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Abstract
This paper considers two approaches to query-based
dimensionality reduction. Given a data set, D, and a
query, Q, the first approach performs a random projec-
tion on the dimensions of D that are not in Q to obtain
the data set DR. A new data set (DRQ) is then formed
comprising all the dimensions ofD that are in the query
Q together with the dimensions of DR. The resulting
data set (Q(DRQ) is obtained by applying the query Q
to DRQ. A similar approach is taken in the second ap-
proach with the difference that the random projection
method is replaced by Principal Component Analysis.
Comparisons are made between these two approaches
with respect to the inter-point distance preservation and
computational complexity.

Introduction
Given a collection of n data points (vectors) in high dimen-
sional space, it is often helpful to represent the data in a
lower dimensional space without the data suffering great
distortion (Achlioptas 2004). This operation is known as
dimensionality reduction.

There are many known methods of dimensionality reduc-
tion, including Random Projection (RP), Singular Value De-
composition (SVD), Principal Component Analysis (PCA),
Kernel Principal Component Analysis (KPCA), Discrete Co-
sine Transform (DCT), Latent Semantic Analysis (LSA) and
many others(Nsang & Ralescu 2009b).

In random projection, the original d-dimensional data is
projected to a k-dimensional (k � d) subspace through the
origin, using a random d× k matrix R whose columns have
unit lengths(Bingham & Mannila 2001). IfXn×d is the orig-
inal set of n d-dimensional observations, then
XRP

n×k = Xn×dRd×k

is the projection of the data in a lower k-dimensional sub-
space. The key idea of random projection arises from the
Johnson Lindenstrauss lemma (Johnson & Lindenstrauss
1984) which states that if points in a vector space are pro-
jected onto a randomly selected subspace of suitably high
dimension, then the distances between the points are approx-
imately preserved.

Given n data points as an n×pmatrixX of real numbers,
to find the best q-dimensional approximation for the data
(q � p) using the PCA approach, the SVD of X is first
obtained. In other words, PCA finds matrices U , D and V
such that

X = UDV T

where:

• U is an n× n orthogonal matrix (i.e. UTU = In) whose
columns are the left singular vectors of X;

• V is a p × p orthogonal matrix (i.e. V TV = Ip) whose
columns are the right singular vectors of X;

• D is an n × p diagonal matrix with diagonal elements
d1 ≥ d2 ≥ d3 ≥ . . . ≥ dp ≥ 0 which are the singular
values of X . Note that the bottom rows of D are zero
rows.

• Define Vq to be the matrix whose columns are unit vectors
corresponding to the q largest right singular values of X .
Vq is a p× q matrix.

The transformed data matrix is given by XPCA = XTVq

(Bingham & Mannila 2001).
Dimensionality reduction has several applications in in-

formation retrieval, image data processing, nearest neighbor
search, similarity search in a time series data set, clustering
and signal processing(Nsang & Ralescu 2009b).

Bingham and Mannila (Bingham & Mannila 2001) sug-
gest the use of random projections for query matching in a
situation where a set of documents, instead of one particular
one, were searched for. This suggests another application of
dimensionality reduction, namely to reduce the complexity
of the query process. Suppose, for instance, that we want to
query a text document data set with say 5000 dimensions. It
would be helpful if we can reduce it to 400 dimensions, say,
before applying the query, provided that the dimensions rep-
resented in the query are not eliminated by the dimensional-
ity reduction process. The complexity of the query process-
ing is reduced while the speed is significantly increased. Be-
sides, given the distance preserving properties of the random
projection and other methods, we retain as much as possible
the inter-point distances between data items in the original
and reduced data sets. This means that algorithms based on



such distances (e.g. clustering, classification) will perform
similarly on the original and reduced data sets.

In the first section of this paper, we discuss the original ap-
proach to query based dimensionality reduction (suggested
by Bingham and Mannila) and explain why this approach
fails. In the second section, we present the first alternative
approach using random projections, and determine the val-
ues of g1 and g2 such that, if u and v are two rows of a data
set D, and f(u) and f(v) are the corresponding rows of the
data set DRQ derived from D, then:
g1||u− v||2 ≤ ||f(u)− f(v)||2 ≤ g2||u− v||2

We also determine, in this section, the speed up in query
processing due to this approach. In the third section, we
outline the second alternative approach (based on PCA), and
in the fourth and last section, we compare the two alternative
approaches with respect to inter-point distance preservation
and computational complexity.

Original Approach (Bingham & Mannila
2001)

SupposeD is a text document data set, andQ is a query. Fol-
lowing the idea suggested by Bingham and Mannila (Bing-
ham & Mannila 2001), instead of applying the query Q to
the data set D to obtain the query result Q(D), we first ap-
ply random projection to D to obtain the reduced data set,
DR. Querying DR with the query Q produces the set of
documents Q(DR). Ideally, for this process to become suc-
cessful, Q(DR) should be equal to R(Q(D)), where R de-
notes the operation of Random Projection. Fig 1 captures
this relationship.

Figure 1: Original Dimensionality Reduction for Query Pro-
cessing

Unfortunately, this approach fails. This is because when
the random projection is applied to the original data set D,
all or some of the attributes occurring in a queryQmay have
been eliminated, and therefore they do not occur in the re-
duced data set DR. This can be illustrated by an explicit
example (Nsang & Ralescu 2009a). Thus, an alternative
approach to reducing the complexity of the query process
while not eliminating possibly relevant records from the data
set, is needed.

Query-based Dimensionality Reduction Using
Random Projections

In this approach, we first perform a random projection on
the dimensions ofD that are NOT inQ to obtain the data set
DR. A new data set (DRQ) is then formed comprising all
the dimensions of D that are in the query Q together with
the dimensions got by performing a random projection on
the dimensions NOT in Q. The resulting data set (Q(DRQ)
is obtained by applying the query Q to DRQ (see Fig 2).
Thus Q(DRQ) is the dimensionality reduced form of Q(D),
which is the result of applying the query Q to the text
document data set D.

Figure 2: First Alternative Approach

More formally, we have the following. Given AD, the set
of attributes of the data set D, and AQ, the set of attributes
corresponding to query Q, AD\AQ, the set of attributes of
the data set D which are NOT in query Q, then

AD′ = AQ ∪RP (AD\AQ)
where D′ corresponds to the data set DRQ in Fig 2. For

example, consider the text document data set, D, in Table 1
and the query

Q = List all documents which have more than two occurrences
of each of the terms Augustine(A4) and Ill(A7)

In this case

AD = {My, Name, Is, Augustine, He, Was, Ill}

and
AQ = { Augustine, Ill}.

Thus
AD\AQ = {My, Name, Is, He, Was}.

Now if
RP (AD\AQ) = {A1, A2, A3},

then

AD′ = AQ∪RP (AD\AQ) = {Augustine, Ill, A1, A2, A3}.

A natural question which arises is why we need to keep
all the attributes NOT in the query (in some reduced form)
instead of just discarding them. The answer is that in this
way, given the distance preserving properties of the random
projection, we retain as much as possible the inter-point dis-
tances between data items in the original and reduced data



Table 1: Original data set
Id My Name Is Augustine He Was Ill

(A1) (A2) (A3) (A4) (A5) (A6) (A7)

1 10 0 100 5 1 3 5
2 25 1 150 9 7 9 11
3 35 0 200 15 13 15 17
4 0 25 0 10 19 21 23
5 10 0 95 70 25 40 85
6 10 16 25 14 13 15 17

Table 2: Euclidean distances between the records in original
data set

1 2 3 4 5 6
1 0 53.4 105.6 108.3 112.2 80
2 53.4 0 52.4 155.4 117.2 127.3
3 105.6 52.4 0 204.9 141.7 177.5
4 108.3 155.4 204.9 0 132.6 30.5
5 112.2 117.2 141.7 132.6 0 117
6 80 127.3 177.5 30.5 117 0

sets. This means that algorithms based on such distances
(e.g. clustering, classification) will perform similarly on the
original and reduced data sets.

Consider again the data set represented by Table 1. Sup-
pose that the query is given by: List all documents which
have more than five occurrences of each of the terms My,
Is and at least one occurrence of term Name. In this case,
discarding all the attributes not in the query would make the
first and the fifth records much more similar in the reduced
set than they were in the original set and the Euclidean dis-
tance between the first and fifth records would be much less
in the reduced set than in the original set (see Tables 2 and
3).

Table 3: Euclidean distances: data set reduced only to the
query attributes

1 2 3 4 5 6
1 0 52.2 103.1 103.6 5 76.7
2 52.2 0 51 154 57 126.8
3 103.1 51 0 204.6 108 177.5
4 103.6 154 204.6 0 98.7 28.4
5 5 57.0 107.9 98.7 0 71.8
6 76.7 126.8 177.5 28.4 71.8 0

At the same time, it would make the third and the sixth
records much more dissimilar in the reduced set than they
were in the original set even though the Euclidean distance
between the third and sixth records would be about the
same in the reduced set as in the original set.

On the other hand, reducing the original data set by re-
ducing the non-query attributes using RP (and appending
the query attributes to the result) significantly preserves the
Euclidean distances between the first and fifth records, and
between the third and sixth records (see Tables 2 and 4).
Table 4 was generated from the matrix obtained by multi-
plying the matrix representing the non-query attributes of
the original data set by a 4× 3 random matrix R defined by:

rij =

 +1 with probability 7
24 ;

0 with probability 5
12 ;

−1 with probability 7
24 .

(1)

Table 4: Euclidean Distances in the Data Set with Non-query
Attributes Reduced by RP

1 2 3 4 5 6
1 0 52.4 103.6 104.5 125 77.3
2 52.4 0 51.4 154.3 134.2 126.9
3 103.6 51.4 0 205 158.2 177.5
4 104.5 154.3 204.9 0 158.3 30.4
5 125 134.2 158.2 158.3 0 137.2
6 77.3 126.9 177.5 30.4 137.2 0

We next determine g1 and g2 such that for all u, v ∈ D,
g1(||u− v||2) ≤ ||f(u)− f(v)||2 ≤ g2(||u− v||2)

where f(u) and f(v) are the corresponding values to u and
v in DRQ, where DRQ is obtained from D using the first
alternative approach. Recall that for the regular random pro-
jection method, g1(x) = (1− ε)x and g2(x) = (1 + ε)x for
some value of ε.

Experiment
An experiment was carried out (in MATLAB) on the data set
given by the matrix

D =



5 6 7 9 0 9 8 7 6 11 6 74

3 2 10 6 3 5 9 4 10 5 0 57

10 0 10 3 4 6 2 8 12 0 9 64

6 3 10 3 4 0 2 7 0 1 5 0

6 0 8 6 1 5 5 7 11 0 2 51

1 3 4 8 8 8 5 6 7 9 0 9

2 2 9 5 0 5 10 6 3 5 9 4

2 0 5 2 7 7 4 6 2 8 12 0

6 7 4 7 4 4 0 10 8 4 9 5

5 2 10 3 1 8 10 6 8 8 0 9


The columns in this data set represent values of 12 at-

tributes, A1−A12. The queryQ for this experiment is: Find
all data points having an even number of occurrences of the
attribute value for A5. Q(D) is computed and the result ob-
tained if we were to apply Q to D without first performing
random projection is obtained.

To computeDRQ, we generateDNQ, the data set consist-
ing only of the dimensions of D NOT in the query, and DQ,
the data set consisting only of the dimensions in the query.
Q(D), DNQ and DQ are given by:

Q(D) =


5 6 7 9 0 9 8 7 6 11 6 74

10 0 10 3 4 6 2 8 12 0 9 64

6 3 10 3 4 0 2 7 0 1 5 0

1 3 4 8 8 8 5 6 7 9 0 9

2 2 9 5 0 5 10 6 3 5 9 4

6 7 4 7 4 4 0 10 8 4 9 5





DNQ =



5 6 7 9 9 8 7 6 11 6 74
3 2 10 6 5 9 4 10 5 0 57

10 0 10 3 6 2 8 12 0 9 64
6 3 10 3 0 2 7 0 1 5 0
6 0 8 6 5 5 7 11 0 2 51
1 3 4 8 8 5 6 7 9 0 9
2 2 9 5 5 10 6 3 5 9 4
2 0 5 2 7 4 6 2 8 12 0
6 7 4 7 4 0 10 8 4 9 5
5 2 10 3 8 10 6 8 8 0 9



DQ =



0
3
4
4
1
8
0
7
4
1


Next we generate the random projection matrix, R, multi-

ply it by DNQ and append DQ to the result to obtain DRQ.
Define the random projection matrix, R = (rij), as:

rij =
√

3×

 +1 with probability 1
6 ;

0 with probability 2
3 ;

−1 with probability 1
6 .

If we wanted DRQ to have a dimensionality of 7, say, R
will have to be a 11 × 6 matrix.

Thus DR = DNQ ∗ R and DRQ = DQ ∪ DR where ∪
denotes the operation of adding to DR the columns of DQ.
The result, Q(DRQ), of applying the query Q to DRQ is
now the collection of data records in DRQ that satisfy the
query Q.

Figures 3, 4 and 5 show the results obtained from a run of
a MATLAB implementation of this procedure to obtain R,
DRQ and Q(DRQ).

We now investigate the relation between the pairwise dis-
tances in the original and reduced data sets. For any two
records u, v ∈ D, let f(u) and f(v) denote the correspond-
ing records in DRQ. The pairwise distances obtained from
our sample run are shown in Table 5 below.

Because the projection matrix R is random, each run gen-
erates a different value of ||f(u) − f(v)||2 for any pair of
rows u, v ∈ D (and of course the same value of ||u − v||2).
As we know, the actual value of ||f(u)−f(v)||2 correspond-
ing to a specific value of ||u− v||2 lies somewhere between
max(||f(u) − f(v)||2) and min(||f(u) − f(v)||2). Thus,
we shall use the midpoint between these two extremes as an
estimate of the value of ||f(u)− f(v)||2 which corresponds
to the value of ||u− v||2.

Sixteen runs of the program were made, and for each
value of ||u − v||2, the maximum and minimum values of

Figure 3: The R Matrix

Figure 4: The DRQ Matrix

||f(u) − f(v)||2 were obtained. These were further re-
duced to midpoints between these two extremes (as ex-
plained above). More precisely,
Md = max{||f(u)− f(v)||2i /||u− v||2 = d, i = 1..16}

md = min{||f(u)− f(v)||2i /||u− v||2 = d, i = 1..16}

midd =
Md +md

2
where ||f(u) − f(v)||2i is the distance between f(u) and
f(v) in the ith run. The results obtained are summarized
in Table 6, and Figure 6 which shows the values of Md,md

and midd for each value of d = ||u− v||2, u, v ∈ D (in this
table) and their linear regression lines.

Consider the value X on the ||u − v||2 axis (labeled on
Figure 6). The corresponding values of ||f(u)− f(v)||2min,
||f(u) − f(v)||2estimate and ||f(u) − f(v)||2max are Y 1, Y
and Y 2 respectively. Clearly

Y 1 ≤ Y ≤ Y 2.



Figure 5: The Q(DRQ) Matrix

Figure 6: XY chart showing maximum, minimum and esti-

mated values of ||f(u)− f(v)||2 for each value of ||u− v||2

(RP Approach)

But Y 1 = m1X and Y 2 = m2X where m1 and m2 are
the slopes of the regression lines corresponding to ||f(u) −
f(v)||2min and ||f(u)− f(v)||2max respectively. Thus,

m1X ≤ Y ≤ m2X

Generalizing, for any value of ||u− v||2, we obtain

m1||u− v||2 ≤ ||f(u)− f(v)||2 ≤ m2||u− v||2

or, letting g1(x) = m1x and g2(x) = m2x, we obtain

g1(||u− v||2) ≤ ||f(u)− f(v)||2 ≤ g2(||u− v||2) (2)

Since both g1 and g2 are nondecreasing functions we can
prove the following result.

Proposition 1 Suppose u and v are data points in D, and

f(u) and f(v) are their mappings in DRQ obtained from D

u v ||u− v||2 ||f(u)− f(v)||2
1 2 450 3354
1 3 434 3394
1 4 5801 58117
1 5 764 5683
1 6 4376 46219
1 7 5020 56973
1 8 5705 69877
1 9 4952 60769
1 10 4342 50683
2 3 288 400
2 4 3493 34933
2 5 112 337
2 6 2428 26743
2 7 2956 34275
2 8 3561 44515
2 9 2980 37633
2 10 2348 29539
3 4 4319 38709
3 5 268 909
3 6 3396 30889
3 7 3864 38437
3 8 4377 49083
3 9 3642 42255
3 10 3296 33063
4 5 2797 29154
4 6 395 1456
4 7 185 322
4 8 216 702
4 9 211 744
.. .. .. ..
.. .. .. ..
8 9 227 612
8 10 373 2208
9 10 332 1626

Table 5: The values of ||u− v||2 and ||f(u)− f(v)||2 for all
u, v in D (RP Approach)

using the query-based dimensionality reduction procedure.

If v is in the neighborhood of u of radius r, then f(v) is

in the neighborhood of f(u) of radius g2(r). Conversely, if

f(v) belongs to the neighborhood of radius g1(r) of f(u),

then v belongs to the neighborhood of radius r of u.
Proof: The proof follows trivially. Define the neighborhood
of u of radius r as:

η(u, r) = {v ∈ D| ||u− v||2 ≤ r} (3)

From equation (3) it follows that if v ∈ η(u, r), then
g2(||u − v||2) ≤ g2(r), and therefore ||f(u) − f(v)||2 ≤
g2(r), that is, f(v) ∈ η(f(u), g2(r)). Conversely, if f(v) ∈
η(f(u), g1(r)) then g1(||u − v||2) ≤ g1(r) and therefore
||u− v||2 ≤ r, that is v ∈ η(u, r).

Determining the Speed-up of the Query-based

Dimensionality Reduction
We investigate now the computational aspects of the query-
based dimensionality reduction.

Complexity of the Original Approach Suppose that the
query Q with q attributes is applied to the data set Dn×p re-
sulting in a query result Q(D) with m rows and p attributes.



Table 6: Maximum, minimum and estimated values of
||f(u)− f(v)||2 for each value of ||u− v||2 (RP Approach)

d = ||u− v||2 Md md midd = Md+md

2
112 1141 151 646
153 1420 211 815.5
154 1303 121 712
164 1543 142 842.5
185 2974 301 1637.5
211 2244 201 1222.5
216 2073 321 1197
227 2406 615 1510.5
230 2917 430 1673.5
238 2377 361 1369
268 3786 123 1954.5
272 4069 694 2381.5
288 3682 406 2044
301 3298 1177 2237.5
332 2322 441 1381.5
359 3333 546 1939.5
373 4305 699 2502
395 3361 589 1975
434 5908 895 3401.5
450 6996 222 3609
764 10609 838 5723.5

1894 24288 939 12613.5
1978 22012 625 11318.5
2300 31806 528 16167
2348 30043 142 15092.5
2396 28510 1003 14756.5
2428 28336 247 14291.5
2797 31710 339 16024.5

.. .. .. ..

.. .. .. ..
5020 62256 441 31348.5
5705 69877 448 35162.5
5801 68296 583 34439.5

To compute the query result Q(D) from the data set, D, we
must compare the value of each attribute in the query with
the value of the corresponding attribute inD for each row of
D, a total of nq operations. After this, to get the query result
Q(D) fromD we have to generate anm×pmatrix, which is
of complexity O(mp). Thus the original query process has
complexity O(nq +mp).
Complexity of the Query-based Reduction We recall
thatDRQ is computed fromD by performing a random pro-
jection of the dimensions of D that are NOT in Q, and then
simply copying all the columns of D corresponding to at-
tributes in Q into the result. Again, if there are q attributes
in Q, then there are (p − q) attributes NOT in Q. Also, if
DRQ has k attributes, then DR has k - no of dimensions in
Q = k− q attributes. Thus the random projection reduces an
n× (p− q) matrix into an n× (k − q) matrix.

Thus, according to the result in (Fradkin & Madigan
2003), the complexity of the random projection step is given
by O((p− q)(k − q)) +O(n(p− q)(k − q)).

Generating the rest of the matrix DRQ takes O(nq),
according to the result in (Fradkin & Madigan 2003)
again (since we are generating data having n rows and Q
columns). Thus the complexity of the process of generating
DRQ from D is O((n+ 1)(p− q)(k − q)) +O(nq).

Now, after having already generated DRQ, using the re-
sult in the last section, to compute the query result Q(DRQ)
from the data set DRQ takes O(nq +mk). Thus, the speed
up is approximately

C1

C2
=
nq +mp

nq +mk
where C1 is the complexity of the original query pro-

cess and C2 is the complexity of the process of generating
Q(DRQ) from DRQ.

Query-based Dimensionality Reduction Using

PCA
Another possible approach to query-based dimensionality
reduction would be to use PCA in the last section instead
of RP. In this case, therefore, we first apply the PCA method
on the dimensions of D that are NOT in the query Q to ob-
tain DP . A new data set (DPQ) is then formed comprising
all the dimensions of DP together with the dimensions of D
that are inQ. Applying the queryQ toDPQ yields the result
Q(DPQ).

Figure 7: Query-based Dimensionality Reduction Using

PCA

Implementation
To compute the projected data set, DPQ, we need to first
generate DNQ, the data set consisting only of the dimen-
sions of D not in the query Q. We also need to compute
DQ, the data set consisting only of the dimensions of D in
the query Q. When applied to the data set D and query Q
in the last section, the PCA reduction approach results in
DNQ = USV T where U, S and V are shown in Figs 8, 9
and 10.

To compute DPQ (with k = 7 columns) we multiply
DNQ by the first k−q columns of V (where q is the number
of attributes in the query, 1 in this case), and append DQ to
the result. Q(DPQ) is obtained by applying the query Q to
DPQ. The matrices DPQ and Q(DPQ) obtained are shown
in Figs 11 and 12 respectively.

Comparison of the RP and PCA Query-based

Dimensionality Reductions
We now compare the performances of the first and second
alternative approaches. To start with, we generate the values



Figure 8: The U Matrix

Figure 9: The S Matrix

of u, v, ||u−v||2 and ||f(u)−f(v)||2 for each pair of tuples
u, v ∈ DQ, and corresponding pair of tuples f(u), f(v) ∈
DPQ. For the same example data set, the results obtained
using the PCA approach are shown in Table 7.

A graph of ||u − v||2 (on the x-axis) against ||f(u) −
f(v)||2 (on the y-axis) is a straight line through the origin
which makes an angle of 45o with the horizontal, as shown
in Figure 13 below. Thus, it is clear that the PCA approach
preserves the inter-point distances much much better than
our first alternative approach (with RP).

Given a p-dimensional data set with n rows, and assuming
we want to have q rows in the reduced data set, the compu-
tational complexity of PCA is (O(p2n) + O(p3) (Fradkin
& Madigan 2003; Bingham & Mannila 2001), while that of
RP isO(pq)+O(npq) (as mentioned above). Thus the PCA
approach is much more expensive computationally than the
RP method.

Conclusion
In this paper, we have examined different approaches to
query-based dimensionality reduction. As we observed,
the original approach (suggested by Bingham and Mannila
(Bingham & Mannila 2001)) which reduces the dimension-
ality of the entire text document data set by random pro-

Figure 10: The V Matrix

Figure 11: The DPQ Matrix

jection before applying the query will not work when the
original and dimensionality reduced data sets have no com-
mon attributes, making it impossible in general to query the
dimensionality reduced data set using the query that was
meant for the original data set.

We then looked at an approach which overcomes this
problem by performing random projection only on dimen-
sions not found in the query, Q, and simply adding all the
dimensions found in the query to the result. We saw that
this approach, like the regular random projection method,
preserves inter-point distances to a reasonable extent.

Next, we looked at an approach which simply replaces RP
in the approach just described with PCA. We realized this
new approach preserves inter-point distances much much
better (in fact, perfectly) than the RP approach.

However, the PCA approach is also much more expensive
computationally than the RP method.

It would be worth applying the two query-based dimen-
sionality reduction approaches discussed in this paper to im-
age data, and comparing their performances with that of Dis-
crete Cosine Transform (Bingham & Mannila 2001).



Figure 12: The Q(DPQ) Matrix

Table 7: The Values of ||u−v||2 and ||f(u)−f(v)||2 for all
u, v in DQ (Approach With PCA)

u v ||u− v||2 ||f(u)− f(v)||2 ||f(u)−f(v)||2
||u−v||2

1 2 434 433 0.998
1 3 5801 5798 0.999
1 4 4376 4369 0.998
1 5 5020 4999 0.996
1 6 4952 4945 0.999
2 3 4319 4317 1.000
2 4 3396 3391 0.999
2 5 3864 3843 0.995
2 6 3642 3636 0.998
3 4 395 392 0.992
3 5 185 173 0.935
3 6 211 197 0.934
4 5 272 255 0.938
4 6 238 226 0.950
5 6 230 222 0.965
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