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Abstract
Artificial agents functioning in the Semantic Web are to be 
capable  of  getting  knowledge  from diverse  sources.  This 
implies  the  capability  to  continuously  update  their 
knowledge bases. New stream reasoning concepts make this 
need  even  more  pressing.  Semantic  Web  ontologies  are 
commonly  represented  using  description  logic  knowledge 
bases. We propose an agent architecture with such features, 
utilizing  a  Dynamic  Reasoning  System  (DRS).  This 
explicitly  portrays  reasoning as  a  process  taking place in 
time  and  allows  for  manipulating  inconsistent  knowledge 
bases.  We  sketch  a  procedure  for  user-directed  ontology 
debugging.  This  same  mechanism  can  be  used  for 
automated belief revision.  We identify important research 
directions that may benefit from this approach.

1   Introduction

The Semantic Web (SW) [4] is a common name of a family 
of  technologies  extending  the  Web  with  rich,  machine-
interpretable  knowledge.  The  SW  retains  the  massively 
decentralized nature of  current  World Wide Web,  with an 
unlimited  number  of  knowledge  sources  identifiable  by 
unique URIs. It supports rich metadata annotation, including 
expressive ontology languages. Description Logics (DLs) [2] 
emerged as leading formalism for knowledge representation 
and reasoning on the Semantic Web.
  Once widely implemented, the Semantic Web will support 
intelligent  software  agents  that  will  work  with  massive, 
decentralized ontologies, while other agents modify them in 
possibly inconsistent ways. Agents will need a way to absorb 
new knowledge in a timely fashion, all the while protecting 
the consistency of their knowledge bases, or, alternatively, 
be able to draw useful inferences from inconsistent premises. 
   Several  approaches  have  been  proposed  to  model 
knowledge  evolution  over  time.  One  of  the  most  well-
researched formalisms is  belief revision [9, 10], specifically 
the classic AGM framework [1, 9]. Substantial efforts have 
been extended to apply this approach to description logics 
[13,  14,  19,  20],  and  the  work  is  ongoing.  However,  the 
belief  revision  framework  does  not  explicitly  address 
knowledge  evolution  in  time.  Also,  in  its  original 

formulation, belief revision postulates are stated in terms of 
potentially infinite belief sets (although work has been done 
to  address  this  issue).  We believe  that  belief  revision is  a 
mature paradigm that  can be valuable source for important 
insight. However, there is a need for formal approaches that 
address the practical challenges more directly.
   New research  direction under  the tentative title “stream 
reasoning”  [6]  emerged  within  the  Semantic  Web 
community.  It  explicitly  deals  with  reasoning  over  rapidly 
changing and time-dependent data in a way that  can deliver 
answers  to  the  user  while  they  are  still  relevant.  Stream 
reasoning is defined as “the new multi-disciplinary approach  
which  will  provide  the  abstractions,  foundations,  methods,  
and tools required to integrate data streams and reasoning  
systems” [7]. Della Valle et al. [5] write: “Stream-reasoning 
research definitely needs new theoretical investigations that  
go  beyond  data-stream  management  systems,  event-based 
systems, and complex event processing. Similarly,  we must  
go beyond current existing theoretical  frameworks such as  
belief revision and temporal logic”.   Currently,  there is  no 
consensus  on  a  logic  formalism  appropriate  for  stream 
reasoning.  There  is  an  obvious  practical  need  for  such 
formalism to be able to integrate current, description logic-
based Semantic Web standards.
   Dynamic Reasoning Systems (DRS) [17] provide a formal 
framework for modeling the reasoning process of an artificial 
agent that “explicitly portrays  reasoning as an activity that 
takes  place  in  time”.  It  sidesteps  the  logical  omniscience 
assumption of the classical AGM framework and has means 
of  working  with  inconsistent  knowledge  bases  by  keeping 
track of a proposition's derivation path. The DRS framework 
has  been  shown  to  support  non-monotonic  reasoning  in  a 
natural way.
   A DRS can be defined for any language. DLs present a 
challenge in that they do not have explicit derivation rules. 
Instead,  DLs  rely  on  inference  algorithms to  accomplish 
common reasoning tasks. One of the basic tasks is checking 
subsumption of concepts. 
   The goal of this paper is to present the DRS framework as a 
suitable formalism for Semantic Web reasoning. To this end, 
we give an instance of DRS capable of building a concept 
subsumption  hierarchy  for  a  well-known description  logic. 



We believe it to be an important foundation for research on 
belief dynamics for Semantic Web agents. Section 2 of this 
paper  contains  a  brief  formal  introduction  to  Description 
Logics  and  the  necessary  definitions.  Section  3  discusses 
Dynamic Reasoning Systems. Section 4 describes a DRS and 
agent  reasoning  process  for  deriving  explicit  subsumption 
hierarchies from description logic ALCN  terminology. Short 
abstract of this work appears in [20]. Finally, in Section 5, 
we draw some conclusions and discuss directions for future 
research.

2  Description Logics

Languages for any description logic contain concept names,  
role  names,  and  individual  names.  Below,  we  will  use 
uppercase  A and  B for  concept  names,  uppercase 
letters  R , P for role names, and lowercase  x , y , z
for individual names.

DL  languages  combine  role  and  concept  names  into 
concept definitions. Concepts of a description logic  AL [16] 
are defined as follows:

C , D A         | (atomic concept)

         | (universal concept)

⊥         | (bottom concept)

¬A      | (atomic negation)

C∩D | (intersection)

∀ R.C | (value restriction)

∃R. (limited existential 
quantification)

More  expressive  DLs  extend  AL  by  the  following 
constructs:

Indication Syntax Name

U C∪D union

E ∃R.C full existential quantification

N n R ,n Rnumber restriction

C ¬C full negation

The  commonly  used  DL  ALCN extends AL with  full 
negation and number restriction. In the following sections, 
we will restrict ourselves to ALCN.

An Interpretation of a DL is a structure I=I , .I  , 

where  I is a nonempty set called  domain and  . I is 
an  interpretation  function  that  maps  concept  names  to 
subsets of a domain, role names to subsets of  I×I , 

and individual names to elements  of  I .  The function 

. I extends  to  arbitrary  concept  definition  in  a  rather 
intuitive way (for details, see [2],  chapter 2).  A concept is 
unsatisfiable if for any interpretation I , C I=∅ .

Description  Logic  knowledge  bases  consist  of  two 
components: a TBox, a set of statements about concepts, and 
an ABox, a set of assertions about individuals. In general, a 
TBox T  contains general concept inclusion axioms of the 
form  C⊆D (inclusion  axiom).  The  pair  of  axioms 

C⊆D , D⊆C is  abbreviated  C≡D (equality 
axiom).  An interpretation I satisfies an axiom C⊆D
if  C I⊆D I .  Interpretation I  satisfies a TBox T  

if it satisfies every axiom in T . 
A definition  is an equality axiom with an atomic concept 

on the left hand side. A TBox is a terminology if it consists of 
definitions and no concept name is defined more than once. 
A concept name is a  defined name  if it appears on the left 
hand side of  the  axiom and a base  name if  it  doesn't.   A 
definition is in the extended form if only base concept names 
appear on the right hand side. A terminology is definitorial if 
every definition has exactly one extended form (not counting 
equivalent  syntactic  variants).  In  further  discussion,  we 
assume that our TBoxes are definitorial terminologies. Under 
this condition, we can assume, wlog, that definitions contain 
no cycles.

An ABox contains assertions regarding individual names. 
These  include  concept  assertions  C a  and  role 
assertions Ra ,b. An interpretation  I satisfies (or 

is  a  model  of) C a  if  a I∈C I and  it  satisfies 

Ra ,b. if a I , bI ∈R I .  Finally, I satisfies an 

assertion   (or an ABox A ) with respect of a TBox 
T if it is a model of both an assertion (or an ABox) and 

the  TBox.
An ontology of concepts can be expressed using a DL. The 

term ontology is often applied either to a TBox or to a full DL 
knowledge base.  We will  occasionally  use  ontology  in  the 
former sense.

3  Dynamic Reasoning Systems

The classical (propositional) notion of belief set [e.g.,  9] 
models  it  as  an  (often  infinite)  set  of  formulas  of  the 
underlying logical language. In our view, a belief set should 
be  finite  and  should  represent  the  agent’s  knowledge  and 
beliefs at a given point in time. Moreover, each formula in 
such a belief set should contain information indicating how if 
was  obtained and whether  it  has  been  used  in  subsequent 
deductions, thereby enabling both backtracking and forward 
chaining  through  reasoning  paths  for  so-called  “reason 
maintenance”.

To  this  end,  in  [17]  there  was  defined  the  notion  of  a 
dynamic reasoning system  (DRS),  which explicitly portrays 
reasoning  as  an  activity  that  takes  place  in  time.  This  is 



obtained  from  the  conventional  notion  of  formal  logical 
system by lending special semantic status to the concept of a 
derivation path (i.e., a proof). Introduction of new knowledge 
or  beliefs  into  the  path  occurs  in  two  ways:  either  new 
propositions  are  added  in  the  form  of  axioms,  or  some 
propositions are derived from earlier  ones by means of an 
inference  rule.  In  either  case,  the  action  is  regarded  as 
occurring in a discrete time step, and the new proposition is 
labeled with a time stamp (an integer) indicating the step at 
which this occurred. Moreover, for propositions entered into 
the path as a result of rule applications, the label additionally 
contains  a  record  of  which  inference  rule  was  used  and 
which propositions were employed as premises.

At any given time, the contents of the path is regarded is 
being the sum total of the agent’s knowledge and beliefs as 
of that time. Thus we here take this path as being the agent’s 
belief set as of that time.

This  is  to  be  contrasted  with  other  systems  of  belief 
revision, which assume that the agent additionally knows all 
the logical consequences of the basic belief set. Such systems 
are  said  to  exhibit  “logical  omniscience.”  For  an  in-depth 
analysis of this issue, together with a manner of addressing 
it, see the paper by Fagin, Halpern, Moses, and Vardi [8].

For complete details  of the notion of a DRS, please see 
[S97].  A brief  outline is  as  follows.  A  labeled formula  is 
defined  as  a  pair  P ,   where  P∈L ,  where 

L  is a logical language, and the label  is an ordered 

4-tuple (index, from, to, status), where:

1. index is  a  non-negative  integer,  the  index, 
representing the formulas position in the belief set.

2. from is  a  from  list,  containing  information  about 
how the formula came to be entered into the belief 
set. Either it  was received from an outside source 
(obtained  from  some  other  agent  or  through 
interaction with its environment), in which case the 
from list contains the token  rec, or it was derived 
from some formulas occurring earlier in the belief 
set, in which case the from list contains the name of 
the derivation rule and the indexes of the formulas 
used  as  premises  in  the  derivation.  The  types  of 
formulas  that  can  be  received  are  understood  to 
include  both  axioms of  the  propositional  calculus 
and  statements  about  the  agents  environment 
(sometimes  distinguished  as  “logical”  and 
”nonlogical” axioms).

3. to is a to list, containing the indexes of all formulas 
in the belief set for which the given formula served 
as a premise in the indexed formula’s derivations.

4. status is a status indicator, taking values on or off, 
indicating  whether  the  belief  represented  by  the 
formula is currently held, i.e., whether the formula 
may or may not be used in any future derivations. 
Whenever  a  formula  is  initially  entered  into  the 
belief set, its status is on.

For a given agent, let us denote the agent’s belief set  at 
time  step  i  by  i .  Let 0=∅ .  Thus  the  agent 

initially has no knowledge or beliefs. Then, given i , for 

, i≥0 , i1  can be obtained in any of the following 
ways:

1. A new formula is received from an outside source,
2. A formula is derived from some formulas in i  

by means of an inference rule,
3.  A formula in i  has its status changed from on 

to off.

Changing a formula’s status from on to off occurs during a 
reason  maintenance  process  that  is  invoked  whenever  an 
insatisfiability,  i.e.,  a  definition of  the form  A≡⊥   is 
entered into the agent’s belief set.  The objective of  reason 
maintenance is to remove this insatisfiability.

This has two phases. First one starts back tracking from the 
insatisfiability,  using  the  from  lists  in  the  formula  labels, 
looking for the “culprit” formulas that occurred earlier and 
which led to the inconsistency. A decision then must be made 
to turn the status of at least one of these formulas to “off”. 
Then one forward chains from this formula, using the to lists, 
to  find  all  formulas  whose  derivations  stemmed  from the 
culprit formula, and likewise turns their status to “off”. This 
will include the inconsistent formula that triggered the reason 
maintenance process.

Which culprit formula to deactivate can be determined by 
the various culprits’ degrees of belief, to wit, remove the one 
that  is  least  believed.  In  case  the  culprits  are  all  believed 
equally, one can be chosen at random. Alternatively, an agent 
can  remove  the  culprit  formula  that  is  the  least  important 
according to some reasonable criteria. One such criteria is a 
cumulative belief level of formulas derived from the culprit. 
This criteria provides a finite version of the AGM epistemic 
entrenchment relation.

This model of agent-oriented reasoning reflects that view 
that,  at  any  given  time,  the  agent’s  beliefs  may harbor an 
inconsistency, but the agent does not become aware of this 
unless an inconsistent  formula is  explicitly  entered into its 
belief set.

This, in our opinion, is a realistic model of natural human 
reasoning.  Humans  can  comfortably  maintain  inconsistent 
beliefs for long periods of time without ever realizing this.

But  once  they  become  consciously  aware  of  a 
contradiction, they typically rethink their position and modify 
their beliefs so that the contradiction is removed. 



Fig.1 Reasoning agent employing a Dynamic Reasoning 
System

The reasoning agent (Fig. 1) uses a Dynamic Reasoning 
System to reach  conclusions that  help advance  the agent's 
goals. A controller  directs DRS behavior to steer it to such 
conclusions. The controller performs the following actions:

1. Receive information from the outside environment. 
The information can come from a human user, other 
agents, or be harvested by an agent through sensors. 
The  latter  can  get  information  from  any  external 
data source. 

2. Enter  information,  as  a  “nonlogical”  axioms 
expressed in language  L,  into the DRS's inference 
path.

3. Apply an inference rule.
4. Act  to  remove  insatisfiability,  by  invoking  belief 

revision procedure described above.

The agent performs these actions in the order dictated by the 
agent's  and  environment's  current  state,  presumably  in  a 
manner that would advance its goals.  In  the following, we 
are constructing an agent that would accept an ontology in 
the form of TBox definitions and construct  a subsumption 
hierarchy of concept names implicit in this ontology.

4  Dynamic Reasoning  for DL ALCN

A Dynamic  Reasoning  System  is  a  model  for  knowledge 
base and reasoning process for artificial agent that assists a 
user.  We  describe  an  agent  that  extracts  ontological 
knowledge  from  the  Web  and  uses  it  to  support  a  user's 
browsing  and  querying  activities.  To  this  end,  an  agent 
maintains two information stores:

1. Local copy of the ontology, expressed as an  ALCN 
TBox. This ontology consists of  ALCN definitions 
that occur in the derivation path.

2. A subsumption tree of concept names.

The latter  can  be  used  to  support  both  browsing  and user 
querying  on  both  a  TBox  and  an  ABox.  The  user  has  a 
preference  for  satisfiable  ontologies,  so  the  agent  has  to 
detect  and  remove  unsatisfiable  concepts.  Thus,  our  DRS 
needs to support 2 types of DL reasoning:

1. Check if a defined concept A is satisfiable
2. Deduce atomic subsumption, that is, a statement of 

the form A⊆B ,

          where A, B are concept names.

To  construct  the  DRS,  we  first  note  that  if  A  and  B  are 
defined  by  axioms A≡C , B≡D ,  where  C,  D  are 
concept  definition,  then  A⊆B iff C⊆D. Second,  note 
that C⊆Diff C∪¬D is unsatisfiable. 
So  both  our  reasoning  tasks  would  require  checking 
satisfiability  of  concepts.  We are  using  a  generic  tableau-
based satisfiability algorithm [2, 3]. 
Now we can build our dynamic reasoning system. First, We 
define the language, L. The symbols of L are the same as the 
symbols  of  logic  ALCN.   We use  A, B for  concept  names 
occurring in the incoming statements and A', B' for the names 
introduced  by  the  agents. The  formulas  of  L are  the 
following:

1. Equivalence  statements  of  the  form  A≡C , 
where  A  is  a  concept  name  and  C  is  concept 
definition. Without loss of generality, we assume all 
concept definitions are in negation normal form, i.e. 
negation only occurs in front of concept names.

2. Atomic  subsumption  statements  of  the  form 
A⊆B ,  where A, B are concept names. These 

represent  arcs of the subsumption tree the agent is 
building.

3. TBox assertions C a  , Ra ,b  , where C is a 
concept, R is a role, and a,b are individual constants

4. Explicit  inequality  assertions  x≠ y ,  where 
x , y are individual names.

Then we define  inference  rules.  Implicitly,  every rule  that 
modifies  a  concept  definition  also  puts  the  result  into 
negation normal form. The inference rules will be:

1.  Substitution:  from  A≡C and  B≡D infer 
A≡E ,  where  E is  C with  all 

occurrences  of  B replaced  by  D .  For  this 
treatment we assume that our TBox does not contain 
cycles  in  definitions.  By  repeatedly  applying  this 
rule, we obtain an extension of definition for A
that only contain ground concept names on the right 
side.

2. Subsumption  test  introduction: from 
A≡C , B≡D infer  A '≡C∩¬D ,  where 

Controller

DRS

Derivation
path

Derivation
rules

Environment



A ' is  a  previously-unused  agent-generated 
concept name.

3. From A≡C , B≡D and A '≡⊥ , provided 
that name  A ' was introduced using rule 2 with 

A≡C , B≡D as premises, derive A⊆B .

The  following  rules  4-10  are  added  to  enable  tableau-
based  consistency  checks.  These  are  derived  from  the 
transformation  rules  listed  in  [2],  p.  81.  Individual  names 

x , y , z , ... are  unique  names  generated  by  the  agent. 
All  TBox  statements  are  derived  from  the  same  ABox 
statement  (that  is  undergoing  satisfiability  check) 

A≡C 0 :

4. From  A≡C 0 ,  infer  Cox0 ,  if  no ABox 
statements were inferred from A≡C 0 .

5. From  A≡C 0 and  C1∩C 2 x ,  infer 
C1x  and  C2x  ,  if  any one of them is 

not yet inferred.
6. From  A≡C 0 and  C1∪C2x  ,  infer 

C1x  or  C2x  ,  if  neither  of  them  is 
inferred yet.

7. From  A≡C 0 and  ∃R.C x  ,  infer 
C  y  and R x , y , where  y is a new 

generated  name,  if  no  z exists  such  that 
C  z  and R x , z  are already derived.

8. From  A≡C 0 , ∀ R.C x  and 
R x , y  infer  C  y  , if  not  already 

derived.
9. From  A≡C 0 and  n Rx  ,  infer 

R x , y1 , ... , R x , yn and  ( yi≠ y j ,
and  R x , y ,  unless 

R x , z1 ,... , Rx , z n are already inferred.
10. From  A≡C 0 and  n Rx  ,  if 

R x , y1 , ... , R x , yn1 are  in  the 
derivation path and y i≠ y j is not in the path for 
some  i≠ j :  replace  all  occurrences  of  y i

with y j .

The following  rules  11-13 detect  inconsistency in  TBoxes 
built  using  rules  4-10.  As  above,  TBox  statements  are 
derived from A≡⊥ :

11. From A≡C 0 and ⊥x , derive A≡⊥ , 

where x is any individual name.

12. From A≡C 0 ,  A1x  and  ¬A1 x , 

derive  A≡⊥ ,  where  x is  any  individual 

name and A1 is any concept name.

13. From A≡C 0 ,  n Rx  ,   set 

{Rx , y i∨1in1} and  set 

{yi≠ y j∨1i≤ jn1} derive  A≡⊥ , 

where  x , y1,. .. , yn1 are  individual  names, 

R is a role name and n0 .

Finally, rule 14 derives a subsumption axiom, using reduction 
to unsatisfiability:

14. From  A≡C ,  B≡D ,  A1≡C∪¬D
and A1≡⊥ , derive A⊆B

A Dynamic Reasoning System based on language L and rules 
1-14 is capable of supporting an agent that builds an explicit 
subsumption  hierarchy.  We will  now describe  a  controller 
that can achieve this goal.
An agent  starts  with  an  empty  derivation  path  and  empty 
subsumption hierarchy. It will receive TBox definitions from 
the  user.  To  start  the  hierarchy,  before  receiving  the  first 
axiom, the controller will enter a root concept, R≡ , as 
a first formula in the derivation path and R as a root node 
in the hierarchy.
Upon  entering  a  new axiom of  the  form  A≡C  ,  the 
controller will perform the following actions:

1. Derive  an  expanded  definition  of  A  by 
repeatedly employing Rule 1 until the right side of 
the resulting definition contains no defined concept 
names.

2. Test satisfiability of  A using Rules 4-13. If it is 
unsatisfiable, flag it for a belief revision procedure

3. Expand  all  (extended)  definitions  that  depend  on 
using  Rule  1.  Test  the  affected  concepts' 
satisfiability, flagging for a belief revision process if 
unsatisfiable.  Update  the  hierarchy  of  concepts 
affected by this step, testing subsumption by using 
Rules 2-14.

4. Place  A  into  its  appropriate  place  in  the 
subsumption  hierarchy,  using  Rules  2-14  to  test 
subsumption  with  definitions  of  concept  names 
already there.

To  test  satisfiability  by  employing  Rules  3-13,  an  agent 
follows a tableau-based algorithm. Details of the appropriate 
algorithm,  with  discussion  of  termination  and  complexity, 
can be found in [2]. 
Rules 6 and 10 are non-deterministic: for a given ABox, they 
can  be  applied  in  finitely  many different  ways,  leading  to 
finitely many ABox'es. The concept is satisfiable if at least 
one such ABox is consistent. Each ABox is a branch in the 
satisfiablilty algorithm. The controller may handle branches 
by setting the belief status of statements on inactive branches 
to off. In practice, it may be useful to remove such statements 
from the path to save space.

We did not specify the details of modifying subsumption 
hierarchy on steps 3 and 4. In principle, the controller may 
simply  search  the  existing  hierarchy  starting  at  the  root, 
testing the concept in question's subsumption with each node. 
This is a natural and decidable procedure that will result in 
the  correct  hierarchy.  Studying  the  complexity  of  such  an 



algorithm and exploring possible optimizations is a task left 
for future research.

In case an unsatisfiable concept is detected, an agent will 
generate  and display to the user the list of definitions that 
lead to it. The user will have a choice to delete and modify 
one of them. Methods for assisting the user or for achieving 
this task without user interaction can be developed, based on 
research  in  ontology  debugging  and  belief  revision  for 
description  logics  [12,  13,  14,  21].  Developing  such 
algorithms is another task left for future research.

5  Conclusions and Further Research

In the present work, we argued for the suitability of Dynamic 
Reasoning  Systems  [17,  18]  as  formalism  for  agent 
reasoning on the Semantic Web. To this end, we presented a 
limited  but  realistic  example  of  a  DRS  for  performing  a 
common reasoning  task  on  a  Description  Logic  ontology. 
We  sketched  a  procedure  for  user-directed  ontology 
debugging. This same mechanism can be used for automated 
belief revision.

Research in reasoning dynamics for the Semantic Web 
is  a  major  part  of  the  overall  Semantic  Web  effort.  The 
problem  has  been  approached  from  belief  revision  [14], 
ontology  debugging  [12],  and  now  stream  reasoning  [6] 
perspectives.  We  believe  the  present  approach  has  the 
potential to contribute to all these efforts.

There are several directions for future research. First, the 
agent  presented  needs  to  be  described  in  greater  detail. 
Procedures need to be fleshed out, and potential performance 
problems need to  be identified and addressed. Complexity 
issues need to be discussed. There is also a possibility to use 
data stored in the derivation path to speed up new reasoning. 
For  example,  incremental  algorithms  can  be  designed  to 
utilize and extend existing derivation paths when a concept 
gets updated through incorporating new definitions.

The agent can also be extended to support more varied 
reasoning. It can be modified to accept more kinds of input, 
including,  e.  g.  ,  general  inclusion  axioms  and  TBox 
assertions. A facility to deal with user queries on an ABox 
needs to be added. The agent can be used as a model to build 
DRSs capable of dealing with Semantic Web standards and 
more realistic scenarios (reasoning in the presence of loops 
and  redefinitions  of  concepts).  On  the  other  hand,  less 
expressive DLs can be investigated, in hope that they may 
guarantee moderate computational complexity.

Finally, the DRS formalism can be used to investigate 
belief  revision  techniques.  Variants  on  the  AGM 
framework's rationality postulates can be constructed for a 
finite  DRS  case,  both  in  general  and  specifically  for 
description  logics.  Feasible  algorithms  adhering   to  these 
principles need to be constructed.  Finally,  these postulates 
and algorithms can be applied to interesting practical cases, 
such as reasoning with multi sourced information that takes 
into account different degrees of the agent's belief and trust 
between agents.
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