knowledge is built around the 
<subject,attribute,value> triplet.  StructProc, however, has 
a feature which may be less common.  Numbers are not 
represented as being objects distinct from “symbols” 
(called “ideas” in StructProc) – rather numbers are 
represented as a special sort of idea.  This allows numbers 
to be given properties (<attribute,value> pairs) like any 
other idea, for numbers to be queried on their properties 
like any other idea, etc. 

The chief property to assign to numbers is their domain.  
A domain is an idea with corresponding dimensions, units, 
limits, etc. which is distinct from but obviously related to 
the attribute.  For example, a building may be said to have 
a length, width and height.  In general, all are distinct 
numbers corresponding to the attributes lengthA, 
widthA, and heightA (the postfixed A is StructProc's 
recommended way to designate attributes).  Though they 
are three different numbers, all have the same domain 
(defaultMetersDomain) with the unit being 
meters, dimension being length, and limitation being 
that values less than 0 are illegal. 

Besides being annotated by their domains, numbers (and 
any other idea) may have subjects, attributes and 
assumptions specified.  The StructProc expression 
 
45.4 {defaultMetersDomain, 

heightA, 

dePaulCenter, 

^assumeS 

{measure1->angleOfElevationA = 

 45.0{defaultDegreesDomain}, 

measure1->distanceA = 

 41.0 {defaultMetersDomain}, 

measure1->heightA = 

 1.4 {defaultMetersDomain} 

} 

                                                 
1 With the exception of perhaps boundary conditions for 

differential equations and simple notions of units and 

dimensions. 

} 

 
represents the number 45.4 which has been annotated as 
being the height of the building the DePaul Center in 
meters.  Further, this value assumes the validity of three 
other measurements gathered under frame measure1: 
that 44.0 meters away from the building its top was sighted 
at an angle of 45.0 degrees above the horizon, and that the 
angle was measured from 1.4 meters above the ground. 

4. Our Approach 

The basic algorithm that underpins our approach is a 
straightforward conversion from one of unit to another of 
the same “fundamental” dimension as detailed in 
sameSingleDimensionalConvert().  Because 
both units share the same dimension, and because the 
compatibility of their subjects and attributes is checked 
elsewhere, no other checks need to be done or knowledge 
needs to be assumed. 

The function 
sameSingleDimensionalConvert() returns linear 
conversion expression that converts from a value in 
fromUnits to one in toUnits.  It does this by 
attempting to convert to the primary units of the 
“fundamental” dimension as an intermediate step.  If it 
successfully finds a conversion then it saves it so it can be 
easily applied next time.  (The expression 
thisExpr.sub(expr) takes the algebraic expressions 
expr(x1) and thisExpr(x2) and returns the new 
expression thisExpr(expr(x1)).  The expression 
subject.get(attrA) returns the first found value of 
subject's attribute attrA, or returns null if none are 
found.  The expression covertToA(units) builds an 
attribute that represents a conversion to the specified 
units.) 

This function allows the conversion from parsecs to 
kilometers by way of meters, and from Celsius to Kelvin 
with a slope of 1 and intercept of 273.15. 

 
LinearExpression 

  sameSingleDimensionalConvert 

      (Units fromUnits, Units toUnits) 

begin 

LinearExpression expr, thisExpr; 

Dimension dim; 

Units     prime; 

 

if  (fromUnits == toUnits) 

  Number slope     := 1; 

  Number intercept := 0; 

  return new LinearExpression(slope,intercept); 

endif 

 

expr := store.retrieve(fromUnits,toUnits) 

 

if  (expr != null) 

  return(expr); 



endif 

 

dim   := fromUnits.get(dimensionA); 

prime := dim.get(primaryUnitsA); 

expr  := fromUnits.get(covertToA(prime)) 

 

if (expr == null) 

  throw new InsufficientInformation(); 

endIf 

 

thisExpr := prime.get(covertToA(toUnits)); 

 

if (thisExpr == null) 

 throw new InsufficientInformation(); 

endIf 

 

expr := thisExpr.sub(expr); 

store.save(fromUnits,toUnits,expr); 

return expr; 

end; 

 
Two functions are used to convert between multi-

dimensional units.  The function 
incorporateUnits()  is given a list of dimension 
entries (dimList).  Each entry tells a dimension and 
itself has a list of basic units of that dimension and the 
powers to which those units have been raised.  The 
function adds to this list the new dimensions and basic 
units it finds for the unit parameter it has been given.  
The basic units of unit are incorporated into dimList, 
but their powers are multiplied by sign: either +1 or -1.  
This allows basic units that appear in both a fromUnits 
(line 2 with sign -1) and toUnits (line 3 with sign +1) to 
cancel each other at line 1. 

 
DimList 

  incorporateUnits 

    (DimList dimList, Units unit, int sign) 

begin 

Units     basicU; 

int       power; 

DimEntry  dimEntry; 

UnitEntry unitEntry; 

Dimension dimen; 

 

forall basic unit pairs (basicU,power) in unit do 

  dimen     := basicU.get(dimension); 

  dimEntry  := dimList.find(dimen); 

 

  if (dimEntry == null) 

    dimEntry := new DimEntry(dimen); 

    dimList.prepend(dimEntry); 

  endif 

 

  unitEntry := dimEntry.unitList.find(basicU); 

  if  (unitEntry == null) 

    unitEntry := new UnitEntry(basicU); 

    dimEntry.unitList.prepend(unitEntry); 

  endif; 

 

  unitEntry.addPower(power*sign); // Line 1 

endfor 

 

return(dimList); 

end; 

 

The function sameMultiDimensionalConvert() 
uses both incorporateUnits() and 
sameSingleDimensionalConvert() to return a 
conversion expression from a value in fromUnits to one 
in toUnits.  It uses the former function to decompose 
(and hopefully partially cancel) both incoming units into 
their basic units, isolated by their dimensions (lines 2 and 
3). 

For each dimension it does the following.  It finds the 
next occurrences of both a basic unit raised to a positive 
power (loop 4) and raised to a negative power (loop 5).  
They are different units of the same dimension, so they 
should be converted.  If there are no more units to convert 
then it goes on to the next dimension (line 6). 

When it finds units to convert it uses 
sameSingleDimensionalConvert().  Allowances 
are made when the units are raised to higher powers (lines 
7, 8), those units are cancelled (lines 9, 10), and then it 
continues looking more units to convert. It also checks the 
expression returned from 
sameSingleDimensionalConvert() (not shown) 
to see if it has an added constant other than zero.  It must 
do so because it builds an expression of multiplied (and 
divided terms): added terms would throw-off the 
computation.  Also, they probably signify that the wrong 
units were used in the expression.  For example, the 
Maxwell-Boltzmann distribution equation uses 
temperature in Kelvin (with an absolute 0) instead of in 
Celsius (with the additive term 273.15). 

At the very end it returns an algebraic expression that 
uses the product of the slopes of all conversions. 

 
Expression 

  sameMultiDimensionalConvert 

      (Units fromUnits, Units toUnits) 

begin 

DimList   dimList := null; 

double    product := 1.0; 

DimEntry  dimEntry; 

UnitEntry posEntry, negEntry; 

int       power; 

Expression expr; 

 

// Line 2 

dimList:= incorporateUnits(dimList,fromUnits,-1); 

// Line 3 

dimList:= incorporateUnits(dimList,  toUnits,+1); 

 

forall dimEntry in dimList do 

  posEntry := negEntry := dimEntry.unitList.head; 



 

  while (true) 

    // Loop 4 

    while (posEntry!=null AND posEntry.power<=0) 

      posEntry := posEntry.next; 

    endwhile 

 

    // Loop 5 

    while (negEntry!=null AND negEntry.power>=0) 

      negEntry := negEntry.next; 

    endwhile 

 

    if (posEntry == negEntry == null)   // Line 6 

      break; 

    endif 

 

    expr  := sameSingleDimensionalConvert 

                (negEntry.unit,posEntry.unit); 

    // Line 7 

    power := min(posEntry.power,-negEntry.power); 

 

    for (i := 0; i < power;  i := i+1) 

        product := product * expr.slope; //Line 8 

    endfor 

 

    posEntry.addPower(-power); // Line 9 

    negEntry.addPower(+power); // Line 10 

  endwhile 

endfor 

 

expr := new LinearExpression(product,0); 

store.save(fromUnits,toUnits,expr); 

return(expr); 

end; 

 
This function allows the conversion from hectare-mm to 

liters by restating hectares as being hundred-meters 
squared, restating liters as decimeters cubed, and 
converting millimeters to decimeters (once) and hundred-
meters to decimeters (twice).  The second conversion from 
hundred-meters to decimeters benefits from the cached 
results generated by the first conversion. 

 Similarly, it can also convert kilowatt-hours to Joules.  
This particular conversion highlights the generality of the 
algorithm.  Our system knows kilowatt-hours as: 

 
(kilograms)*(meters)*(kilometers)*(hours) 

(seconds
3
) 

 

The kilograms, meters, kilometers and inverse cubed 
seconds terms multiply to give kilowatts, and multiplying 
that by hours gives kilowatt-hours. 

This is a natural way to define kilowatt-hours but it 
represents the time dimension in an atypical fashion as 
hours/seconds

3
.  Hours and seconds do not need to be 

converted between fromUnits and toUnits but within 
fromUnits itself. 

However, because our algorithm builds just one list 

(dimEntry.unitList) of units to convert for each 
dimension, whether the units to convert are between 
fromUnits and toUnits or within either makes no 
difference. 
 

Conversion between units of different dimensions 
necessarily uses domain knowledge.  This knowledge 
includes the expression used to tie the two dimensions (and 
thus implicitly any knowledge on which the stating of that 
expression depends).  This expression has some limited 
scope for which it holds, thus the search for a dimension 
converting expression starts with an ontological search 
from a most specific (among the smallest) ontological sets 
that encompass the subjects of both values and 
systematically considers increasingly broader sets. 

At each set it considers all stated dimension conversions 
looking for one that converts from the from attribute to the 
to attribute.  Unlike the algorithms for 
sameSingleDimensionalConvert() and 
sameMultiDimensionalConvert() which just 
used the units being converted, we now must use the 
attributes because we are trying to convert between 
different but specific aspects of the subject objects.  
Further, we assume the attributes imply specific 
dimensions. 

Upon finding a candidate dimensional conversion we use 
sameMultiDimensionalConvert() to see if we 
can convert from the given fromUnits to the units 
expected by the expression, and from the units returned by 
the expression to the given toUnits.  If we find such an 
expression and its required auxiliary conversions then we 
return that expression in which both auxiliary conversions 
have been substituted.  We throw an exception otherwise.   
This algorithm is given as 
differentDimensionalConvert(). 

While differentDimensionalConvert() can 
use any expression for which it is clever enough to 
algebraically manipulate we anticipate many of its 
expressions will be simple linear or inverse linear 1/x 
functions.  For example, conversion from either a photon's 
wavenumber in inverse centimeters (as is common in infra-
red spectroscopy) or its energy in electron volts (as is 
common in material science) to its frequency in Hertz 
(inverse seconds) would be built around a simple linear 
dimension conversion in which the from units would either 
be pre-converted to inverse meters (from cm

-1
) or to joules 

(from eV).  Conversion from wavenumbers would tag the 
result as depending on the assumptions related to =c/, 
including those related to the speed of light c.  Conversion 
from energy would tag the result as depending on 
assumptions related to =E/h, including those related to 
Planck's constant h.  Conversion from a photon's 
wavelength to its frequency would be very similar to its 
conversion from wavenumbers, except that it would use an 
inverse linear dimension conversion. 

 
<Expression,AssumptionSet> 

  differentDimensionalConvert 



   (Subject fromSubj, 

    Attribute fromAttr, 

    Units fromUnits, 

    Subject toSubj, 

    Attribute toAttr, 

    Units toUnits) 

begin 

Conversion convert; 

Units      givenFromUnits, givenToUnits; 

Expression expr, exprTo, exprFrom; 

Set s := mostSpecificCommonSet(fromSubj,toSubj); 

 

while  (s != null) 

 for all convert := s.get(diffDimConvA 

             (fromAttr,toAttr) 

             ) do 

  givenFromUnits := convert.get(fromUnitsA); 

  givenToUnits   := convert.get(toUnitsA); 

  expr := convert.get(exprA); 

 

  try 

   exprFrom :=  

    sameMultiDimensionalConvert 

      (fromUnits,givenFromUnits); 

   exprTo :=  

    sameMultiDimensionalConvert 

      (givenToUnits,toUnits); 

  catch InsufficientInformation 

   continue; 

  endCatch 

   

  return <exprTo.sub(expr.sub(exprFrom)), 

        expr.get(assumptionsA)> 

 endFor 

 s := s.get(nextMoreEncompassingSetA) 

endWhile 

 

throw new insufficientInformation(); 

end; 

 
The algorithm 

differentDimensionalConvert() also lets us 
handle dimensionless values that have been normalized by 
some empirical standard.  For example, since the mid-
1990s astronomers have found about 500 or so “exo-
planets”, planets in places other than in orbit around our 
Sun.  One way to detect such planets is by looking for its 
gravitational tug on the star which they orbit, and the more 
massive the planet the larger the tug, thus many of the 
planets that have been found are massive.  To keep the 
mass numbers in intuitive ranges rather than as “so many 
kilograms times 10 to the such-and-such power” it is 
common to express them as multiples of the mass of our 
own giant, Jupiter. 

Conversion from the dimensionless unit MJ (how many 
“Jupiters”) to the conventional mass unit kilograms can be 
done with differentDimensionalConvert() by 
giving the knowledge base a simple linear dimension 

conversion rule telling it to convert from attributes with 
dimensionless values but normalized units to attributes for 
domains with units by multiplying by the normalization 
factor (in this case the mass of Jupiter: 1.8986x10

27
 kg 

(Williams 2010)).  Although this rule is analytically true 
and thus makes no assumptions, many assumptions 
probably went in to the normalization factor.  Thus the 
routine for expr.get(assumptionsA) must be clever 
enough to gather the assumptions of normalization factor 
too.  Additionally, because assumptions are cumulative any 
assumption that went into why, for example, we believe 
planet Ara b to be 1.68 MJ (Butler et al 2001), such as our 
estimate of the mass of its star Ara, this assumption 
would also be included in the resulting value. 

This one rule covers a variety of normalizations.  For 
example, consider the domain of powerful events, 
especially nuclear detonations, with its common unit 
“kilotons of trinitrotoluene (kT)”.  By stating that 1 kiloton 
of TNT is 4.184*10

12
 joules, our system can convert such 

values. 

6. Discussion 

We have presented the first automated approach, to the 
best of our knowledge, that both tags values with metadata 
describing the theory and measurements upon which their 
computation depend, and that carries this metadata forward 
for the computation of subsequent values. 

At least two outstanding issues remain including 
handling data that contradict in terms of accuracy, and how 
to handle conversions where the domain knowledge tells us 
to consider three or more attributes. 

First, what should we do if one value assumes Jupiter's 
mass is 1.8986x10

27
 kg while a later one assumes it is 

1.89857x10
27

 kg?  One could convert between the two by 
dividing out what one considers the “less” accurate value 
and multiplying with what considers the “more” accurate.  
This is arithmetically sound, but what of the assumptions 
that went into both kilogram figures for the mass of 
Jupiter?  They may be contradictory in a deeper manner 
than “same formula with more precise numbers used” by, 
for example, considering secondary effects (e.g. relativity) 
or by being derived from a different formula altogether.  In 
such cases one could dig deeper to look for potential 
contradictions, or take a precautionary stand and throw a 
PotentiallyContradictoryAssumption 
exception. 
 

A second problem occurs when we handle the special 
relativity equation E=mc

2
.  No dimension conversion is 

necessary because both sides have the dimension “energy”.  
However, the set applicability of 
differentDimensionalConvert() is still needed 
because only in certain circumstances like matter-
antimatter annihilation do we observe mass to energy 
interconversion. 

Even if we add this knowledge and its necessary 
restrictions we still have handled only a special case of 



matter-antimatter annihilation of particles at rest.  If 
particles have significant speed then their kinetic energy 
also should be considered.  This would necessitate revising 
differentDimensionalConvert() or writing a 
new function to handle multiple attributes (e.g. mass, rest 
energy, and relative speed by, for example, the Lorentz 
transformations). 

7. Conclusion 

We have presented algorithms and knowledge structures 
needed to safely handle interconversion among four types 
of units in common usage in the sciences.  Further, we 
have discussed its limitations. 

It would be a mistake to think the solution to the second 
issue as merely extending an algorithm over more 
attributes.  Fundamentally we should give our system the 
ability to (re-)define its own dimensions as needed.  (The 
StructProc knowledgebase is being built with an eye 
towards this.  This is the reason why we had the word 
“fundamental” in quotes when describing dimensions.)  
Thus, it should be able to define the Lorentz 
transformations, not just apply them.  Such searches for 
both accurate and at least somewhat intuitive definitions of 
time, space, etc. are at the heart of modern physics quest to 
unify quantum mechanics with relativity (Callender 2010, 
Musser 2011). 

Artificial intelligence may play a role this search through 
the space of representations.  If it does we must be clear 
about what our systems actually represent and 
symbolically manipulate.  This paper attempts to do so for 
a limited domain. 
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