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Abstract

This paper introduces a new technique for feature selection
and illustrates it on a real data set. Namely, the proposed ap-
proach creates subsets of attributes based on two criteria: (1)
individual attributes have high discrimination (classification)
power; and (2) the attributes in the subset are complemen-
tary - that is, they misclassify different classes. The method
uses information from a confusion matrix and evaluates one
attribute at a time.Keywords: classification, attribute selec-
tion, confusion matrix, k-nearest neighbors;

Background

In classification problems, good accuracy in classificationis
the primary concern; however, the identification of the at-
tributes (or features) having the largest separation poweris
also of interest. Even more, for very large data sets (such
as MRI images of brain), the classification is highly depen-
dent on feature selection. This is mainly because the larger
the number of attributes, the more sparse the data become
and thus many more (exponential growth) training data are
necessary to accurately sample such a large domain. In this
sense, the high dimensional data sets are almost always un-
der represented. This problem is also known in literature
as ”the curse of dimensionality”. For example, a 2-attribute
data set having 10 examples in the square defined by the cor-
ners (0,0) and (1,1) covers the domain acceptably. If the do-
main to be learned is the cube defined by the corners (0,0,0)
and (1,1,1), 10 points will not cover this 3-D domain as ef-
fectively.

Reducing the number of attributes for a classification prob-
lem is a much researched field. The brute force approach in
finding the best combination of attributes for classification
requires the trial of all possible combinations of the avail-
able n attributes. That is, consider one attribute at a time,
then investigate all combinations of two attributes, threeat-
tributes, etc. However, this approach is unfeasible because
there are2n

− 1 such possible combinations for n attributes
and, for example, even for n=10 there are 1,023 different
attribute combinations to be investigated. Additionally,fea-
ture selection is especially needed for data sets having large

numbers of attributes (e.g. thousands). Examples of such
data domains with many features include text categorization
and gene expression analysis. In the first example, each doc-
ument is described by the most frequent words, leading to
20,000 words or more. In working with expressed genes in
order to separate healthy from cancer patients, for example,
the number of attributes may grow as high as 30,000 (Guyon
and Elisseeff 2003). Another example of a challenging do-
main is the microarray data found in (Xin, Jordan, and Karp
2001), where a hybrid of filter and wrapper approaches is
employed to successfully select relevant features to classify
72 data examples in a 7,130 dimensional space.

In addition to reducing the data dimensionality, selecting
fewer attributes may improve classification and may give a
better understanding of the underlying process that gener-
ated that data. Here we propose an attribute-selection tech-
nique based on a confusion matrix with the two-fold objec-
tive of better classification and better data understanding.

Depending on where the feature selection module is placed
in relation to the classification module, there are two classes
of methods for feature selections (Jain and Zongker 1997):

• Filter methods (Pudil, Novovicova, and Kittler 1994)
rank features (or feature subsets) independently of the
predictor. These methods investigate irrelevant features
to be eliminated by looking at correlation or underlying
distribution. For example, if two attributes have the same
probability distribution, then they are redundant and one
of them can be dropped. Such analysis is performed re-
gardless of the classification method. Another filtering
method ranks attributes based on the notion of nearest hit
(closest example of same the class) and nearest miss (clos-
est example of a different class) (Kira and Rendell 1992).
Theith feature ranking is given by the score computed as
the average (over all examples) of the difference between
the distance to the nearest hit and the distance to the near-
est miss, in the projection of theith dimension (Guyon
and Elisseeff 2003).

• Wrapper methods (Kohavi and John 1997) use a classi-
fier to assess features (or feature subsets). For example,
the decision tree algorithm selects the attributes having



Table 1: The confusion matrix for two-class classification
problem.

PREDICTED PREDICTED
NEGATIVE POSITIVE

ACTUAL NEGATIVE a b

ACTUAL POSITIVE c d

the best discriminatory power and places them closer to
the root. Hence, besides the classification tree, a ranking
of attributes results.

Another classification of attribute selection methods consid-
ers the search technique of the feature subsets. There are two
main greedy search strategies: forward selection and back-
ward elimination. Both techniques yield nested subsets of
features. The forward selection starts with one attribute and
continues adding one attribute at a time if the newly formed
subset gives better classification. During backward elimi-
nation, unpromising attributes are progressively eliminated
(Guyon and Elisseeff 2003). This greedy search technique
is often used in system identification. The result, in either
case, is not guaranteed to yield the optimal attribute subset
(Sugeno and Yasukawa 1993).

In this research we investigate the use of the confusion ma-
trix (Kohavi and Provost 1998) (which contains information
about actual and predicted classifications) for attribute se-
lection. In the context described above, this approach is a
wrapper method because it uses a classifier to estimate the
classification power of an attribute (or subset of attributes).

The Confusion Matrix and Disagreement
Score

A confusion matrix of size n x n associated with a classi-
fier shows the predicted and actual classification, where n is
the number of different classes. Table 1 shows a confusion
matrix for n = 2, whose entries have the following meanings:

• a is the number of correct negative predictions;

• b is the number of incorrect positive predictions;

• c is the number of incorrect negative predictions;

• d is the number of correct positive predictions.

The prediction accuracy and classification error can be ob-
tained from this matrix as follows:

Accuracy =
a + d

a + b + c + d
(1)

Error =
b + c

a + b + c + d
(2)

We define the disagreement score associated with a confu-
sion matrix in equation (3). According to this equation the
disagreement is 1 when one of the quantities b or c is 0 (in
this case the classifier misclassifies examples of one class
only), and is 0 when b and c are the same.

D =

{

0 if b = c = 0;
|b−c|

max{b,c} otherwise. (3)

The attribute selection methodology proposed here selects
attributes that not only have good discrimination power on
their own, but more importantly are complementary to each
other. For example, consider two attributes A1 and A2, hav-
ing similar classification accuracy. Our approach will select
them as a good subset of attributes if they have a large dis-
agreement in terms of what examples they misclassify. A
large disagreement is indicated by D values closer to 1 for
both attributes, but distinct denominators in equation (3).

Algorithm for Confusion Matrix-based
Attribute Selection

The pseudocode outlined below shows the steps to per-
form confusion matrix-based attribute selection for a 2-class
classification problem. This method basically constructs
attribute-subsets that: (1) have attributes with good individ-
ual classification power, and (2) have attributes that are com-
plementary (i.e. they disagree in their misclassifications).

Note that the algorithm may lead to several subsets of at-
tributes to be further investigated, i.e. further the subset
yielding higher classification accuracy may be selected.

Also, the algorithm does not account for the possibility that
two individually lower ranked attributes may combine in a
high classification accuracy subset due to their high comple-
mentarity.

Algorithm 1 Pseudocode for Confusion Matrix-based At-
tribute Selection Algorithm
Require: 2-class data ofn attributes
Require: classification technique
Require: k - number of member subset
Ensure: Output k-attribute subset as tupleSk =

(A1, A2, ..., Ak)
Compute classifierCi based on featureAi, i = 1..n
Obtain:Accuracy(Ci) andConfMatrix(Ci)
RankAi according toAccuracy(Ci) ⇒ RA

for i = 1 ... ndo
Compute disagreement based onConfMatrix(Ci)

as:Di = |b−c|
max{b,c}

end for
RankAi according toDi ⇒ RD

Select top k (according toRA) attributes having large
D (according toRD) but in different classes:⇒ Sk =
(A1, A2, ..., Ak)



Figure 1: Decision tree obtained with CART for all data and
all attributes.

Table 2: Data distribution across classes. In total, there are
416 examples each having 34 attributes.

Class Class label No. of examples

1 Ellipse 110

2 Flat 115

3 Heart 29

4 Long 36

5 Obvoid 32

6 Oxheart 12

7 Rectangular 34

8 Round 48

The Tomato Fruit Data Set

The data set used in the experimental part of this research
consists of 416 examples having 34 attributes and distributed
in 8 classes (the class-distribution is shown in Table 2). This
set was obtained from the Ohio Agricultural Research and
Development Center (OARDC) research group led by E.
Van Der Knaap (Rodriguez et al. 2010) and the classifica-
tion task is to correctly label a tomato fruit based on mor-
phological measurements such as width, length, perimeter,
circularity (i.e. how well a transversal cut of a tomato fits a
circle), angle at the tip of the tomato, etc.

The data set was collected as follows: from the scanned im-
age of a longitudinally section of a tomato fruit the 34 mea-
surements are extracted by the Tomato Analyzer Software
(TA) (Rodriguez et al. 2010) developed by the same group.
For a complete description of the 34 tomato fruit measure-
ments and the TA software see (Gonzalo et al. 2009).

In addition to tomato classification, of interest here is to find
which attributes have more discriminative power and further
to find a ranking of the attributes.

Data Classification and Attribute Selection

In this section we show the decision tree classification of
the tomato data set, then we illustrate our attribute selection
algorithm (in combination with a k-nearest neighbor classi-
fier) on two (out of 8) classes. These two classes (1 and 7)
are identified by both, decision trees and k-nearest neigh-
bors, as highly overlapping.

Classification with Decision Trees - CART

We used the Classification and Regression Trees (CART)
method (Breiman et al. 1984) because it generates rules that
can be easily understood and explained. At the same time,
classification trees have a built-in mechanism to perform at-
tribute selection (Breiman et al. 1984) and we can com-
pare our set of selected attributes, obtained from the confu-
sion matrix and k-nearest neighbors analysis, with the set of
attributes identified by CART. However, we anticipate that
these sets will not perfectly coincide, which only means that
the two approaches quantify the importance of a given at-
tribute (or subset of attributes) differently and that the two
methods learn the data differently.

The pruned decision tree obtained using CART is shown in
Figure 1. The train and test error associated with this tree are
11.54% and18.27%, respectively. As it can be seen from
this figure, 10 rules can be extracted. In addition, CART se-
lects the following 8 attribute as best in classification (listed
in decreasing order of their importance):

• 7 - Fruit Shape Idx Ext1

• 13 - Circular

• 12 - Ellipsoid

• 11 - Fruit Shape Triangle

• 14 - Rectangular

• 10 - Distal Fruit Blockiness

• 8 - Fruit Shape Idx Ext2

• 1 - Perimeter

We also investigate the k-nearest neighbors classifier as we
will use this classification method in combination with our
attribute selection approach. Figure 2 shows the k - nearest
neighbors classification error for k = 2,...,15. The top (blue)
line corresponds to runs that include all 34 attributes and the
bottom (red) line shows the error when only the best five
attributes (identified by CART classification) are used.



Figure 2: K - nearest neighbors classification error for k =
2,...,15. The top (blue) line corresponds to runs that include
all 34 attributes and the bottom (red) line shows the error
when only the best five attributes are used (these attributes
were identified through CART classification).

As shown in Figure 2, the k-nearest neighbors classifica-
tion technique consistently scores lower error when using
only 8 attributes (the one selected by CART), rather then all
34. Thus, a natural question arising here is: is there a better
combination of attributes then the one selected by CART for
classification? For k = 4 the k-nearest neighbors technique
yields the lowest error, which justifies our choice of using k
= 4 in the next experiments.

The Confusion Matrix for the Tomato Data Set

When using all 34 attributes and all 8 classes, the confu-
sion matrix obtained from the k-nearest neighbors cluster-
ing with k=4 is shown in Figure 3, where along the x-axis
are listed the true class labels and along the y-axis are the k-
nearest neighbors class predictions. Along the first diagonal
are the correct classifications, whereas all the other entries
show misclassifications. The bottom right cell shows the
overall accuracy.

In this confusion matrix it can be seen that 8 examples of
class 7 are wrongly predicted as class 1. Additionally, from
the CART classification, the classes 1 and 7 are identified as
the two classes overlapping the most. Thus the experiment
presented next uses the confusion matrix attribute selection
to better separate these two classes. Namely, we search for
a subset of the 34 attributes such that the attributes are com-
plementary in the sense described above and quantified in
equation (3).

Figure 3: Confusion matrix for all classes and all attributes.
Class 7 has 8 examples wrongly predicted as class 1 (see top
row).

Figure 4: Confusion matrix for class 1 and 7 along attribute
14. Four examples of class 1 are misclassified as class 7, and
3 examples of class 7 belong to class 1.



Figure 5: Confusion matrix for class 1 and 7 along attribute
20. Fourteen examples of class 7 are misclassified as class
1.

Confusion Matrix-based Attribute Selection for
Classes 1 and 7

When using the data from classes 1 (Ellipse) and 7 (Rectan-
gular), a data set of size 145 is obtained (110 in class 1 and
34 from class 7).

As illustrated in Algorithm 1, for each of the 34 attributes,
the k-nearest neighbor algorithm (with k = 4) is used for
classification and the corresponding classification accuracy
and confusion matrix are obtained (for each attribute). Fur-
ther, the 34 attributes are ranked in the order of their indi-
vidual performance in distinguishing between class 1 and 7,
leading to the ranking set R = 14, 7, 8, 17, 1, 3, 6, 12, 30, 4,
9, 20, 29, 18, 26, 2, 10, 21, 34, 32, 11, 33, 5, 13, 19, 16, 15,
31, 25, 28, 24, 27, 22, 23.

We first create growing nested subsets of attributes in the or-
der specified by their individual classification abilities.Note
that this particular choice of subsets is not part of Algorithm
1 and makes no use of the complementarity. We simply in-
troduce it as a comparative model for our selection approach,
which, besides the accuracy ranking, incorporates comple-
mentarity information as well.

Figure 6 shows the classification accuracy for subsets of at-
tributes consisting of the top 1, top 2, top 3, etc. attributes
from R (the subsets are shown on x-axis, while the y-axis
shows classification accuracy). From Figure 6 it can be
seen that the highest accuracy is achieved when the top 3
attributes are used together (i.e. attributes 14, 7, and 8),

Table 3: Attribute ranking based on disagreement score. The
best classification attributes found by CART are shown in
bold (they are also underlined). The attributes marked by
(*) are the ones identified by our selection algorithm.

Attr. number Disagreement score Class of largest error

20 1 7

22 1 7

24 1 7

25 1 7

26 1 7

27 1 7

31 1 7

23 0.9655 7

28 0.9565 7

15 0.9524 7

2 0.9375 7

21 0.9375 7

29 0.9231 7

12 0.9167 7

30 0.9167 7

1 0.9091 7

3 0.9091 7

7 0.9000 7

17 0.9000 7

5 0.8889 7

11 0.8824 7

32 0.8750 7

34 0.8667 7

18 0.8462 7

13 0.8235 7

19 0.8235 7

6 0.8182 7

33 0.8125 7

4 0.7273 7

9* 0.7273 7
16* 0.6875 7
8* 0.6250 7

10* 0.3000 7

14* 0.2500 1

yielding a97.2% correct classification.

The above approach is a (greedy) forward selection method,
i.e. the attributes are progressively incorporated in larger and
larger subsets. However, here we incorporate the attributes
in the order dictated by their individual performance, yield-
ing nested subsets of attributes. For example, we do not
evaluate the performance of the subset consisting of first and
third attribute. Indeed, it may be that this subset can perform
better then considering all top three attributes. However,as
indicated earlier in this paper, evaluating all possible com-
bination is not a feasible approach. Thus, we proposeto
combine the attributes that are complementary, i.e. two
(or more) attributes that may achieve individually simi-
lar classification accuracy but they have the largest dis-
agreement (this information is extracted from the confu-
sion matrix).

The disagreement scores for all 34 attributes when classify-



ing data from classes 1 and 7 are listed in Table 3, column
2. As column 3 of the same table shows, only attribute 14
misclassifies more examples of class 1 then of class 7 (see
bottom row). All other 33 attributes have the largest num-
ber of misclassifications attributed to class 7. Thus, for this
particular data set, we will consider subsets that combine at-
tribute 14 with one or more other attributes having the largest
disagreement.

For example, Figures 4 and 5 show the confusion matrix for
classes 1 and 7 when using attribute 14 and 20, respectively.
These two attributes disagree the most as the above figures
and Table 3 show.

Algorithm 1 is illustrated here for k = 2,3,4, and 5 only (note
for k =1 the classification results are the same as in Figure 6).
The classification accuracy for these experiments is shown
in Figures 7, 8, 9, and 10, respectively. In addition to select-
ing the top k attributes in Table 3 (this combination yields
the first star in the above plots), we also plot the classifica-
tion accuracy of the sliding (moving from top to bottom in
Table 3) window of k attributes.

Figures 7, 8, 9, and 10 show the classification accuracy of
the k-nearest neighbor algorithm when attribute 14 is com-
bined with all the other attributes in decreasing order of their
disagreement scores (see Table 3). Figure 7 shows results for
2-member subsets and the results from Figure 8 are obtained
for 3-member subsets: attribute 14 and two consecutive at-
tributes from Table 3.

As Figure 10 illustrates, simply selecting the top attributes
from Table 3 (having the largest disagreement) does not en-
sure a better classification, nor is an increasing or decreas-
ing trend observed when sliding down the table. This is be-
cause classification ability is not additive and opens up the
question of whether a better k-subset of attributes can be
obtained by mixing attributes across the table, not only the
k-neighbors selection used here.

Among the k-member subsets investigated here (note, there
are more sliding window subsets fork > 5), the largest clas-
sification accuracy (98%) is achieved for a 5-member sub-
set, namely for the attribute-set 14, 9, 16, 8, and 10. The
CART classifier recognizes these two classes with 93% ac-
curacy (using attributes 7, 13, 12, 14, 11, and 10), and the
accuracy-ranking only (no complementarity information in-
corporated) selection achieves 97.3% (using top 3 attributes:
14, 7 and 8). The attribute subset with the largest discrimi-
nating power (when using a k-nearest neighbors clustering,k
= 4) is obtained with the confusion matrix-based attribute se-
lection; however, it is not a large improvement as the classes
are pretty well separated to begin with.
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Figure 6: K - nearest neighbors classification accuracy for k
= 4 when using data from classes 1 and 7 only. On x-axis are
listed the nested subsets of attributes having top 1,2,3,...,34
attributes. The highest accuracy (97.2%) is obtained for the
subset having the top 3 attributes: 14,7, and 8.
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Figure 7: K - nearest neighbors classification accuracy for k
= 4 when using 2-member subsets of attributes. Each sub-
set contains attribute 14 and one of the remaining attributes;
x-axis shows these subsets listed in the order of their com-
plementarity - see Table 3. Largest accuracy is 97.3%.
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Figure 8: K - nearest neighbors classification accuracy for k
= 4 when using 3-member subsets of attributes. Each sub-
set contains attribute 14 and two consecutive attributes (in
the order of their complementarity - see Table 3). Largest
accuracy is 97.3%.

Conclusions and Future Work

A new technique for attribute selection is proposed here.
The method selects attributes that are complementary to
each other, in the sense that they misclassify different
classes, and favors attributes that have good classification
abilities by themselves. This new approach is illustrated on
a real data set. For two classes of interest within this data set,
this technique found a better (i.e. yielding higher classifica-
tion accuracy) subset of attributes, than using all attributes or
even using the 8 attributes identified by CART. However, we
must investigate this new approach in more data sets and in
combination with other classification techniques (here only
the k-nearest neighbor classifier was investigated). Another
future direction is to investigate the use of subsets that com-
bine complementary attributes, even if these attributes are
weak classifiers by themselves. The challenging factor for
this approach is the large number of subsets that must be in-
vestigated. Depending on the data set, if this search space
is very large, then genetic algorithms can be used to explore
the version space. We must also extrapolate this method to
multi-class data sets and investigate its scalability factor.
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Figure 9: K - nearest neighbors classification accuracy for k
= 4 when using 4-member subsets of attributes. Each sub-
set contains attribute 14 and three consecutive attributes(in
the order of their complementarity - see Table 3). Largest
accuracy is 96.7%.
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Figure 10: K - nearest neighbors classification accuracy for
k = 4 when using 5-member subsets of attributes. Each sub-
set contains attribute 14 and four consecutive attributes (in
the order of their complementarity - see Table 3). Largest
accuracy is 98%.
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