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Abstract

Association rule mining problem (ARM) is a struc-
tured mechanism for unearthing hidden facts in large
data sets and drawing inferences on how a subset of
items influences the presence of another subset. ARM is
computationally very expensive because the number of
rules grow exponentially as the number of items in the
database increase. This exponential growth is exacer-
bated further when data dimensions increase. The asso-
ciation rule mining problem is even made more com-
plex when the need to take the different rule quality
metrics into account arises. In this paper, we propose
a genetic algorithm (GA) to generate high quality as-
sociation rules with five rule quality metrics. We study
the performance of the algorithm and the experimental
results show that the algorithm produces high quality
rules in good computational times.
Keywords: confidence; support; interestingness; lift;
J−Measure; genetic algorithms;

1 Introduction
Since the association rule mining problem was proposed by
(Agrawal, Imielinski, & Swami 1993), several algorithms
have been developed. In the most commonly used approach,
the rule generation process is split into two separate steps.
The first step includes applying the minimum support to find
all frequent itemsets in a database and the second step in-
cludes applying the minimum confidence constraint on the
frequent itemsets to form the rules. The first step is compu-
tationally very expensive because finding all frequent item-
sets in a database involves searching all possible itemsets.
The set of all possible itemsets grows exponentially with the
number of items in the database. The exponential growth
profoundly affects the performance of association rule min-
ing algorithms (Agrawal, Imielinski, & Swami 1993).

Other than the aforementioned difficulties, most of the ex-
isting algorithms have been developed to produce simple,
easy to understand association rules which measure the qual-
ity of generated rules by considering mainly only one or two
evaluation criteria most especially confidence factor or pre-
dictive accuracy (Dehuri et al. 2008). These algorithms pro-
vide useful tools for descriptive data mining but there are
several measures of rule quality such as comprehensibility,
confidence, J−measure, surprise, gain, chi-squared value,

gini, entropy gain, Laplace, lift and conviction that can be
used to evaluate the rules (Carvalho, Freitas, & Ebecken
2005), (Freitas 1999).

Quite a number of research works have been carried out
in this arena but results indicate that more innovative ap-
proaches need to be introduced with a view of finding algo-
rithms that can handle multiple and increasing rule quality
metrics as well as improving algorithm efficiency (Hruschka
et al. 1999), (Kotsiantis & Kanellopoulos 2006).
In this paper we propose a Multi−Objective Genetic Algo-
rithm for Mining Association Rules (MOGAMAR), which
generates association rules with five rule quality metrics:
confidence, support, interestingness, lift and J−Measure
which permit the user to evaluate association rules on these
different quality metrics in a single algorithm run. The main
motivation for using Genetic Algorithm (GA) is that a GA
performs a global search and copes better with attribute in-
teraction than the greedy rule induction algorithms often
used in data mining tasks (Freitas 2007). Genetic Algo-
rithms are robust with little likelihood of getting stuck in
local optima and they are highly parallel in nature making
them good candidates for distributed implementations (Liu
& Kwok 2000a).

The rest of this paper is organized as follows. We present
a detailed description of the proposed algorithm in Section
2. In Section 3 we evaluate the performance of the algorithm
and in Section 4 we conclude the paper.

2 The Multi−Objective Genetic Algorithm
for Mining Association Rules

In this work we use the underlying structure of the object-
oriented genetic algorithm proposed in (Davis 1991) with
modifications to the representation of the individuals. In the
rest of this section we give a detailed description of the pro-
posed algorithm.

2.1 Representation of the Rules
We adopted a modified Michigan approach proposed in
(Ghosh & Nath 2004) whereby the encoding/decoding
scheme associates two bits to each attribute in the database.
If these two bits are 00 then the attribute next to these two
bits appears in the antecedent part and if it is 11 then the
attribute appears in the consequent part. And the other two
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Figure 1: Modified Michigan Rule Representation

combinations, 01 and 10 will indicate the absence of the at-
tribute in either of these parts. As an example, suppose there
is a rule ACF → BE. It will be represented as shown in Fig-
ure 1.
Following this approach the algorithm can handle variable
length rules with more storage efficiency, adding only an
overhead of 2k bits, where k is the number of attributes
in the database. The downside of this approach is that it
is not well suited for handling continuous valued attributes.
For handling real-valued attributes we have incorporated the
discretization method proposed in (Kwedlo & Kretowski
1999). The combination of these two approaches enabled us
to uniformly represent the association rules using the Michi-
gan approach. The decoding is performed as follows:

DV = mnv +(mxv−mnv)∗
(∑

(2i−1 ∗ ithbiti)
2n − 1

)
(1)

where DVis the decoded value; 1 ≤ i ≤ n and n is the
number of bits used for encoding; mnv and mxv are mini-
mum and maximum values of the attribute, respectively; and
biti is the value of the bit in position i. It is important to
note with that the encoding of the rules in this algorithm, the
consequent part of the rule is not important at the start of the
run of the algorithm because the the consequent should not
be randomly determined. The consequent part is determined
when the fitness of the rule is computed.

2.2 Initialization
We avoid generation of the initial population purely ran-
domly because it may result in rules that will cover no train-
ing data instance thereby having very low fitness. Further-
more, a population with rules that are guaranteed to cover
at least one training instance can lead to over−fitting the
data. It was shown in (Surry & Radcliffe 1996) that uti-
lizing non−random initialization can lead to an improve-
ment in the quality of the solution and can drastically reduce
the the runtime. We, therefore, designed an initialization
method which includes choosing a training instance to act as
a “seed” for rule generation as proposed in (Freitas 2002). In
our initialization approach, a seed should be a data instance
lying in the middle of a cluster of examples with a common
consequent. The training examples are stored in an array
and iteratively for each example we calculate the fraction
of those that cover the consequent against those that negate
the coverage of that consequent (same-consequent/opposite-
consequent), ρ, as in (2).

ρ =
Count(Sameconsequent)

Count(Oppositeconsequent)
(2)

where Count(Sameconsequent) denotes the
number of same-consequent examples and
Count(Oppositeconsequent) denotes opposite-consequent
examples. The training example with the highest ρ will be
selected as the seed.

2.3 Reproduction

The reproduction mechanism involves rule selection and the
application of the crossover operators. The rule selection
method used by this algorithm follows the “universal suf-
frage” approach proposed in (Giordana et al. 1997). With
this approach each association rule is represented by a sin-
gle individual. The individuals to be mated are elected by
training data instances. Each instance votes for a rule that
it covers in a stochastic fitness-based way. Using an exam-
ple, let us assume we have a set R of rules or chromosomes
that cover a given instance i i.e. a rule whose antecedent and
consequent are satisfied by the instance i. Then the instance
i votes in one of the rules in R by using a roulette wheel
selection scheme.
This means that each rule r in R is assigned a roulette-wheel
slot whose size is proportional to the ratio of fitness of r di-
vided by the sum of fitness of all rules in R. The better the
fitness of a given rule r the higher its probability of being
selected over the other rules covering the given instance i.
In the event of absence of a rule covering i the algorithm
automatically creates a new rule using the seeding operator
used at the population initialization stage. Since it is only
the rules that cover a given instance that do compete with
each other, this results into some kind of niching. Niching
is a mechanism through which evolutionary algorithms form
and maintain subpopulations or niches. Niching fosters the
evolution of several different rules each covering a different
part of the data being mined. This assists avoid the con-
vergence of the population to a single rule resulting in the
discovery of a set of rules rather than a single one.

The actual reproduction takes place by performing a
multi-point crossover and the mutation on the new individu-
als.
The Crossover Operator We modified the standard
crossover operator to either generalize the crossover oper-
ator if the rule is too specific, or to specialize it if the rule
is too general. A rule is considered too specific if it covers
too few data instances i.e. when too few data instances sat-
isfy both the antecedent and the consequent of the rule. In
contrast, a rule is considered too general when it covers too
many data instances. We make use of the bitwise OR and
the bitwise AND to implement generalization and special-
ization, respectively. The bitwise OR and the bitwise AND
are applied to the antecedent part of the rule since this deter-
mines the consequent part (Giordana et al. 1997).

The generalization/specialization crossover procedure
first constructs an index, I = {i1, ..., in}, of pointers to the
positions in the chromosome (bit-string) where the corre-
sponding bits in the two parents have different values. Then,
for every element ik ∈ I the following procedure is re-
peated. If the rule is too general, the algorithm replaces the
value of the bits b (ik) with the logical OR of the corre-
sponding bits in the parents, otherwise if the rule is too spe-
cific the algorithm replaces the value of the bit b (ik) with
the logical AND of the corresponding bits in the parents.
The crossover operator is equipped with a mechanism for
detecting and eliminating invalid genotypes.



The Mutation Operator The mutation operator helps in
maintaining the diversity within the population and also in
preventing premature convergence to local optima (Liu &
Kwok 2000b). The mutation operator needs to be designed
in such a way that we avoid the population being domi-
nated by a single highly fit individual. Our approach to cope
with this problem is to use an adaptive mutation probabil-
ity, where the value of the mutation probability is varied
as the population becomes dominated by an individual. We
adopted the non−uniform−mutation operator proposed
in (Michalewicz 1999). The non-uniform mutation opera-
tor adapts to the environment by varying as the fitness of the
individuals in the population changes. We made a modifi-
cation to the non-uniform mutation operator to enable it to
generalize and/or specialize a rule condition. The mutation
operator randomly selects a condition from the rule. If that
condition involves a nominal attribute, then the value will be
randomly changed from one value to another. If the attribute
is continuous, mutation will randomly change the conditions
interval values. The specialization mutation operator works
on a randomly selected condition in the rule. If the condi-
tion involves a continuous attribute, specialization shrinks
the interval.

The mutation operator used here ensures that the high mu-
tation probabilities don’t cause the loss of the fittest individ-
ual of a generation. Furthermore, the mutation operator can
cause the undesired effect of changing the rule’s consequent
if applied before generating the consequent but in our case
the consequent is generated after the mutation operator has
been applied.

2.4 Replacement

We use an elitist individual replacement approach that en-
sures that more fit genotypes are always introduced into the
population.

Uniqueness testing The application of the genetic opera-
tors on the parent population may result in identical geno-
types in the population. The algorithm first tests to ensure
the new offspring do not duplicate any existing member of
the population. There is, however, a computational overhead
caused by the uniqueness testing process on the operation of
the algorithm. The computational overhead is compensated
by a reduction in the number of genotype evaluations re-
quired because the check for duplicates can be performed
before fitness evaluation. The saving of number of fitness
evaluations significantly increases efficiency.

Furthermore, the adoption of a replacement strategy with
genotype uniqueness enforced preserves genetic diversity
within the population (Lima et al. 2008). Genetic diver-
sity is significant as crossover-type operators depend on re-
combining genetically dissimilar genotypes to make fitness
gains. Uniqueness of the genotypes permits the algorithm to
find not only the single best individual but the n best geno-
types in a single run, where n is the population size. The
process of finding the best n individuals imposes some com-
putational load but it is compensated with the generation of
n high-fitness individuals in a single program run.

Fitness Evaluation MOGAMAR performs the fitness
evaluation of the generated rules using a set of five comple-
mentary metrics: confidence, support, interestingness, lift
and J−Measure. These metrics are converted into an objec-
tive fitness function with user defined weights. The support,
σ(X), of an itemset X is defined as the proportion of trans-
actions in the data set which contain the itemset. The con-
fidence factor or predictive accuracy of the rule is the con-
ditional probability of the consequent given the antecedent,
calculated as in (3).

confidence = σ (X ∪ Y ) /σ(X) (3)

We adopt the interestingness metric calculation proposed in
(Freitas 1998). The algorithm first calculates the informa-
tion gain, InfoGain(Ai), of each attribute, Ai. Then the
interestingness of the rule antecedent, RAI, is calculated by
an information−theoretical measure as (4).

RAI = 1−


n∑

i=1

InfoGain(Ai)

n

log2 (|Gk|)

 (4)

The degree of interestingness of the rule consequent (CAI)
is as (5):

CAI = (1− Pr (Gkl))
1/β (5)

where Gkl is the prior probability of the goal attribute value
Gkl, β is a user-specified parameter, and 1/β is a measure
for reducing the influence of the rule consequent interesting-
ness in the value of the fitness function.

The interestingness of the rule is given by (6):

interestingness =
RAI + CAI

2
(6)

J−Measure shows how dissimilar a priori and posteriori
beliefs are about a rule meaning that useful rules imply a
high degree of dissimilarity. In rule inference we are inter-
ested in the distribution of the rule “implication” variable Y ,
and its two events y and complement ȳ. The purpose is to
measure the difference between the priori distribution f(y),
i.e. f(Y = y) and f(Y 6= y), and the posteriori distribution
f(Y | ~X). The J −Measure is calculated as (7):

JM =f(x)
(

f(y |x ).ln
(

f(y |x)
f(y)

)
+

(1− f(y |x )) .ln

(
(1− f(y |x))

1− f(y)

)) (7)

Lift is equivalent to the ratio of the observed support to
that expected if X and Y were statistically independent and
it is defined as (8):

lift(X → Y ) =
σ(X ∪ Y )

σ(X) ? σ(Y )
(8)

Finally, the fitness function is calculated as the arithmetic
weighted average of confidence, support, interestingness,



lift and J−Measure. The fitness function, f(x), is given by
(9):

f(x) =
ws ∗ S + wc ∗ C + wi ∗ I + wl ∗ L + wJ ∗ JM

ws + wc + wi + wl + wj

(9)

where S denotes support, C denotes confidence, I
denotes interestingness, L denotes lift, J denotes J-
Measure, and their respective user defined weights are
ws, wc, wi, wl, wj . The chromosomes are then ranked de-
pending on their fitness.

Selection Fitness Calculation Using the rank-based lin-
ear normalization we convert the fitness values into
selection-fitness values. With rank-based linear normaliza-
tion a linear increment is used to set the selection-fitness
values for the genotypes based on their rank. The main rea-
son for using rank-based linear normalization is because it
provides explicit control on the selection pressure applied
to the population and reduces the likelihood that the popu-
lation will converge prematurely on a sub-optimal solution
(Metzler 2005). This assists in avoiding problems caused by
super-individuals dominating the selection process.

2.5 Criteria for Termination
The algorithm terminates execution when the Degeneracy
condition is met −i.e. when the best and worst performing
chromosome in the population differs by less than 0.1%. It
also terminates execution when the total number of genera-
tions specified by the user is reached.

3 Algorithm Performance
In this section, we evaluate the relative performance of
the algorithms and compare its performance to that of the
Data Mining by Evolutionary Learning (DMEL) algorithm
(Au, Chan, & Yao 2003). DMEL is known to be one of
the best performing evolutionary algorithms for association
rule mining(Reynolds & de la Iglesia 2008). The perfor-
mance characteristics studied included the quality of solu-
tions found and CPU utilization.

3.1 Datasets
To evaluate our algorithm we used Adult, Connect-4, Chess,
Diabetes, DNA and Mushroom datasets from UCI repos-
itory of machine learning databases (Frank & Asuncion
2010). We also used the Motor Vehicle Licensing Sys-
tem (MVLS) database from the Uganda Revenue Author-
ity (URA) which we processed for use in experiments. The
MVLS database contains data pertaining to motor vehicle li-
censing fees, vehicle ownership and registration, transfer of
ownership, accidents, usage, country of origin, date or year
of manufacture. The MVLS has over 4 million records but
we randomly selected 441,327 transactions for these exper-
iments. The summary of the datasets is given in Table 1.

3.2 Relative Performance of the Algorithms
The summary of the results of our experiments with the fixed
parameters are given in Table 2. The results include the av-

Dataset No. of Instances Attributes
Adult 48,842 14
Chess 3,196 36
Connect-4 67,557 42
Diabetes 768 20
DNA 3190 62
Mushroom 8,124 22
MVLS 441,327 32

Table 1: Summary of the Datasets

erage rule quality metrics and CPU utilization. From Table
2, we observe that:

1. The discovered rules have a very high average quality
value for all datasets implying that they are good algo-
rithms

2. The algorithms are generally fast for smaller datasets with
increasing average CPU times for larger datasets

3. The algorithms generally produce poorer quality rules for
large datasets.

Our overall observation is that the quality of the generated
rules decreases as the dataset dimension increase.

It can be observed that the algorithms consumed quite a
bit of time with the Connect−4 and the MVLS datasets. It
is quite evident that these two datasets have a much larger
number of transactions and attributes as compared to the rest
of the datasets. We also observed that the rules with high
confidence within these datasets have very low support. For
instance, the rules that have a ‘tie’ as their consequent and a
confidence of 100% in the Connect−4 dataset, have a sup-
port of only 14 records. This profoundly affects the time it
takes to process the records. When we set a low minimum
support the algorithm response time greatly improves.

Dataset MOGAMAR DMEL
Average
Quality

Time
(Secs)

Average
Quality

Time
(Secs)

Adult 89.45 1.35 89.7 1.34
Connect-4 87.3 12 88.2 19
Chess 97.35 0.01 95.6 0.015
Diabetes 87.75 0.015 79.8 0.017
DNA 96.0 1.23 95.4 1.21
Mushroom 89.4 0.03 88.5 0.04
MVLS 82.4 900 83.6 903

Table 2: Quality of rules and run times

3.3 Sensitivity to Dataset Size
In Section 3.2, we used fixed datasets sizes to assess the per-
formance of the algorithms. With a fixed dataset size it may
not be possible to gauge how well the algorithm performs
when the datasets grow. We now study the difference in
performance of the algorithm with increasing dataset sizes.
Figure 2 summarizes the trends in the performance of algo-
rithms with varying dataset sizes. From Figure 2 we observe



Figure 2: Relative Performance of the algorithms

that the increase in dataset size leads to an increase in the av-
erage response time of the algorithms. Furthermore, when
the data are increased two-fold, there is a multiplier effect
on the response time of the algorithms. This implies that the
performance of the ARM algorithm highly depends on the
size of the data being mined.

3.4 Sensitivity to Genetic Operators and
Parameters

Experiments we carried out in Section 3.2 were done us-
ing specific parameter instances. It is possible that varia-
tions in the parameter values can lead to either an improve-
ment or deterioration in performance of the algorithms. In
this subsection we make a deeper study on the effect of the
crossover and mutation operators on the performance of the
algorithms.

Effect of Crossover Operator We studied the perfor-
mance of MOGAMAR and DMEL with different values of
the crossover rate. We observed that the overall performance
of both algorithms with different crossover rates is slightly
different from that shown when the values of the crossover
rate is fixed. This implies that the crossover rate does not
have a very profound effect on the performance of the algo-
rithm.

Effect of Mutation Operator Figure 3 shows the perfor-
mance of the algorithms with varying mutation rates. It can
be seen that their performance was drastically affected with
increasing mutation rates implying that the mutation oper-
ator has high impact on the performance of genetic algo-
rithms. With the mutation rates increasing, the utilization
of the CPU drastically increased showing a big reduction in
the algorithm efficiency and disparity in the characteristics
of the algorithms became more evident. The main cause of
this phenomenon is that the mutation operator reintroduces
useful genotypes into the population for a diverse pool of
parents. This increases the diversity of the population be-

Figure 3: Relative Performance of MOGAMAR and DMEL
for different mutation rates

cause each structure in the new population undergoes a ran-
dom change with a probability equal to the mutation rate.
This prevents members of the population from converging
to a single very fit individual and as such increasing the re-
quired number of valuations. This implies that the mutation
operator needs to be more thoroughly investigated to estab-
lish the most suitable rates.

4 Conclusion
In this paper we have proposed a new association rule min-
ing algorithm, MOGAMAR. The approach proposed in this
paper incorporates a novel population initialization tech-
nique that ensures the production of high quality individ-
uals; specifically designed breeding operators that ensure
the elimination of defective genotypes; an adaptive muta-
tion probability to ensure genetic diversity of the popula-
tion; and uniqueness testing. The performance of MOGA-
MAR has been compared with DMEL, an efficient ARM
algorithm, on a number of benchmark datasets with experi-
mental results showing that our proposed approach can yield
equally as good performance with consistently high quality
rules. MOGAMAR provides the user with rules according
to five interestingness metrics, which can easily be increased
if need be by modifying the fitness function. We studied
the effect of parameters to the performance of the algorithm
specifically dataset size, crossover and mutation rates. We
observed that the algorithm performs poorly for large dataset
sizes. The poor performance is more evident as the datasets
increase in size. This has been identified as an area requir-
ing more research efforts. It was further observed that the
crossover rate does not have a big impact on the performance
while the mutation rate does. This indicates that it is neces-
sary to find methods for finding the right mutation rates that
encourage the performance of the algorithm. This is another
area we shall be researching in. We have used weighted fit-
ness function for finding the best rules but this approach may
not be the best when there are several solution-quality crite-
ria to be evaluated. This is because these criteria may be
non-commensurate or conflicting most especially when they
evaluate different aspects of a candidate solution. In our fu-
ture works we shall specifically look into the possibility of



differently modeling the ARM problem.
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