
Fuzzy Relational Visualization for Decision Support

Brian Zier and Atsushi Inoue ∗

Eastern Washington University
Cheney, WA 99004 USA

Abstract

A study on fuzzy relational visualization in system develop-
ment aspects is presented. The front-end enables dynamic
and scalable changes in visualization according to user’s ex-
pertise and inspiration. Integrative management of various
data and knowledge is handled by the back-end at any scale
in cloud computing environment. Extended Logic Program-
ming is used as the core of fuzzy relational management in
the back-end, and is capable of consistent uncertainty man-
agement among probabilistic reasoning and fuzzy logic while
maintaining asymptotically equivalent run-time with the ordi-
nary Logic Programming. A multi-view relational visualiza-
tion is being implemented and important graphical features
are highlighted in this paper.
Keywords: Visualization, Probabilistic Reasoning, Fuzzy
Logic, Logic Programming.

Introduction
Given the rapid advancement and penetration of informa-
tion technologies, visualization becomes more significant in
many domains. In sciences, this is utilized in many aspects
such as populations, evolutions, radiations, transformations
and structures (Wattenberg and Kriss 2006). In business,
this is often found instrumental in various decision making,
e.g. sales charts, change of markets and customer relational
charts. In mathematics, modern education demands visual-
ization as an essential element, e.g. demonstration of three
dimensional functions as free surfaces. In engineering, this
is a very critical, mandatory tool for system design, e.g. fluid
analysis for nuclear power plants, aerodynamics for aircraft
and heat radiation for CPU units to list a few.

Unfortunately, the majority of conventional visualization
tends to be application-specific and its analytical model is
rather static in terms of their relational representation and
visualization configuration. For example, MS Excel limits
its visualization within limited dimensions (1, 2 or 3), its
analytical model is limited to statistical, and it only accepts
tabular data. While this indeed serves in many applications,
there is a fatal limit in critical decision making support, e.g.
infrastructure assurance where integrated leverage of knowl-
edge concerning policies and factual (sensory) data is essen-
tial (Inoue 2010).

∗E-mail: inoueatsushij@gmail.com

On the other hand, many studies indicate effectiveness
of sharing various visualization among a group in order to
study extensive exploitation and in-depth understanding of
data sets (Heer 2006; Heer, Viegas, and Wattenberg 2007;
Viegas et al. 2007; Wattenberg and Kriss 2006). In this
framework, group consensus is made as a result of sharing
different interpretations through various visualizations. This
suggests necessity of a general visualization platform that is
capable of visualizing subjects with a dynamic and scalable
change of configuration (Shneiderman 1996) via interaction
with users (Shneiderman 1998; Zhang 2008).

Our general application framework for intelligent systems
deploys Extended Logic Programming (ELP) and a multi-
view visualization scheme, and its efficiency and effective-
ness have been demonstrated throughout a showcase of var-
ious applications (Springer, Henry, and Inoue 2009). In this
paper, we discuss the system development of fuzzy rela-
tional visualization for decision support within this applica-
tion framework. First, the specification and progress are re-
ported. Then the management of fuzzy relations (back-end)
and their visualization scheme (front-end) are described re-
spectively.

Specifications and Progress
The ultimate goal of this development is a fuzzy relational
visualization with the following general specification:
S1. Various relations are dynamically visualized in various

aspects.
S2. Various types of data are visualized, e.g. tabular, texts,

images, multimedia streams, diagrams, etc.
S3. Relations can be uncertain, i.e. probabilistic, possibilis-

tic, and perceptual (subjective).
S4. Knowledge and data are integratively managed through-

out a canonical representation and process.
S5. This is scalable in cloud computing environment.

In this specification, the first two (S1 and S2) are consid-
ered as matters of the front-end that provide graphical inter-
faces and interactions with users, and the rest (S3, S4 and
S5) as matters of the back-end that manage relations among
all data and knowledge.

Two major works on the front-end are visualization
scheme and human-computer interaction. There are two

major progresses on the visualization scheme: first, the
Logic Programming (LP) visualizer for educational pur-
pose (Henry and Inoue 2007), then the visualization scheme
for reasoning under uncertainty (Springer and Inoue 2009).
For this fuzzy relational visualization, we further specify this
scheme in order to realize dynamic and scalable visualiza-
tion as a result of developing an interactive graphic interface.
Studies on more sophisticated human-computer interaction,
including integration of this relational visualization scheme
with various conventional visualization, e.g. geographical,
spacial, statistical and functional, are planned and upcom-
ing.

The back-end consists of ELP and extraction function-
alities, and they are placed in a cloud computing envi-
ronment. ELP is developed with Support Logic Program-
ming (SLP) (Baldwin, Martin, and Pilsworth 1995) and a
simple extension of fuzzy probability (Inoue 2008). Ex-
traction functionalities consists of translators from vari-
ous types of data into ELP and utilities to manage mas-
siveness and high dimensions (Codd 1970; Nugues 2006;
Moore and Inoue 2008; Yager 1982). Parallelization of
ELP in a cloud computing environment is currently under-
way (Joxan and Maher 1994).

Management of Fuzzy Relations: Back-End
This section describes management of fuzzy relations from
computational aspects: representation and query processing
of ELP, as well as how various types of data are extracted
and translated into this representation, i.e. extended Horn
clauses.

Representation
Table 1 shows how fuzzy relations can be represented in
ELP. Like ordinary LP, Horn clauses are used to represent
relations in general. Two extensions are made in those Horn
clauses. One is the various probability annotation such as a
point (e.g. 0.62), an interval (e.g. [0.6, 0.68]) and a fuzzy
(i.e. linguistic) (e.g. ’very low’ and ’high’). The inter-
pretation of those annotated Horn clauses, i.e. probabilistic
events, is P (h) ∈ [0, 1], where P is the annotated probabil-
ity and h is the Horn clause. We interpret P (h) = 1 when no
probability is annotated. The other is use of fuzzy predicates
such as ’Tall’, ’BigFeet’, ’ProceedAtPace’ and ’Level’ in this
table. This is simply a matter of fuzzy predicates observed
in the Horn clause h, and such predicates are specially pro-
cessed in their unification.

Fuzzy probability is formally defined as a normal, con-
vex fuzzy set defined over interval [0, 1] (i.e. a fuzzy num-
ber), s.t. µp(x ∈ [0, 1]). In addition, a linguistic label is
associated with such a fuzzy set for our advantage, i.e. the
linguistic extension of annotated probability in ELP.

Fuzzy predicate is formally expressed s.t.
pf (x1, . . . , xn) and its semantics is determined by a
corresponding fuzzy set s.t. µpf

(x1, . . . , xn), where
(x1, . . . , xn) ∈ U , the universe of discourse for this fuzzy
set. Truth values of such a predicate, by its nature, are
partial, i.e. τ ∈ [0, 1] where τ = 0 corresponds to false
and τ = 1 corresponds to true, as well as other values

Table 1: Fuzzy Relations in ELP

in-between correspond to partial truth. Currently we do not
consider cases that fuzzy terms (i.e. fuzzy sets) appear in
its arguments. They are rather unorthodox in Fuzzy Logic
framework and, if necessary, can be translated into fuzzy
predicates pfi(x

′
i), where fi represents the i-th fuzzy term

appearing in the arguments, to be properly inserted into the
original Horn clause.

Query Processing
The most critical advantage of ELP is its computational ef-
ficiency, that is asymptotically equivalent with that of LP
while the extensions of uncertainty management are indeed
in a part of its computation. Consider the following simple
extended Horn clauses, with query a and unification of some
fuzzy predicates such as a and a′ as well as c and c′, in order
to demonstrate this efficiency:

h1: a← b ∧ c ∧ d : p1 h6: b : p6
h2: a← e : p2 h7: d : p7
h3: c← e ∧ f : p3 h8: e
h4: c← d : p4 h9: f
h5: a′ ← c′ ∧ d : p5

Figure 1: Snapshot of processing query a in LP

First, we consider ordinary LP in order to process query a
with the assumption of all annotated probabilities p1, ..., p7
to be 1 (i.e. the equivalence of no annotations). Figure 1 in-
dicates the snapshot of this query processing in an AND-OR
tree. In general, the query processing in LP is Depth-First
Search starting from node a. In LP, we only consider sym-
bolic unification so that there is no partial unification such as
a and a′, as well as c and c′. Further, we only need one Horn
clause to be proven true (so-called an existential query) – ei-

ther h1 or h2 (together with either h3 or h4 in order to prove
sub-query c) in this query. Sometimes, we need to prove
all possible cases (so-called a universal query), i.e. both h1
and h2 (together with both h3 and h4) in this query. The
selection between existential and universal queries depends
on applications. LP assumes close world assumption (i.e.
negation as failure). Since recent knowledge representation
technologies often deploy open world assumption such as
Web Ontology Language (OWL), this is often considered as
a shortcoming.

Figure 2: Snapshot of processing query a in ELP

Query processing in ELP remains in Depth-First Search
starting from node a as indicated in Figure 2. In order to
process query a in ELP, we need to disjunctively combine
all partial truth of h1 and h2, as well as h5 (i.e. the case of
fuzzy predicates) s.t. Ph1(a)∪Ph2(a)∪Ph5(a). Therefore,
all Horn clauses need to be proven, i.e. the equivalence of
the universal query in LP.

The partial truth in ELP is represented as a probability:
either one of point, interval and fuzzy, and this is com-
puted according to Jeffreys’ rule (Jeffrey 1965) s.t. P (c) =
P (c|h) ·P ′(h)+P (c|¬h) ·P ′(¬h). Therefore, proof by sat-
isfying sub-queries in ELP is a matter of computing such
probabilities in a chain reaction. Let a conditional Horn
clause be c ← h : p = P (c|h) and the result of a sub-
query (or simply a fact) be h : p′ = P ′(h). Then the partial
truth of query c, i.e. P (c), is computed depending on the
type of annotated probability according to Jeffreys’ rule as
shown in Table 2. Note that P (c|¬h) = 0 (i.e. false) is
expected for close world assumption (i.e. negation as fail-
ure) and P (c|¬h) = [0, 1] (i.e. unknown) for open world
assumption.

Table 2: Partial truth of query c, i.e. P (c)

When h in the conditional Horn clause c ← h : p consists

of multiple predicates, s.t. h = h1 ∧ . . . ∧ hn, we compute
p′ = P ′(h) = P (h1) · . . . · P (hn).

Partial truth between fuzzy predicates f and f ′ (e.g. dot-
ted lines between a and a′, and between c and c′ in Figure 2)
is determined by applying Mass Assignment Theory, the
conditional mass assignment mf |f ′ that yields an interval of
probability1 (Baldwin, Martin, and Pilsworth 1995). This is
so-called semantic unification as opposed to symbolic uni-
fication. Importantly this is not symmetric unlike symbolic
unification, i.e. mf |f ′ 6= mf ′|f . In the query processing as-
pect of ELP, this is considered as insertion of Horn clauses
f ← f ′ : p and f ← ¬f ′ : p̄, where p = P (f |f ′) = mf |f ′

and p̄ = P (f |¬f ′) = mf |¬f ′ . Note that neither close world
assumption nor open world assumption holds in any query
process with semantic unification. This is indeed consistent
with Fuzzy Logic.

Computing partial truth adds a few simple arithmetic to
unification as shown in Table 2. While this may increase
a coefficient of run-time, its asymptotic complexity still re-
mains the same. Similarly to semantic unification in com-
parison with symbolic unification, its computation depends
on the shape of fuzzy sets (i.e. #pivotal points) but not on the
number of Horn clauses or that of predicates within those.
Furthermore, this computation even becomes less as those
fuzzy sets are more simply represented (e.g., trapezoidal–
only 4 points).

Extraction
Extraction functionalities translate various types of data into
a collection of extended Horn clauses. Following the con-
cept of deductive databases, any data in tabular forms are
translated into a collection of unconditional Horn clauses,
i.e. facts, and any relational queries, e.g. SQL, are
translated into a collection of Horn clauses (Codd 1970;
Ceri, Gottlob, and Tanca 1990). Unstructured texts are to
be translated into a collection of Horn clauses as a result of
applying Natural Language Processing (NLP) such as tag-
ging, syntax parsing and semantic processing in LP (Nugues
2006). Semi-structured data such as XML, E-mail and
Electric Data Interchange (EDI) have a high compatibility
with Horn clauses (Almendros-jimnez, Becerra-tern, and j.
Enciso-baos 2008). As a consequence of this, anything that
can be represented in XML is translated, e.g. diagrams.

Multimedia data such as images, audio and video are han-
dled through their summarization, e.g. color histograms,
edge and shape extractions and any other image process-
ing. Tagged information and attributes are straightforwardly
translated into Horn clauses. Texts such as captions are
translated by applying NLP. Their contents can be efficiently
summarized and, in a sense, compressed by applying Gran-
ular Computing and linguistic summary (Moore and Inoue
2008; Yager 1982). This can also be applied to any other
data that are massively large and highly dimensional.

Overall, a rich set of extraction functionalities serves as a
strong interface because Horn clauses are considered rather

1The conditional mass assignment, i.e. semantic unification,
may also yield a point probability (Baldwin, Martin, and Pilsworth
1995). However, we do not consider this in ELP.

as a pivotal language (thus, users do not have to be exten-
sively exposed to ELP). In knowledge management for in-
frastructure assurance, various factual (sensory) data can be
entered in tabular forms and XML. Knowledge such as poli-
cies and scheduling rules can be entered in texts. Then, mi-
nor modification and refinement are to be made as deemed
necessary through some human-computer interaction for vi-
sualization in decision making.

Visualization Scheme: Front-End
The concepts of creating a visualization with various views
represent the data at different levels of detail. We chose to
implement a global view and a local view. The global view
displays the relations in a wide range. This view allows a
user to gain a broad understanding of the various compo-
nents and relationships as a whole. Additionally, it is im-
portant for the user to be able to more closely understand
particular subsets of the whole, particularly when the visu-
alization is large. This necessitates the local view, which
allows the user to drill down to a particular subsection of the
global visualization and view the details of the relations.

We designed and implemented the prototype front-end ap-
plication with several things in mind. This included the ca-
pacity to utilize the program on various platforms, leaving
the door open for future expansion. For example, we wanted
to ensure that this application was independent of any spe-
cific operating system. We also kept in mind that the fu-
ture (or even the current) trend of technology is moving to
service-based applications in cloud computing. Because the
potential for this visualization system could grow to very
large applications, having a powerful back-end system per-
forming the operations and calculations could be beneficial,
requiring only minimal processing power of the front-end
system. Additionally, the system would be universally avail-
able and accessible regardless of where the user is. Due to
these future possibilities, we designed the input specifica-
tion around XML and implemented the visualization com-
ponents in the Java programming language.

Input file format design
We had to develop a format which would include all neces-
sary information about the reasoning processes to be visu-
alized. Because the reasoning process can easily be repre-
sented in a tree structure, we chose an XML format for the
input file.

Fuzzy probabilities in the local view

Figure 3: Point probability

In the aforementioned research, two methods for pre-
senting probabilities in the local view are offered (Springer
and Inoue 2009). One of these methods represents a crisp,
single-point probability; for example: 0.8. The paper sug-
gests that a rectangular box is displayed. Inside this box,

a smaller rectangular bar is displayed representing the pos-
sible range of probabilities (from 0.0 to 1.0) using a color
spectrum or gradient. Therefore, the color at the left end
of the bar represents a probability of 0, and the color at the
other end represents 1. Any color in between is then easily
seen as representing a probability somewhere between these
possible values. The outer box is then filled with the color
representing the point probability for that particular event.
(See figure 3).

The second method involves representing an interval
probability. This method is very similar to the last, in that we
still have a rectangular box with a smaller bar with the spec-
trum representing the range of probabilities. The difference
is that the outer box is filled also with a gradient over the
probability interval for that event. So if the probability was
[0.1, 0.4], then the outer box would be filled with a gradi-
ent ranging over the colors represented within the spectrum
between those values. (See figure 4).

Figure 4: Interval probability

Both of these methods are very good visual representa-
tions of the probability. These visualizations make it quick
to easily identify the probability of a particular event. They
are also easy to compare, even between the single point
probability and the interval probability. The challenge which
we faced was determining an equally good method of vi-
sualizing a fuzzy probability. In this case, the probability
of a particular event is represented by a fuzzy set. This
means that each probability will have a membership value
based on the membership function which defines the fuzzy
set. After some discussion, we came up with three feasi-
ble representations of fuzzy probability for this particular
project. There obviously could be many more ways to rep-
resent fuzzy probabilities; however, we needed ways that
would be easy to directly compare with the other two rep-
resentations.

The method which came to mind first was to represent
the shape of the fuzzy set. This was quickly modified to
include the gradient of color to enhance this representation.
Inside the rectangular box used for the other two methods,
the shape of the fuzzy set would be drawn and filled with
the portion of the gradient which fit within that shape. (See
figure 5).

Figure 5: Fuzzy probability using the shape of the fuzzy set

The second method which we consider is to represent the
probability with color gradients layered based on particular
α-cuts of the fuzzy set. After some experimentation, we
discovered that the most effective method for representing
in this way was to use the maximum number of α-cuts based
on the height of the containing rectangular box (in pixels).

So, if the containing rectangular box was 24 pixels tall, we
take 24 α-cuts of the fuzzy set and paint that row of pixels
with the gradient representing the probability interval at that
α-cut. This results in a color pattern which we will describe
as a two dimensional gradient. (See figure 6).

Figure 6: Fuzzy probability using interval gradients for each
α-cut

The third and final method we considered was to repre-
sent the fuzzy set by changing the color value of the gra-
dient based on the fuzzy set. For example, decreasing the
saturation or the brightness of the color based on the mem-
bership value of the particular point. For this representation,
we developed three variations, one which decreased the sat-
uration, another the brightness, and the other a combination
of brightness and saturation. (See figure 7). After compar-
ing these three options, we found that the method which de-
creased the brightness was the most clear and intuitive (see
figure 8).

Figure 7: Comparing variations of color value

Figure 8: Fuzzy probability with decreasing brightness

After examining all three of these methods (shape of the
fuzzy set, two dimensional gradients, and color value), we
determined that certain people will view each of these with
different degrees of usefulness. One person may find the
first option the most intuitive. However, others may find
the second or third options most intuitive. We decided that
it would be most beneficial to include all three representa-
tions of fuzzy probability (see figure 9) in the local view
program and allow the user to toggle between them depend-
ing on their personal preference or intuition. This will allow
the user to choose an option which suits their eye and allows
them to easily compare between point, interval, and fuzzy
probabilities.

Local view development
For this development, we chose to use the Java programming
language for several reasons. First and most importantly,
Java is platform independent. Java GUI programs can also
easily be converted to web applets, which could make the ap-
plication even more portable by making it available through
a web interface online.

Figure 9: Comparison among shape of the fuzzy set, α-cuts
and decreasing brightness

Layout The local view was developed to be a box-in-box
style layout. There is a top panel, a left panel, and a bottom
right panel. The top panel is used for displaying informa-
tion about the node, currently just the node’s name. The left
panel is used for displaying the calculated probability panel
underneath the name of the node. The bottom right panel is
then used as a container for any children of the node. All
nodes with dependencies and children are given this same
three-part layout. This layout is then added to the parent’s
bottom right panel, creating an embedded box-in-box style
as specified. For the leaf nodes with no children, we sim-
ply display a single panel which contains the name of the
node and a given probability panel to the right. The given
probability panels for the deepest leaf nodes are drawn to
touch the right border of their enclosing box, while other
leaf nodes that are not as deep are indented to the left to al-
low quick vertical comparison between different levels. Ac-
cording to the input file specification, we can have several
different ’branches’ (i.e. separate Horn clauses) or depen-
dencies grouped together by ’and’s (i.e. conjunctively con-
nected predicates within a Horn clause). This is represented
in the local view by a slightly thicker border between the
different children. Figure 10 shows a complete local view.

Figure 10: Complete local view

Global view development
The global view is conceptually straight-forward, and sim-
pler than the local view. However, implementation turns out
to be more challenging. The global view is a representa-
tion of the entirety of the reasoning process. Ideally with
this visualization application, a user will be able to view
the whole reasoning process in the global view with little
to no detail and, in order to see more detail, look at a par-
ticular subsection of the reasoning process in the local view.
This means that the global view should accommodate a large
number of nodes in a small amount of space, while still pro-

viding significant information regarding the reasoning pro-
cess. Our previous work determined that the global view
should be, what we call, a circular tree. It ”combines the
relationship visibility of a standard tree structure with the
radial organization and space efficiency of a tree ring struc-
ture.” (Springer and Inoue 2009).

Figure 11: With a small radius, the nodes are too close to-
gether, but by increasing the radius, we create more space
between the nodes while maintaining the same angles of
placement

Node Positioning In order to develop this view, we needed
to confront challenging issues. The first and the most critical
issue is the node placement. We had to determine a method
of calculating the position of each node. We considered a
couple of different options, but decided that it was simplest
to divide the space among the child nodes evenly. For ex-
ample, the root node will begin with 360 degrees of space,
which it will divide evenly among its children. Each of those
nodes will then be given a placement angle as well as a cer-
tain number of degrees to allocate to their children. One
issue with dividing the ’arc space’ evenly among the chil-
dren is that we could have one branch with many children
and descendants and another with very few. However, both
branches would be given an equal amount of space. This re-
quires us to ensure that all nodes are given enough space in
their angle on the circumference. If we have nodes of a par-
ticular size and which have been given a certain angle with
which to work, the only thing left to manipulate in order to
give enough space is the radius (see figure 11). We decided
to use a consistent distance between levels of the tree. This
was the simplest to implement, as well as, what we believe
to be, the most clear visually. So in order to calculate node
positions, we must determine the required circumference to
give enough space for the most nodes in the smallest angle
as follows (equation 1, where C is the set of children, d is
the node diameter, a is the node’s given arc space, and l is
the node level.).

1.5 · |C| · d
2π · a · (l − 1)

− d (1)

Once we know the circumference, we can determine the ra-
dius, and since we know the depth level of the nodes, we
can also determine the distance between levels, or what we
call the link length. With this information, we can now eas-
ily calculate the positions of each node because we know its
specified angle, its depth level, and the link length (i.e. the
distance between each level). After calculating the place-
ment of each node, we must generate the links between
them. Each node had a reference to its parent node, and

both nodes know their own positions, so we simply have
each node draw a link from its position to its parent.

’And Arcs’ With both the nodes and links in place, we
must also draw connecting arcs for the branches which are
grouped by ’and’s. These ’and arcs’ must connect the links
from the first child node to the last which are part of the
conjoined dependencies. To implement this, we must know
the point of origin (i.e. the parent node’s position), the angle
of the first child in relation to the parent, and the angle of
the last child in relation to the parent. This was a challenge
as we have the angle for each node from the root node, not
the angle with respect to the parent node. However, because
we can calculate the coordinates of the child node as well as
the parent node, we can calculate the angle from the parent
as follows (equation 2, where As is the start angle, Ae is the
end angle, (xs, ys) is the start location, (xe, ye) is the end
location, and (xp, yp) is the parent location. For coding, we
assume As, Ae ≥ 0 and make necessary conversion, e.g.
adding 360 degrees.).

As = tan−1 ys−yp

xs−xp

Ae = tan−1 ye−yp

xe−xp

(2)

After calculating the angle from the parent to both the first
and last child in the ’and’ group, we can then simply draw
an arc from the first to the last.

Zooming and Fuzzy Nodes The capability to zoom in or
out on the global view is very critical in visualization. As
far as coding was concerned, this is fortunately very simple
because all of the position calculations are based on the node
diameter and angles. The zoom feature simply scales the
node diameter, which effectively scales everything else. It
has been designed as a slider control in the bottom of the
window, but could easily be changed to be any other type of
interface control as well.

Lastly for the global view, we added a simple indication of
fuzzy nodes. For those nodes (represented in the local view
with italicized names), we drew a dashed white circle just
outside the node. This allows the user to easily differentiate
between fuzzy and crisp events, but does not detract from the
ability to see the coloring of the node. A completed global
view is shown in figure 12.

Coloring
The color calculations for the probabilities are made by a
simple scale of the two primary color (red and green in our
case) components by the probability. Because the probabil-
ity is between 0 and 1, this scales each value between 0 and
255 in the RGB color space. To calculate the red component,
we invert the calculation such that the higher the probability
is, the lower the red value becomes. The combination of the
scaled red and green values gives us our color.

For the interval probabilities, the calculations are the
same, except that we just have to do the one for the low
end of the interval and the other for the high end. To create
the gradient, we generate the start color for the low proba-
bility and the end color for the high probability. This creates
a gradient from the low to the high.

Figure 12: Completed global view

The concept of coloring for the local view had already
been well-defined in Springer’s previous work; however, the
global view had not been specified aside from remaining
consistent with the coloring in the local view. We deter-
mined that the leaf nodes should display their given prob-
abilities and the non-leaf nodes should display their calcu-
lated probabilities. Then the links between nodes display the
given probability for their appropriate ’and’ branch. This is
consistent with the local view in which the leaf nodes display
their given probabilities and non-leaf nodes their calculated
probabilities.

In order to represent point and interval probabilities on a
node, we simply color the node the appropriate solid or gra-
dient color in the scheme previously discussed. For fuzzy
probabilities, we take the core, which is an α-cut where
α = 1–representing the best-case interval. This produces
an interval, which we represent with a gradient over the
color spectrum discussed above. The links are colored in
the same way, with the gradient going across the width of
the link rather than down its length (see figure 13). Other-
wise it could appear that the probability changes from one
node to the next, when we are trying to represent a proba-
bility of the rule or event as a whole, not some transitional
probability.

Figure 13: Node and link coloring

Transition between local and global views
A future goal of this project is to allow a user to easily make
transition between the local view and global view, and also
to potentially include more detail in the global view as the
user zooms and manipulates the view. First ideas include:

the ability to look at a particular subsection or branch of the
tree in the global view (from the global view), the ability to
look at a particular subsection or branch of the tree in the
local view (from the global view), the ability to go back to
the complete global view (from the local view), and popup
windows which include more specific information about the
nodes and ’and’ branches in both views (particularly the
probabilities). We will briefly describe each of these ideas
further.

The ability to look at a particular subsection or branch in
the global view could be implemented in such a way that you
click on a particular node in the global view and it makes
this node into the root node in the center of the screen and
repositions each of its children around it in the same circular
fashion. This allows the user to more closely examine a par-
ticular branch without yet having to see all detail associated
with the nodes (as in the local view). For example, assume
we have a tree with a root node that has five children, and
each of these branches has hundreds of descendants. The
user could click on one of the five children, which would
then become the root and take the center position, and its
descendants would then be repositioned all around it, giving
each more space and hopefully making it clearer to see the
dependency links.

The ability to look at a particular subsection or branch
in the local view would be very similar to the previous
idea. However, once a user has found a particular (small)
branch which a user wishes to examine more closely, the
user can choose to view a particular node (and all dependen-
cies/children) in the local view. This would transition them
seamlessly and allow them to see all of the information the
local view presents which the global view does not. Fol-
lowing this concept is the idea that a user should be able to
easily return to the global view after examining a subsection
or branch of the whole tree. Ideally the user should be re-
turned to the same subsection from which they came in the
global view to maintain a consistent frame of reference be-
tween views. However, this could also be accomplished by
highlighting or outlining the nodes (in the global view) of
the particular subsection the user was examining in the local
view so the user can easily recognize and find the nodes in
the scope of the rest of the tree.

Finally, we have had some study about various popups in
each view. In the global view, a user could click a node and
initiate a popup indicating the node’s name together with
calculated or given probability. Likewise, if the user were to
click a link, a popup could indicate the given probability for
that particular branch. Currently the given probability for
an ’and’ group is not shown in the local view, but a popup
could display that probability for its branch. There are many
ways in which a popup-style window could enhance both of
the views. We plan to study those throughout a challenging
knowledge management case.

We have a few other potential enhancements. As an al-
ternative to the popup for displaying given probabilities of
’and’ groups in the local view, we have studied effective-
ness of placing additional probability panels to the left of
the children which are a part of the ’and’ branch. These
panels would span the height of the children in the group

and probably be narrower than the regular probability pan-
els. However, this would distinguish these probabilities from
those directly associated with a node, and would allow easy
comparison between several branches at the same level of
the tree. This could be fairly easily implemented by uti-
lizing the existing probability panel classes which we have
already implemented. A screenshot of such panels is shown
in figure 14.

Figure 14: Given probability panels for ’and’ groups (con-
ceptual screenshot)

As mentioned earlier in the paper, we have a plan to de-
velop this application in a Java applet on a web server for
cloud computing.

Concluding Summary
Our study on fuzzy relational visualization in system devel-
opment aspects is presented. Our recent work has resulted in
a prototype proof-of-concept that is capable of dynamic and
scalable visualization. The visualization scheme and the first
set of fundamental human-computer interactions have been
developed. With the ever increasing complexity of various
decision making, visualization is becoming more and more
essential. There are many areas in which work still needs to
be done; however, this prototype pushes the boundaries of
current visualization techniques and limitations in the direc-
tions as introduced at the beginning of this paper.

While completing and further enhancing elements dis-
cussed in this paper, we are anticipating the following fu-
ture works throughout challenging knowledge management
domains, e.g. infrastructure security and health informatics:
• More sophisticated human-computer interaction and

study on its effectiveness from aspects of cognitive sci-
ences.
• Parallelization and scalability in aspects of concurrent

logic programming for the back-end and that of dis-
tributed computing features in Java for the front-end.

Acknowledgment
This work is conducted for and partially supported by NSF-
IUSTF International Collaboration on Infrastructure Secu-
rity and Health Informatics Technology and Management
Initiative at Eastern Washington University. Computational
resources are provided by Computer Science Department at
Eastern Washington University.

References
Almendros-jimnez, J.; Becerra-tern, A.; and j. Enciso-
baos, F. 2008. Querying XML Documents in Logic Pro-

gramming. Theory and Practice of Logic Programming
8(3).
Baldwin, J. F.; Martin, T.; and Pilsworth, B. 1995. FRIL:
Fuzzy and Evidential Reasoning in AI. Research Studied
Press.
Ceri, S.; Gottlob, G.; and Tanca, L. 1990. Logic Program-
ming and Databases. Springer-Verlag.
Codd, E. F. 1970. A Relational Model of Data for
Large Shared Data Banks. Communications of the ACM
13(6):377–387.
Heer, J.; Viegas, F.; and Wattenberg, M. 2007. Voyagers
and Voyurs: Supporting Asynchronous Colalbollative In-
formation Visualization. In CHI2007.
Heer, J. 2006. Socializing Visualization. In CHI2006
Workshop on Social Visualiztion.
Henry, M. D., and Inoue, A. 2007. Visual Tracer for Logic
Programming. In ISIS2007.
Inoue, A. 2008. Uncertainty Management by Extension of
Logic Programming. In FSS2008.
Inoue, A. 2010. Toward a Comprehensive Knowl-
edge Management for Infrastructure Assurance. In
iWiA2010/IFIP TM2010, 90–96.
Jeffrey, R. 1965. The Logic of Decision. McGraw-Hill.
Joxan, J., and Maher, M. J. 1994. Constraint Logic
Programming: a Survey. Journal of Logic Programming
19/20:503–581.
Moore, Z. I., and Inoue, A. 2008. Effectiveness of Value
Granulation in Machine Learning for Massively Large and
Complex Domain. In IPMU2008.
Nugues, P. 2006. An Introduction to Language Processing
with Perl and Prolog. Springer-Verlag.
Shneiderman, B. 1996. The Eyes have It: A Task by Data
Type Taxonomy for Information Visualizations. In VL96,
336–343.
Shneiderman, B. 1998. Designing the User Interface (3rd
eds). Addision-Wesley.
Springer, K., and Inoue, A. 2009. Novel Visualization
Scheme for Reasoning With Uncertainty. In NAFIPS2009.
Springer, K.; Henry, M.; and Inoue, A. 2009. A Gen-
eral Application Framework for Intelligent Systems. In
MAICS2009, 188–195.
Viegas, F.; Wattenberg, M.; Ham, F.; Kriss, J.; and McK-
eon, M. 2007. ManyEyes: a Site for Visualization at In-
ternet Scale. IEEE Trans. on Visualization and Computer
Graphics 13(6):1121–1128.
Wattenberg, M., and Kriss, J. 2006. Designing for Social
Data Anaysis. IEEE Trans. Visualization and Computer
Graphics 12(4):549–557.
Yager, R. 1982. A New Approach to the Summarization of
Data. Information Sciences 28:69–86.
Zhang, J. 2008. Visualization for Information Retrieval.
Springer-Verlag.

