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Abstract

We describe our work developing GenericSystem, fwhic
contains the basic classes and functions necessangdel
and simulate a typical biomolecular system. GeSgistem

is user-friendly and extensible. It consists oflxdefined
functions which can be readily customized to reduce
development time for a biomolecular simulation. veFi
systems-- bioluminescence Vibrio fischeri bacteria, skin
regulatory system, phage lambdaEncoli, epithelial cells
growth cycle and Wnt signaling pathway--have been
successfully implemented using the GenericSysteoh to
We show some results for one of these systems and
describe the process to translate a typical dififiae
equation-based system description into a GenerieBys
model.

I ntroduction

For molecular systems, traditional modeling techamjare
known as equation based modeling (EBM) [2] andudel
ordinary differential Equations (ODE), partial diféntial
equations (PDE) [3], stochastic differential ecomasi
(SDE), Petri nets [4] and Pi-calculus [5]. The mai
disadvantage of these approaches is their inabitity
consider the spatial dynamics and heterogeneityhef

system. Petri nets and Pi-calculus are graph based
several

techniques. Graph-based techniques have
additional shortcomings such as basic modeling tcocts
which are quite primitive and hence they fail to deb
complex systems successfully. Also spatial reprasemn

of the system can get very complex with respedinm

and effort. Another main disadvantage is the inigfficy

of representing priorities or ordering of eventsichhis
essential in systems modeling. Because of these
shortcomings, graph-based modeling techniques ate n
well-developed and hence rarely used. The othessatd
models comprising of ODE, PDE and SDE form the
equation based modeling class of techniques. Tésud

of approaches essentially
identifying the system variables. These variables a
integrated and sets of equations relating thesahlas are
formed. Evaluation of these equations forms thdsbaf
EBM. The fact that this approach has been in use fo
several decades essentially showcases its atulityoidel a
system satisfactorily. But as the complexity of fystem
increases, this approach starts to fail. This happeainly
because the equations involved become too complex t
handle. A clear comparison between agent based
modeling and the equation based approach is givez].i

represents the system by

The disadvantages of modeling using traditional
techniques include: the spatial dynamics of thstesys
cannot be modeled; systems with both continuous and
discrete behavior cannot be modeled; the high cexityl
and stochasticity of the system cannot be takeo int
account; and most of these methods tend to aggrebat
values during modeling, which may lead to incorrect
results [14]. ABM, on the other hand, has many
advantages: ABM describes a system in a way wisich
closest to it in reality [1]; randomness is appliedhe most
appropriate way instead of just adding a noise terman
equation; ABM captures emergence phenomena of the
system which are the result of interactions between
individual entities of the system; and ABM is flbla, i.e.,
it provides a natural framework for tuning the cdexiy
of the agents. The behavior, degree of rationadibjlity to
learn and evolve and rules of interactions are sadhle
[1]; the levels of agglomeration can be varied, idealing
with single agents and groups of agents simultasigou
becomes easy; the interactions can be changed
dynamically, since they are defined at the agerljeand
positive and negative feedback can be modeled. For
systems in which activities describe the systentebéhan
processes and in which stochasticity applies tagant’s
behavior, ABM is often the most appropriate way of
modeling [1]. It can also be applied to problemsemhthe
population is heterogeneous or the topology of the
interactions is heterogeneous and complex. Theee a
several situations when ABM is the only resort. Wiiee
behavior of individual entities of a system caninetclearly
defined through aggregate transition rates, ABM
especially useful. As the individual behavior gsowm
complexity, the complexity of differential equat®n
modeling them also grows exponentially and thubress
unmanageable. ABM has no such overhead and hasgrov
successful in modeling several complex systems [7].

is

Project Goals

The goals of this project were:

To design GenericSystem, a generic easy-to-use
simulation model using the agent-based modeling
technique which can efficiently model many of the
commonly found biological systems.

. To implement GenericSystem using MASON
[9,10] and make the right use of the advantagetaina in
the tool. MASON was chosen as the basis for ostesy
after a thorough analysis of the available todissummary
of many of the tools we considered is availablEin



. To incorporate as many features as possible into
the generic system so that it can successfully desl o
model systems with entities of various complex sisap

. To provide a procedure for transforming a
biomolecular system modeled traditionally into aBM
version using our tool

. To provide case studies of specific system
models, including examples previously developed
individually in our lab (bioluminescence Vibrio fischeri
[12], skin cell regulation (normal and wound coiuatis)
[13] and phage-lambda iB. coli acting as a biological
inverter [11]).

. To provide an example of translating a
differential equations-based simulation to an ABM
simulation in GenericSystem, based on the Wnt $igga
pathway [16,17].

GenericSystem

GenericSystem was designed using AUML, an agemdas
extension of UML [15]. There are three main claseé
agents, Stationary, Mobile, and Vibrating. Useemn c
extend these classes or add new classes whichesved
from the base class Agent. Initial subclassehided in
the system are Rectangular Sheet.

Spherical, Cylindrical, Sticky Rectangular Sheet
(Stationary), Sphere, Dumbbell, Rectangular Box,
Rectangular Sheet (Mobile), and Rectangular Box,

Rectangular Sheet, U- Shaped (Vibrating). Figushdws
an AUML diagram for a GenericSystem class. Notiog
the diagram facilitates modeling communication hestw
the agent and its environment.

Stationary Agent

- BoundStatus
- Boundtime

+ getBoundStatus( )
+ setBoundTime( )

—

Environment’ Boolean
value of BoundStatus

Environment/ returns
Boundtime

Figurel. AUML diagram of Agent class.
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Experimental Setup and Base Parameters of
Simulations

The computer used to run the experiments has 8@Hz
Intel Core 2 Duo processor. The operating systesd isa
32bit Windows 7 OS. The RAM installed in the corngyu
is 2GB.

The software versions used in the work are:

. MASON version 14

. Java ™ SDK 6 update 11

. Java 3D version 1.5.1

. Eclipse platform version 3.4.1 (IDE for Java)

Model design parameters are:

Rectangular Box,

. Size : Generic unit which can be interpreted as
the user wishes. It can be specified by using ttees
function of display class.

. Velocity: Can be interpreted as generic unit of
time or generic unit of length as per user’s coiece.

. Container : The large rectangular box which
containes all the simulations elements. It camiberpreted

as the entire simulation space where the reactemes
taking place. It is assumed that all the reactiaike place
within the container.

For all the systems to be implemented, the détem
reactions and their reaction rates have been fénomd the
literature. The lifetimes and binding times of thelecules
are calculated from the respective reaction rdte$6] a
relation between rate constants and the reactioresthas
been established. The inverse of the rate condggant
considered as the reaction time measure. Thigdause
any two given reactions with the same initial corcation
of reactants proceed with velocities that have shme
ratio as their reaction rate constant ratio. Ifarid v2 are
reaction velocities of reactions with rate consakl and
K2, then the relation between them defined in §6] i

v1/K1 = v2/K2..

Building a GenericSystem M odel

We illustrate the use of GenericSystem throughntioglel

of the Wnt signaling pathway and some simulatiohg#so
behavior. The Wnt xignaling pathway describes a set of
proteins most commonly known for their effect on
embryogenesis and cancer tumors. A protein cafled
catenin acts as a transcriptional coactivator fancer
causing tumor cells. Other important proteins whicim
part of the Wnt signaling pathway are APC and Axin,
which is required for degradation d¥-catenin. The
reactions taking place in the Wnt pathway are shawn
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Figure 2. Reactionsin Wnt pathway [16,17].

This forms a transcriptional regulation of Wnt gen@&/hen
Wnt signal is absent, APC directly associates with
TCF/LEF binding site on Wnt target genes and mediat
exchange between coactivator and corepresser cemple
proteins. This represses concentrationfatatenin. Also



when Wnt signal is absent, APC transpoptsatenin from
the nucleus to the destruction complex where it
phosphorylates and is recognized pyrCP. This also
results in further degradation ffcatenin protein. On the
other hand, when Wnt signal is present, the
phosphorylation off-catenin is inhibited, leading to its
dissociation from the Axin-assembled destructiomptzx
[18]. The stabilizedp-catenin reaches the nucleus and
binds to the TCF/LEF resulting in activation of Watget
genes. The chemical reactions taking place in yistem
are shown in Figure 3 and Figure 4. A differential
equation based model of the Wnt pathway was preljou
developed in our lab [19]. Here we use the GeBgstem
procedure to translate that model into an ABM model
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Figures3 and 4. Wnt equations.

Now we categorize the molecules to match agentstype
available in the GenericSystem. The agents chosen t
implement the system molecules are provided iner'ab

Molecule Agent

Dshi Mobile Spherica
Agen

Dsha Mobile Spherica
Agen

apc*/axin*/gsk3 Mobile Spherica
Agen

apc/axin/gsk3 Mobile Spherica
Agen

Gsk3 Mobile Spherica
Agen

Apc/axin Mobile Spherica
Agen

Apc Mobile Spherica
Agen

B-catenin/apc* Mobile Spherica
Agen

B-catenin Mobile Spherica
*/apc*/axin*/gske Agen

B-catenin Mobile Spherica
Agen

B-catenin Mobile Spherica
Agen

Axin Mobile Spherica
Agen

Tcf Stationary

Rectanqgular Bo:

B-catenin/tcf Mobile Spherica
Agen

B-catenin/apc Mobile Spherica
Agen

TCF/LEF Binding Stationary
site Rectanqgular Bo:

Table 1. Wnt molecules and corresponding agents.

The chemical reactions are interpreted as collssion
between the corresponding molecules. The rateaution

is modeled as the velocity of corresponding molesul’ he
functions used are listed in Table 2.

Chemical Function of
Reaction GenericSystem
Bonding to anothe Attach()
molecule
Unbcnd from Detach()

another molecu

Grow in sizt GrowlInSize()
Deca) DeleteAgent()
React with anothe | DetectCollision()
agen
Move freely Move()
React and form ne DeleteAgent()
molecule CreateAgent

Table2. Agent functionsand chemical reactions.



The number of molecules and their lifetimes aresbdasn
the concentrations given in [16]. The rate cortst&m are

given in Figure 5.

Rate Ki K2 K3 K4 K5 Ko K7
value 0182 00182 | 005 0.267 0133 00909 | 0.0909
Rate K8 K9 K10 Kit K12 K13 kt4
Value 1000 12000 |00t 05 206 26 0417
Rate K15 K16 K17

Vale 0423 0000257 | 0.0000822

Figure5. Rateconstantsfor Wnt equations.

The concentrations of molecules in this expenirare
spread over a large range starting from 0.000420.

Hence directly relating the concentration

to thenbar of

molecules is not possible in this case. So thebmunof
molecules are selected according to their concetra
levels. Taking the number of molecules to the Iimgjt

number, i.e., the maximum allowed by

the tool, & n

advisable since the movement of the moleculesnddned
and this reduces the rate of reactions. Hence theémum
number is taken to be 100 and accordingly otheemdé
numbers are selected. Molecules which are very ilow

concentration are assigned number

1. A series of

experiments are run with various combinations afibars
of molecules. The numbers of molecules in thes ltase
and their lifetimes are given in Table 3 and Tahle

Molecule Number
Dshi 100
Dsha 0

apc*/axin*/gsl 5
apc/afin/gsk:% 3
Gsk3 1
Apc/axin 3
Apc 100
B-catenin/apc* 1
B-catenin 1
*/apc*/axin*/g
B-catenin * 1
B-catenin 20
AXin 2

Table 3. Numbersof molecules.

The lifetimes of the molecules that decay are dated by
taking the rate of decay and relating it the tsiaiulation

time. Table 4 tabulates the lifetimes of the molesu

Molecule Lifetime
Dshi 1000
Dsha 10000
AXxin 500

B-catenin* 300

B-catenin 100

Table4. Moleculelifetimes.
Snapshots of simulation

The system was successfully modeled

using

GenericSystem. Snapshots of the simulation areshio

Figurea 6, 7, 8, and 9.
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Figure6. System at time step 500.
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Figure7. System at time step 900.
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Figure9. System at time stop 7000.

Description of Results and Comparison to
Literature

The numbers of the moleculesp-catenin and
Apc*/Axin*/gsk3 have been observed throughout the
simulation. As Wnt changes from 0 to 1, the nunuife-
catenin molecules increases from 20 to 500. Thebeum
of Apc*/Axin*/gsk3 molecules decreases from 5 to 1.
These results are plotted in Figures 10 and 11
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Figure 10. B-catenin moleculesvstime.
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Figure11. Apc*/Axin*/gsk3 moleculesvstime.

The results obtained by the differential equatiomsthod

in [19] are shown in Figures 12 and 13. We setiththis
case the ABM simulation results match well with the
results in [19].
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Figure 12. Concentration of B-catenin vstime [19].
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Figure 13. Concentration of Apc*/Axin*/Gsk3 vstime [19].
Conclusions and Future Work

Here we have compared our ABM model with a
differential equations model. In the case we abered,
we see that qualitatively we are getting the saetebior.
Similar results were obtained for the other systems
mentioned above. Details about these systems ean b
found in [21]. The agent based model and stoahasti



modeling were compared by Karkutla in [20]. Karkutl
also showed that ABM can be used to simulate

9. http://cs.gmu.edu/~eclab/projects/mason/  Acaksse

05/10/2009.

nonhomogeneous systems, which cannot be simulated10. S. Luke, C. Cioffi-Revilla, L. Panait, and KulBsan

accurately by either stochastic or differential a&ipns,
and he demonstrated that for cases where both AB# a
stochastic simulation can be applied, the resulsn a
compare well quantitatively.

GenericSystem can use the graphical displayfeatf
MASON to produce animations of the models under
consideration. Using this feature, we are working
developing realistic animations of a version of sk cell
example. We are also working on extending theesygb
model more complex dynamic behavior, for exampleADN
self-assembly and nanotube growth. A tool thatldtou
simulate such phenomena in a cost-effective wayldvoe
very useful in supporting virtual experiments inxob
novel materials for future generation computer epts.
Accurate modeling of fine-grained dynamic behavidlt
require additional computational resources. Thustleer
guestion we are studying is how to accurately ataraze
the relative costs of ABM simulation versus stoticasr
differential equation simulations. ABM methods anest
effective for fine-grained behavior and low concatibns
of molecules. A method to quantify this statemfamta
given example would be very useful.
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