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Abstract     
We describe our work developing GenericSystem, which 
contains the basic classes and functions necessary to model 
and simulate a typical biomolecular system. GenericSystem  
is user-friendly and extensible.  It consists of well-defined 
functions which can be readily customized to reduce 
development time for a biomolecular simulation.  Five 
systems-- bioluminescence in Vibrio fischeri bacteria, skin 
regulatory system, phage lambda in E. coli, epithelial cells 
growth cycle and Wnt signaling pathway--have been 
successfully implemented using the GenericSystem tool.  
We show some results for one of these systems and 
describe the process to translate a typical differential 
equation-based system description into a GenericSystem 
model. 
 

Introduction 
 
For molecular systems, traditional modeling techniques are 
known as equation based modeling (EBM) [2] and include 
ordinary differential Equations (ODE), partial differential 
equations (PDE) [3], stochastic differential equations 
(SDE), Petri nets [4] and  Pi-calculus [5]. The main 
disadvantage of these approaches is their inability to 
consider the spatial dynamics and heterogeneity of the 
system. Petri nets and Pi-calculus are graph based 
techniques. Graph-based techniques have several 
additional shortcomings such as basic modeling constructs 
which are quite primitive and hence they fail to model 
complex systems successfully. Also spatial representation 
of the system can get very complex with respect to time 
and effort.  Another main disadvantage is the inefficiency 
of representing priorities or ordering of events which is 
essential in systems modeling. Because of these 
shortcomings, graph-based modeling techniques are not 
well-developed and hence rarely used. The other class of 
models comprising of ODE, PDE and SDE form the 
equation based modeling class of techniques. This gamut 
of approaches essentially represents the system by 
identifying the system variables. These variables are 
integrated and sets of equations relating these variables are 
formed. Evaluation of these equations forms the basis of 
EBM. The fact that this approach has been in use for 
several decades essentially showcases its ability to model a 
system satisfactorily. But as the complexity of the system 
increases, this approach starts to fail. This happens mainly 
because the equations involved become too complex to 
handle.   A clear comparison between agent based 
modeling and the equation based approach is given in [2].   

                                                 
  

   The disadvantages of modeling using traditional 
techniques include:  the spatial dynamics of the systems 
cannot be modeled; systems with both continuous and 
discrete behavior cannot be modeled; the high complexity 
and stochasticity of the system cannot be taken into 
account; and most of these methods tend to aggregate the 
values during modeling, which may lead to incorrect 
results [14].  ABM, on the other hand, has many 
advantages:  ABM describes a system in a way which is 
closest to it in reality [1]; randomness is applied in the most 
appropriate way instead of just adding a noise term to an 
equation; ABM captures emergence phenomena of the 
system which are the result of interactions between  
individual entities of the system; and ABM is flexible, i.e., 
it provides a natural framework for tuning the complexity 
of the agents. The behavior, degree of rationality, ability to 
learn and evolve and rules of interactions are adjustable 
[1]; the levels of agglomeration can be varied. i.e., dealing 
with single agents and groups of agents simultaneously 
becomes easy; the interactions can be changed 
dynamically, since they are defined at the agent level; and 
positive and negative feedback can be modeled. For 
systems in which activities describe the system better than 
processes and in which stochasticity applies to an agent’s 
behavior, ABM is often the most appropriate way of 
modeling [1]. It can also be applied to problems where the 
population is heterogeneous or the topology of the 
interactions is heterogeneous and complex.  There are 
several situations when ABM is the only resort. When the 
behavior of individual entities of a system cannot be clearly 
defined through aggregate transition rates, ABM is 
especially useful.  As the individual behavior grows in 
complexity, the complexity of differential equations 
modeling them also grows exponentially and thus becomes 
unmanageable. ABM has no such overhead and has proved 
successful in modeling several complex systems [7].  
  

Project Goals 
 
The goals of this project were: 
• To design GenericSystem, a generic easy-to-use 
simulation model using the agent-based modeling 
technique which can efficiently model many of the 
commonly found biological systems. 
• To implement GenericSystem using MASON 
[9,10] and make the right use of the advantages available in 
the tool.  MASON was chosen as the basis for our system 
after a thorough analysis of the available tools.  A summary 
of many of the tools we considered is available in [8].  



• To incorporate as many features as possible into 
the generic system so that it can successfully be used to 
model systems with entities of various complex shapes. 
• To provide a procedure for transforming a 
biomolecular system modeled traditionally into an ABM 
version using our tool  
• To provide case studies of specific system 
models, including examples previously developed 
individually in our lab (bioluminescence in Vibrio fischeri 
[12], skin cell regulation (normal and wound conditions) 
[13] and  phage-lambda in E. coli acting as a biological 
inverter [11]). 
• To provide an example of translating a 
differential equations-based simulation to an ABM 
simulation in GenericSystem, based on the Wnt signaling 
pathway [16,17]. 

. 
GenericSystem 

 
GenericSystem was designed using AUML, an agent based 
extension of UML [15].  There are three main classes of 
agents, Stationary, Mobile, and Vibrating.  Users can 
extend these classes or add new classes which are derived 
from the base class Agent.   Initial subclasses included in 
the system are Rectangular Sheet. Rectangular Box, 
Spherical, Cylindrical, Sticky Rectangular Sheet 
(Stationary), Sphere, Dumbbell, Rectangular Box, 
Rectangular Sheet (Mobile), and Rectangular Box, 
Rectangular Sheet, U- Shaped (Vibrating).  Figure 1 shows 
an AUML diagram for a GenericSystem class.  Notice how 
the diagram facilitates modeling communication between 
the agent and its environment.   
 
 
 
 
 
 
 
  
 
 
 

Figure 1.  AUML diagram of Agent class.  
 

Experimental Setup and Base Parameters of 
Simulations 

 
The computer used to run the experiments has the 1.6GHz 
Intel Core 2 Duo processor. The operating system used is a 
32bit Windows 7 OS.  The RAM installed in the computer 
is 2GB.  
  The software versions used in the work are: 
• MASON version 14  
• Java ™ SDK 6 update 11 
• Java 3D version 1.5.1 
• Eclipse platform version 3.4.1 (IDE for Java) 
Model design parameters are: 

•  Size : Generic unit which can be interpreted as 
the user wishes. It can be specified by using the scale 
function of display class. 
• Velocity: Can be interpreted as generic unit of 
time or generic unit of length as per user’s convenience. 
• Container : The large rectangular box which 
containes all the simulations elements. It can be interpreted 
as the entire simulation space where the reactions are 
taking place. It is assumed that all the reactions take place 
within the container. 
    For all the systems to be implemented, the chemical 
reactions and their reaction rates have been found from the 
literature. The lifetimes and binding times of the molecules 
are calculated from the respective reaction rates. In [6] a 
relation between rate constants and the reactions times has 
been established.  The inverse of the rate constant is 
considered as the reaction time measure.  This is because 
any two given reactions with the same initial concentration 
of reactants  proceed with velocities that have the same 
ratio as their reaction rate constant ratio. If v1 and v2 are 
reaction velocities of reactions with rate constants K1 and 
K2, then the relation between them defined in [6] is  

v1/K1 = v2/K2.. 
 

Building a GenericSystem Model 
 

We illustrate the use of GenericSystem through the model 
of the Wnt signaling pathway and some simulations of its 
behavior.   The Wnt xignaling pathway describes a set of 
proteins most commonly known for their effect on 
embryogenesis and cancer tumors. A protein called β-
catenin acts as a transcriptional coactivator for cancer 
causing tumor cells. Other important proteins which form 
part of the Wnt signaling pathway are APC and Axin, 
which is required for degradation of β-catenin. The 
reactions taking place in the Wnt pathway are shown in 
Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 2.  Reactions in Wnt pathway [16,17]. 
 
This forms a transcriptional regulation of Wnt genes. When 
Wnt signal is absent, APC directly associates with 
TCF/LEF binding site on Wnt target genes and mediates 
exchange between coactivator and corepresser complex 
proteins.  This represses concentration of  β-catenin. Also 



when Wnt signal is absent, APC transports  β-catenin from 
the nucleus to the destruction complex where it 
phosphorylates and is recognized by β-TrCP. This also 
results in further degradation of β-catenin protein. On the 
other hand, when Wnt signal is present, the 
phosphorylation of β-catenin is inhibited, leading to its 
dissociation from the Axin-assembled destruction complex 
[18]. The stabilized β-catenin reaches the nucleus and 
binds to the TCF/LEF resulting in activation of Wnt target 
genes. The chemical reactions taking place in the system 
are shown in Figure 3 and Figure 4.  A differential 
equation based model of the Wnt pathway was previously 
developed in our lab [19].  Here we use the GenericSystem 
procedure to translate that model into an ABM model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 3 and 4.  Wnt equations. 

Now we categorize the molecules to match agent types 
available in the GenericSystem. The agents chosen to 
implement  the system molecules are provided in Table 1.  

Molecule 
Molecule 

Agent  
Dshi Mobile Spherical 

Agent 
Dsha Mobile Spherical 

Agent 
apc*/axin*/gsk3 Mobile Spherical 

Agent 
apc/axin/gsk3 Mobile Spherical 

Agent 
Gsk3 Mobile Spherical 

Agent 
Apc/axin Mobile Spherical 

Agent 
Apc Mobile Spherical 

Agent 
β-catenin/apc* Mobile Spherical 

Agent 
β-catenin 

*/apc*/axin*/gsk3 
Mobile Spherical 

Agent 
β-catenin * 

 
Mobile Spherical 

Agent 
               β-catenin Mobile Spherical 

Agent 
Axin 

 
Mobile Spherical 

Agent 
Tcf 

 
Stationary 

Rectangular Box 
β-catenin/tcf Mobile Spherical 

Agent 
β-catenin/apc Mobile Spherical 

Agent 
TCF/LEF Binding 

site 
Stationary 

Rectangular Box 
Table 1.  Wnt molecules and corresponding agents. 

The chemical reactions are interpreted as collisions 
between the corresponding molecules. The rate of reaction 
is modeled as the velocity of corresponding molecules. The 
functions used are listed in Table 2. 

Chemical  
Reaction 

Function of  
GenericSystem  

Bonding to another 
molecule 

Attach() 

Unbond from 
another molecule 

Detach() 

Grow in size 
 

GrowInSize() 

Decay 
 

DeleteAgent() 

React with another 
agent 

DetectCollision() 

Move freely 
 

Move() 

React and form new 
molecule 

DeleteAgent(), 
CreateAgent() 

Table 2.    Agent functions and  chemical reactions. 



The number of molecules and their lifetimes are based on 
the concentrations given in [16].  The rate constants Ki are 
given in Figure 5. 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Rate constants for Wnt equations. 
 
   The concentrations of molecules in this experiment are 
spread over a large range starting from 0.00049 to 100. 
Hence directly relating the concentration to the number of 
molecules is not possible in this case.  So the number of 
molecules are selected according to their concentration 
levels. Taking the number of molecules to the limiting 
number, i.e., the maximum allowed by the tool, is not 
advisable since the movement of the molecules is hindered 
and this reduces the rate of reactions. Hence the maximum 
number is taken to be 100 and accordingly other molecule 
numbers are selected. Molecules which are very low in 
concentration are assigned number 1. A series of 
experiments are run with various combinations of numbers 
of  molecules.  The numbers of molecules in the base case 
and their lifetimes are given in Table 3 and Table 4. 

Molecule 
 

Number 
Dshi 100 

Dsha 0 

apc*/axin*/gsk
3 

5 

apc/axin/gsk3 3 

Gsk3 1 

Apc/axin 3 

Apc 100 

β-catenin/apc* 1 

β-catenin 
*/apc*/axin*/g

1 

β-catenin * 1 

β-catenin 20 

Axin 2 

Table 3.  Numbers of molecules. 
 

The lifetimes of the molecules that decay are calculated by 
taking the rate of decay and relating it the total simulation 
time. Table 4 tabulates the lifetimes of the molecules.         

Molecule 
 

Lifetime 

Dshi 1000 

Dsha 10000 

Axin 500 

β-catenin* 300 

β-catenin 100 

                     Table 4.  Molecule lifetimes. 
 

Snapshots of simulation 
 

The system was successfully modeled using 
GenericSystem.  Snapshots of the simulation are shown in 
Figurea 6, 7, 8, and 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  System at time step 500. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  System at time step 900.   
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. System at time step 1100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  System at time stop 7000. 
 

Description of Results and Comparison to 
Literature 

 
The numbers of the molecules β-catenin and 
Apc*/Axin*/gsk3 have been observed throughout the 
simulation. As Wnt changes from 0 to 1, the number of β-
catenin molecules increases from 20 to 500. The number 
of Apc*/Axin*/gsk3 molecules decreases from 5 to 1. 
These results are plotted in Figures 10 and 11 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  β-catenin molecules vs time. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.  Apc*/Axin*/gsk3 molecules vs time. 

 
The results obtained by the differential equations method  
in [19] are shown in Figures 12 and 13.  We see that in this 
case the ABM simulation results match well with the 
results in [19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Concentration of β-catenin vs time [19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Concentration of Apc*/Axin*/Gsk3 vs time  [19]. 
 

Conclusions and Future Work 
 

Here we have compared our ABM model with a 
differential equations model.  In the case we considered, 
we see that qualitatively we are getting the same behavior.  
Similar results were obtained for the other systems 
mentioned above.  Details about these systems can be 
found in [21].  The agent based model and stochastic 



modeling were compared by Karkutla in [20]. Karkutla 
also showed that ABM can be used to simulate 
nonhomogeneous systems, which cannot be simulated 
accurately by either stochastic or differential equations, 
and he demonstrated that for cases where both ABM and 
stochastic simulation can be applied, the results also 
compare well quantitatively.   
   GenericSystem can use the graphical display feature of 
MASON to produce animations of the models under 
consideration.  Using this feature, we are working on 
developing realistic animations of a version of the skin cell 
example.  We are also working on extending the system to 
model more complex dynamic behavior, for example DNA 
self-assembly and nanotube growth.  A tool that could 
simulate such phenomena in a cost-effective way would be 
very useful in supporting virtual experiments involving 
novel materials for future generation computer elements.  
Accurate modeling of fine-grained dynamic behavior will 
require additional computational resources.  Thus another 
question we are studying is how to accurately characterize 
the relative costs of ABM simulation versus stochastic or 
differential equation simulations.  ABM methods are most 
effective for fine-grained behavior and low concentrations 
of molecules.  A method to quantify this statement fpr a 
given example would be very useful. 
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