
Towards Agent-Oriented Knowledge Base Maintenance for

Description Logic ALCN

Stanislav Ustymenko1 and Daniel G. Schwartz2

1 Meritus University, School of Information Technology,
30 Knowledge Park Drive (Suite 301), Fredericton, New Brunswick, Canada E3C 2R2 ,

sustymenko@meritusu.ca
2 Department of Computer Science, Florida State University,

Tallahassee, Florida, USA
schwartz@cs.fsu.edu

Abstract
Artificial agents functioning in the Semantic Web are to be
capable of getting knowledge from diverse sources. This
implies the capability to continuously update their
knowledge bases. New stream reasoning concepts make this
need even more pressing. Semantic Web ontologies are
commonly represented using description logic knowledge
bases. We propose an agent architecture with such features,
utilizing a Dynamic Reasoning System (DRS). This
explicitly portrays reasoning as a process taking place in
time and allows for manipulating inconsistent knowledge
bases. We sketch a procedure for user-directed ontology
debugging. This same mechanism can be used for
automated belief revision. We identify important research
directions that may benefit from this approach.

1 Introduction

The Semantic Web (SW) [4] is a common name of a family
of technologies extending the Web with rich, machine-
interpretable knowledge. The SW retains the massively
decentralized nature of current World Wide Web, with an
unlimited number of knowledge sources identifiable by
unique URIs. It supports rich metadata annotation, including
expressive ontology languages. Description Logics (DLs) [2]
emerged as leading formalism for knowledge representation
and reasoning on the Semantic Web.
 Once widely implemented, the Semantic Web will support
intelligent software agents that will work with massive,
decentralized ontologies, while other agents modify them in
possibly inconsistent ways. Agents will need a way to absorb
new knowledge in a timely fashion, all the while protecting
the consistency of their knowledge bases, or, alternatively,
be able to draw useful inferences from inconsistent premises.
 Several approaches have been proposed to model
knowledge evolution over time. One of the most well-
researched formalisms is belief revision [9, 10], specifically
the classic AGM framework [1, 9]. Substantial efforts have
been extended to apply this approach to description logics
[13, 14, 19, 20], and the work is ongoing. However, the
belief revision framework does not explicitly address
knowledge evolution in time. Also, in its original

formulation, belief revision postulates are stated in terms of
potentially infinite belief sets (although work has been done
to address this issue). We believe that belief revision is a
mature paradigm that can be valuable source for important
insight. However, there is a need for formal approaches that
address the practical challenges more directly.
 New research direction under the tentative title “stream
reasoning” [6] emerged within the Semantic Web
community. It explicitly deals with reasoning over rapidly
changing and time-dependent data in a way that can deliver
answers to the user while they are still relevant. Stream
reasoning is defined as “the new multi-disciplinary approach
which will provide the abstractions, foundations, methods,
and tools required to integrate data streams and reasoning
systems” [7]. Della Valle et al. [5] write: “Stream-reasoning
research definitely needs new theoretical investigations that
go beyond data-stream management systems, event-based
systems, and complex event processing. Similarly, we must
go beyond current existing theoretical frameworks such as
belief revision and temporal logic”. Currently, there is no
consensus on a logic formalism appropriate for stream
reasoning. There is an obvious practical need for such
formalism to be able to integrate current, description logic-
based Semantic Web standards.
 Dynamic Reasoning Systems (DRS) [17] provide a formal
framework for modeling the reasoning process of an artificial
agent that “explicitly portrays reasoning as an activity that
takes place in time”. It sidesteps the logical omniscience
assumption of the classical AGM framework and has means
of working with inconsistent knowledge bases by keeping
track of a proposition's derivation path. The DRS framework
has been shown to support non-monotonic reasoning in a
natural way.
 A DRS can be defined for any language. DLs present a
challenge in that they do not have explicit derivation rules.
Instead, DLs rely on inference algorithms to accomplish
common reasoning tasks. One of the basic tasks is checking
subsumption of concepts.
 The goal of this paper is to present the DRS framework as a
suitable formalism for Semantic Web reasoning. To this end,
we give an instance of DRS capable of building a concept
subsumption hierarchy for a well-known description logic.

We believe it to be an important foundation for research on
belief dynamics for Semantic Web agents. Section 2 of this
paper contains a brief formal introduction to Description
Logics and the necessary definitions. Section 3 discusses
Dynamic Reasoning Systems. Section 4 describes a DRS and
agent reasoning process for deriving explicit subsumption
hierarchies from description logic ALCN terminology. Short
abstract of this work appears in [20]. Finally, in Section 5,
we draw some conclusions and discuss directions for future
research.

2 Description Logics

Languages for any description logic contain concept names,
role names, and individual names. Below, we will use
uppercase A and B for concept names, uppercase
letters R , P for role names, and lowercase x , y , z
for individual names.

DL languages combine role and concept names into
concept definitions. Concepts of a description logic AL [16]
are defined as follows:

C , D A | (atomic concept)

 | (universal concept)

⊥ | (bottom concept)

¬A | (atomic negation)

C∩D | (intersection)

∀ R.C | (value restriction)

∃R. (limited existential
quantification)

More expressive DLs extend AL by the following
constructs:

Indication Syntax Name

U C∪D union

E ∃R.C full existential quantification

N n R ,n Rnumber restriction

C ¬C full negation

The commonly used DL ALCN extends AL with full
negation and number restriction. In the following sections,
we will restrict ourselves to ALCN.

An Interpretation of a DL is a structure I=I , .I  ,

where I is a nonempty set called domain and . I is
an interpretation function that maps concept names to
subsets of a domain, role names to subsets of I×I ,

and individual names to elements of I . The function

. I extends to arbitrary concept definition in a rather
intuitive way (for details, see [2], chapter 2). A concept is
unsatisfiable if for any interpretation I , C I=∅ .

Description Logic knowledge bases consist of two
components: a TBox, a set of statements about concepts, and
an ABox, a set of assertions about individuals. In general, a
TBox T contains general concept inclusion axioms of the
form C⊆D (inclusion axiom). The pair of axioms

C⊆D , D⊆C is abbreviated C≡D (equality
axiom). An interpretation I satisfies an axiom C⊆D
if C I⊆D I . Interpretation I satisfies a TBox T

if it satisfies every axiom in T .
A definition is an equality axiom with an atomic concept

on the left hand side. A TBox is a terminology if it consists of
definitions and no concept name is defined more than once.
A concept name is a defined name if it appears on the left
hand side of the axiom and a base name if it doesn't. A
definition is in the extended form if only base concept names
appear on the right hand side. A terminology is definitorial if
every definition has exactly one extended form (not counting
equivalent syntactic variants). In further discussion, we
assume that our TBoxes are definitorial terminologies. Under
this condition, we can assume, wlog, that definitions contain
no cycles.

An ABox contains assertions regarding individual names.
These include concept assertions C a  and role
assertions Ra ,b. An interpretation I satisfies (or

is a model of) C a  if a I∈C I and it satisfies

Ra ,b. if a I , bI ∈R I . Finally, I satisfies an

assertion  (or an ABox A) with respect of a TBox
T if it is a model of both an assertion (or an ABox) and

the TBox.
An ontology of concepts can be expressed using a DL. The

term ontology is often applied either to a TBox or to a full DL
knowledge base. We will occasionally use ontology in the
former sense.

3 Dynamic Reasoning Systems

The classical (propositional) notion of belief set [e.g., 9]
models it as an (often infinite) set of formulas of the
underlying logical language. In our view, a belief set should
be finite and should represent the agent’s knowledge and
beliefs at a given point in time. Moreover, each formula in
such a belief set should contain information indicating how if
was obtained and whether it has been used in subsequent
deductions, thereby enabling both backtracking and forward
chaining through reasoning paths for so-called “reason
maintenance”.

To this end, in [17] there was defined the notion of a
dynamic reasoning system (DRS), which explicitly portrays
reasoning as an activity that takes place in time. This is

obtained from the conventional notion of formal logical
system by lending special semantic status to the concept of a
derivation path (i.e., a proof). Introduction of new knowledge
or beliefs into the path occurs in two ways: either new
propositions are added in the form of axioms, or some
propositions are derived from earlier ones by means of an
inference rule. In either case, the action is regarded as
occurring in a discrete time step, and the new proposition is
labeled with a time stamp (an integer) indicating the step at
which this occurred. Moreover, for propositions entered into
the path as a result of rule applications, the label additionally
contains a record of which inference rule was used and
which propositions were employed as premises.

At any given time, the contents of the path is regarded is
being the sum total of the agent’s knowledge and beliefs as
of that time. Thus we here take this path as being the agent’s
belief set as of that time.

This is to be contrasted with other systems of belief
revision, which assume that the agent additionally knows all
the logical consequences of the basic belief set. Such systems
are said to exhibit “logical omniscience.” For an in-depth
analysis of this issue, together with a manner of addressing
it, see the paper by Fagin, Halpern, Moses, and Vardi [8].

For complete details of the notion of a DRS, please see
[S97]. A brief outline is as follows. A labeled formula is
defined as a pair P , where P∈L , where

L is a logical language, and the label  is an ordered

4-tuple (index, from, to, status), where:

1. index is a non-negative integer, the index,
representing the formulas position in the belief set.

2. from is a from list, containing information about
how the formula came to be entered into the belief
set. Either it was received from an outside source
(obtained from some other agent or through
interaction with its environment), in which case the
from list contains the token rec, or it was derived
from some formulas occurring earlier in the belief
set, in which case the from list contains the name of
the derivation rule and the indexes of the formulas
used as premises in the derivation. The types of
formulas that can be received are understood to
include both axioms of the propositional calculus
and statements about the agents environment
(sometimes distinguished as “logical” and
”nonlogical” axioms).

3. to is a to list, containing the indexes of all formulas
in the belief set for which the given formula served
as a premise in the indexed formula’s derivations.

4. status is a status indicator, taking values on or off,
indicating whether the belief represented by the
formula is currently held, i.e., whether the formula
may or may not be used in any future derivations.
Whenever a formula is initially entered into the
belief set, its status is on.

For a given agent, let us denote the agent’s belief set at
time step i by i . Let 0=∅ . Thus the agent

initially has no knowledge or beliefs. Then, given i , for

, i≥0 , i1 can be obtained in any of the following
ways:

1. A new formula is received from an outside source,
2. A formula is derived from some formulas in i

by means of an inference rule,
3. A formula in i has its status changed from on

to off.

Changing a formula’s status from on to off occurs during a
reason maintenance process that is invoked whenever an
insatisfiability, i.e., a definition of the form A≡⊥ is
entered into the agent’s belief set. The objective of reason
maintenance is to remove this insatisfiability.

This has two phases. First one starts back tracking from the
insatisfiability, using the from lists in the formula labels,
looking for the “culprit” formulas that occurred earlier and
which led to the inconsistency. A decision then must be made
to turn the status of at least one of these formulas to “off”.
Then one forward chains from this formula, using the to lists,
to find all formulas whose derivations stemmed from the
culprit formula, and likewise turns their status to “off”. This
will include the inconsistent formula that triggered the reason
maintenance process.

Which culprit formula to deactivate can be determined by
the various culprits’ degrees of belief, to wit, remove the one
that is least believed. In case the culprits are all believed
equally, one can be chosen at random. Alternatively, an agent
can remove the culprit formula that is the least important
according to some reasonable criteria. One such criteria is a
cumulative belief level of formulas derived from the culprit.
This criteria provides a finite version of the AGM epistemic
entrenchment relation.

This model of agent-oriented reasoning reflects that view
that, at any given time, the agent’s beliefs may harbor an
inconsistency, but the agent does not become aware of this
unless an inconsistent formula is explicitly entered into its
belief set.

This, in our opinion, is a realistic model of natural human
reasoning. Humans can comfortably maintain inconsistent
beliefs for long periods of time without ever realizing this.

But once they become consciously aware of a
contradiction, they typically rethink their position and modify
their beliefs so that the contradiction is removed.

Fig.1 Reasoning agent employing a Dynamic Reasoning
System

The reasoning agent (Fig. 1) uses a Dynamic Reasoning
System to reach conclusions that help advance the agent's
goals. A controller directs DRS behavior to steer it to such
conclusions. The controller performs the following actions:

1. Receive information from the outside environment.
The information can come from a human user, other
agents, or be harvested by an agent through sensors.
The latter can get information from any external
data source.

2. Enter information, as a “nonlogical” axioms
expressed in language L, into the DRS's inference
path.

3. Apply an inference rule.
4. Act to remove insatisfiability, by invoking belief

revision procedure described above.

The agent performs these actions in the order dictated by the
agent's and environment's current state, presumably in a
manner that would advance its goals. In the following, we
are constructing an agent that would accept an ontology in
the form of TBox definitions and construct a subsumption
hierarchy of concept names implicit in this ontology.

4 Dynamic Reasoning for DL ALCN

A Dynamic Reasoning System is a model for knowledge
base and reasoning process for artificial agent that assists a
user. We describe an agent that extracts ontological
knowledge from the Web and uses it to support a user's
browsing and querying activities. To this end, an agent
maintains two information stores:

1. Local copy of the ontology, expressed as an ALCN
TBox. This ontology consists of ALCN definitions
that occur in the derivation path.

2. A subsumption tree of concept names.

The latter can be used to support both browsing and user
querying on both a TBox and an ABox. The user has a
preference for satisfiable ontologies, so the agent has to
detect and remove unsatisfiable concepts. Thus, our DRS
needs to support 2 types of DL reasoning:

1. Check if a defined concept A is satisfiable
2. Deduce atomic subsumption, that is, a statement of

the form A⊆B ,

 where A, B are concept names.

To construct the DRS, we first note that if A and B are
defined by axioms A≡C , B≡D , where C, D are
concept definition, then A⊆B iff C⊆D. Second, note
that C⊆Diff C∪¬D is unsatisfiable.
So both our reasoning tasks would require checking
satisfiability of concepts. We are using a generic tableau-
based satisfiability algorithm [2, 3].
Now we can build our dynamic reasoning system. First, We
define the language, L. The symbols of L are the same as the
symbols of logic ALCN. We use A, B for concept names
occurring in the incoming statements and A', B' for the names
introduced by the agents. The formulas of L are the
following:

1. Equivalence statements of the form A≡C ,
where A is a concept name and C is concept
definition. Without loss of generality, we assume all
concept definitions are in negation normal form, i.e.
negation only occurs in front of concept names.

2. Atomic subsumption statements of the form
A⊆B , where A, B are concept names. These

represent arcs of the subsumption tree the agent is
building.

3. TBox assertions C a  , Ra ,b  , where C is a
concept, R is a role, and a,b are individual constants

4. Explicit inequality assertions x≠ y , where
x , y are individual names.

Then we define inference rules. Implicitly, every rule that
modifies a concept definition also puts the result into
negation normal form. The inference rules will be:

1. Substitution: from A≡C and B≡D infer
A≡E , where E is C with all

occurrences of B replaced by D . For this
treatment we assume that our TBox does not contain
cycles in definitions. By repeatedly applying this
rule, we obtain an extension of definition for A
that only contain ground concept names on the right
side.

2. Subsumption test introduction: from
A≡C , B≡D infer A '≡C∩¬D , where

Controller

DRS

Derivation
path

Derivation
rules

Environment

A ' is a previously-unused agent-generated
concept name.

3. From A≡C , B≡D and A '≡⊥ , provided
that name A ' was introduced using rule 2 with

A≡C , B≡D as premises, derive A⊆B .

The following rules 4-10 are added to enable tableau-
based consistency checks. These are derived from the
transformation rules listed in [2], p. 81. Individual names

x , y , z , ... are unique names generated by the agent.
All TBox statements are derived from the same ABox
statement (that is undergoing satisfiability check)

A≡C 0 :

4. From A≡C 0 , infer Cox0 , if no ABox
statements were inferred from A≡C 0 .

5. From A≡C 0 and C1∩C 2 x , infer
C1x  and C2x  , if any one of them is

not yet inferred.
6. From A≡C 0 and C1∪C2x  , infer

C1x  or C2x  , if neither of them is
inferred yet.

7. From A≡C 0 and ∃R.C x  , infer
C  y  and R x , y , where y is a new

generated name, if no z exists such that
C  z  and R x , z  are already derived.

8. From A≡C 0 , ∀ R.C x  and
R x , y infer C  y  , if not already

derived.
9. From A≡C 0 and n Rx  , infer

R x , y1 , ... , R x , yn and (yi≠ y j ,
and R x , y , unless

R x , z1 ,... , Rx , z n are already inferred.
10. From A≡C 0 and n Rx  , if

R x , y1 , ... , R x , yn1 are in the
derivation path and y i≠ y j is not in the path for
some i≠ j : replace all occurrences of y i

with y j .

The following rules 11-13 detect inconsistency in TBoxes
built using rules 4-10. As above, TBox statements are
derived from A≡⊥ :

11. From A≡C 0 and ⊥x , derive A≡⊥ ,

where x is any individual name.

12. From A≡C 0 , A1x  and ¬A1 x ,

derive A≡⊥ , where x is any individual

name and A1 is any concept name.

13. From A≡C 0 , n Rx  , set

{Rx , y i∨1in1} and set

{yi≠ y j∨1i≤ jn1} derive A≡⊥ ,

where x , y1,. .. , yn1 are individual names,

R is a role name and n0 .

Finally, rule 14 derives a subsumption axiom, using reduction
to unsatisfiability:

14. From A≡C , B≡D , A1≡C∪¬D
and A1≡⊥ , derive A⊆B

A Dynamic Reasoning System based on language L and rules
1-14 is capable of supporting an agent that builds an explicit
subsumption hierarchy. We will now describe a controller
that can achieve this goal.
An agent starts with an empty derivation path and empty
subsumption hierarchy. It will receive TBox definitions from
the user. To start the hierarchy, before receiving the first
axiom, the controller will enter a root concept, R≡ , as
a first formula in the derivation path and R as a root node
in the hierarchy.
Upon entering a new axiom of the form A≡C , the
controller will perform the following actions:

1. Derive an expanded definition of A by
repeatedly employing Rule 1 until the right side of
the resulting definition contains no defined concept
names.

2. Test satisfiability of A using Rules 4-13. If it is
unsatisfiable, flag it for a belief revision procedure

3. Expand all (extended) definitions that depend on
using Rule 1. Test the affected concepts'
satisfiability, flagging for a belief revision process if
unsatisfiable. Update the hierarchy of concepts
affected by this step, testing subsumption by using
Rules 2-14.

4. Place A into its appropriate place in the
subsumption hierarchy, using Rules 2-14 to test
subsumption with definitions of concept names
already there.

To test satisfiability by employing Rules 3-13, an agent
follows a tableau-based algorithm. Details of the appropriate
algorithm, with discussion of termination and complexity,
can be found in [2].
Rules 6 and 10 are non-deterministic: for a given ABox, they
can be applied in finitely many different ways, leading to
finitely many ABox'es. The concept is satisfiable if at least
one such ABox is consistent. Each ABox is a branch in the
satisfiablilty algorithm. The controller may handle branches
by setting the belief status of statements on inactive branches
to off. In practice, it may be useful to remove such statements
from the path to save space.

We did not specify the details of modifying subsumption
hierarchy on steps 3 and 4. In principle, the controller may
simply search the existing hierarchy starting at the root,
testing the concept in question's subsumption with each node.
This is a natural and decidable procedure that will result in
the correct hierarchy. Studying the complexity of such an

algorithm and exploring possible optimizations is a task left
for future research.

In case an unsatisfiable concept is detected, an agent will
generate and display to the user the list of definitions that
lead to it. The user will have a choice to delete and modify
one of them. Methods for assisting the user or for achieving
this task without user interaction can be developed, based on
research in ontology debugging and belief revision for
description logics [12, 13, 14, 21]. Developing such
algorithms is another task left for future research.

5 Conclusions and Further Research

In the present work, we argued for the suitability of Dynamic
Reasoning Systems [17, 18] as formalism for agent
reasoning on the Semantic Web. To this end, we presented a
limited but realistic example of a DRS for performing a
common reasoning task on a Description Logic ontology.
We sketched a procedure for user-directed ontology
debugging. This same mechanism can be used for automated
belief revision.

Research in reasoning dynamics for the Semantic Web
is a major part of the overall Semantic Web effort. The
problem has been approached from belief revision [14],
ontology debugging [12], and now stream reasoning [6]
perspectives. We believe the present approach has the
potential to contribute to all these efforts.

There are several directions for future research. First, the
agent presented needs to be described in greater detail.
Procedures need to be fleshed out, and potential performance
problems need to be identified and addressed. Complexity
issues need to be discussed. There is also a possibility to use
data stored in the derivation path to speed up new reasoning.
For example, incremental algorithms can be designed to
utilize and extend existing derivation paths when a concept
gets updated through incorporating new definitions.

The agent can also be extended to support more varied
reasoning. It can be modified to accept more kinds of input,
including, e. g. , general inclusion axioms and TBox
assertions. A facility to deal with user queries on an ABox
needs to be added. The agent can be used as a model to build
DRSs capable of dealing with Semantic Web standards and
more realistic scenarios (reasoning in the presence of loops
and redefinitions of concepts). On the other hand, less
expressive DLs can be investigated, in hope that they may
guarantee moderate computational complexity.

Finally, the DRS formalism can be used to investigate
belief revision techniques. Variants on the AGM
framework's rationality postulates can be constructed for a
finite DRS case, both in general and specifically for
description logics. Feasible algorithms adhering to these
principles need to be constructed. Finally, these postulates
and algorithms can be applied to interesting practical cases,
such as reasoning with multi sourced information that takes
into account different degrees of the agent's belief and trust
between agents.

References

1. Alchourrŏn, C.E., Gȁrdenfors, P., Makinson, D.: On the logic of
theory change: partial meet contraction and revision functions,
Journal of Symbolic Logic, 50, 2 (1985)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-
Schneider. P. (eds.): The Description Logic Handbook,
Cambridge University Press (2003)

3. Baader, F., Sattler, S.: Expressive number restrictions in
Description Logics. J. of Logic and Computation, 9(3):319–350
(1999)

4. Bernes-Lee, T., Hendler, J., Lassila, O.: The Semantic Web.
Scientific American (2001)

5. Della Valle, E., Ceri, S., van Hamelern, F., Fensel, D.: It's a
streaming world! Reasoning upon rapidly changing information.
Intelligent Systems vol.24 no.6, pp. 83-89 (2009a)

6. Della Valle, E., Ceri, S., Fensel, D, van Hamelern, F., Studer,
R.: (Eds.): Proc. 1st International Workshop on Stream
Reasoning , CEUR vol. 466 (2009)

7. Della Valle, E., Ceri, S., Braga, D., Celino, I., Frensel, D., van
Harmelen, F., . Unel, G., Research chapters in stream
reasoning, In: Proc. 1st International Workshop on Stream
Reasoning , CEUR vol. 466 (2009)

8. Fagin, R., Halpern, J., Moses, Y., Vardi, M. Reasoning about
knowledge, MIT Press, Cambridge, MA, 1995

9. Gȁrdenfors, P.: Knowledge in Flux: Modeling the Dynamics of
Epistemic States, MIT Press/Bradford Books, Cambridge, MA
(1988).

10. Gȁrdenfors, P., ed.: Belief Revision, Cambridge University
Press, NewYork (1992)

11. Hamilton, A.G., Logic for Mathematicians, Revised Edition ,
Cambridge University Press (1988).

12. Parsia, B., Sirin, E., Kalyanpur, A.:Debugging OWL
ontologies, in Proc. 14th International World Wide Web
Conference (WWW'05), Chiba, Japan, May 10-14, 2005. ACM
Press 2005

13. Ribeiro, M. M., Wassermann, R.: First Steps Towards Revising
Ontologies, In: Proc. 2nd Workshop on Ontologies and their
Applications, CEUR Workshop Proc. Vol. 166 (2006)

14. Ribeiro, M. M., Wassermann, R.: Base Revision in Description
Logics - Preliminary Results, In: International Workshop on
Ontology Dynamics (IWOD) (2007)

15. Smolka, G: A feature logic with subsorts. Technical Report 33,
IWBS, IBM Deutschland, P.O. Box 80 08 80 D-7000 Stuttgart
80, Germany (1988)

16. Schmidt-Schauß, M., Smolka. G.: Attributive concept
descriptions with complements. Artificial Intelligence, 48(1):1–
26, (1991)

17. Schwartz, D. G.: Dynamic reasoning with qualified syllogisms,
Artificial Intelligence, 93(1-2) (1997) 103-167.

18. Schwartz, D.G.: Formal Specifications for a Document
Management Assistant, In: Proc. International Conference on
Systems, Computing Sciences and Software Engineering (2009)

19. Qi, G., Liu, W., Bell, D. A.: Knowledge Base Revision in
Description Logics, In Proc. European Conference on Logics in
Artificial Intelligence (Jelia'06), Springer Verlag (2006)

20. Ustymenko, S., Schwartz, D.G., Dynamic Reasoning for
Description Logic Terminologies. Canadian Conference on AI
2010: 340-343

21. Zhuang, Z. Q., and Pagnucco, M.: Belief Contraction in the
Description Logic EL, In: 22nd Int. Workshop on Description
Logics (DL 2009), CEUR Workshop Proc. Vol. 477 (2009)

