A proposal to improve performance of
ATL collections

Jestus Sanchez Cuadrado

University of Murcia
jesusc@um.es
http://www.modelum.es/personal /jesus

Abstract. This paper presents a proposal to replace the current imple-
mentation of collections in the ATL-VM (based on the Java collection
library) with a new implementation that supports inmutable collections
natively.

A first prototype using the Clojure collection library has been imple-
mented, and some performance results from benchmarks has been gath-
ered. They show that the proposal has the potential to improve perfor-
mance significantly.

1 Introduction

Model transformations are at the heart of Model Driven Engineering (MDE).
ATL is widely used to develop model transformations, providing a good per-
formance in most cases. However, as model transformation definitions are more
complex and the size of the models is significant performance issues arises. No-
tably, navigating large collections could become a bottleneck.

In the context of ATL, some performance issues in the navigation of collec-
tions has been reported [2]. The problem stems from the way OCL collections
are implemented in the ATL Virtual Machine (ATL-VM).

This paper presents an alternative approach to implement OCL collections
in the ATL-VM, which is based on inmutable collections. We have implemented
a small prototype in order to asses the potential advantages of the new imple-
mentation. We will show some performance benchmarks.

The paper is organized as follows. Next section introduces the performance
issues of the ATL-VM. Section 3 presents our proposal, and Section 4 shows
some benchmark results. Finally, Section 5 gives the conclusions.

2 Problem description

Current implementation of the ATL-VM provides several native collection datatypes.
They correspond to the ones of the OCL specification (Sequence, Bag, Set, Or-
deredSet) plus a datatype for associative tables (Map).

Collection operations are inmutable, that is, they never change the original
collection. Basic operations like includes, including, union are implemented



directly by the ATL-VM. On the contrary, operations that takes an iterator
expression are implemented by the ATL compiler. For instance, the select op-
eration is compiled as follows (in pseudo-code):

result = new Sequence
iterate o <- collection
v = evaluate iterator-expr (o)
if v
result = result.including(o)
end
enditerate

The performance problem arises when the actual implementation of the up-
date operations is considered. The ATL-VM rely on the Java collection library,
whose update operations are mutable, to implement inmutable update opera-
tions. This mismatch makes every update operation do a complete copy of the
original collection for each call, and then modify the copy.

In the case of the select operation shown above, the result collection is
copied each time an element is selected.

A solution, pointed out in [2], is to add mutable versions of update operations
to the VM, and let the compiler decide when it is safe to use them. For instance,
there is an important performance improvement if a mutable version of the
including operation is used to implement the select operation. However, the
drawback of this approach is that the ATL compiler must be changed. Some of
the changes would be straightforward, but there are cases that require specialized
analysis. Moreover, existing transformation definitions should be recompiled.

3 Proposal

To tackle the issues presented in the previous section, we have replaced the
Java collections library (in the ATL-VM) with a library implementing inmutable
collections. In particular, we have reused the implementation provided by Clo-
jure [1], a functional language for the JVM. It efficiently deals with update
operations for inmutable collections (see [4][3] for more information).

We propose the following mapping between OCL/ATL datatypes and Clojure
classes:

ATL Clojure
Sequence PersistentVector
Bag PersistentList
Set PersistentHashSet

OrderedSet | PersistentTreeSet
Map Persistent HashMap

The mapping is simple, since Clojure collection library provides datatypes similar
to that of OCL. There is however an issue with sequences. At first sight, a list
would be the proper mapping, but the main update operation for lists in Clojure



(like in Lisp) is cons, which returns a new list where the new element is the first
one and the original list is the rest. This is why OCL Sequences are mapped to
Clojure vectors, which add elements to the end of the collection. This has an
slight impact in performance, as will be shown in next section.

Implementing a first prototype that is able to execute basic operations has
been relatively straightforward. Two Java classes were modified, 0c1Type and
ExecEnv. The former establish a mapping between OCL types and Java classes
implementing them, while the latter contains the implementation of the opera-
tions of each type. These were the only two classes that had to be modified.

However, there were two issues that hindered the implementation:

1. Datatype instantiation. In Clojure, an empty collection is actually a constant.
However, the mapping between OCL types and Java classes requires setting
the name of Java class that will be instantiated each time. A wrapper class
for empty collections has been created, but this has required duplicating the
operations code in ExecEnv.

2. Operation mapping. There is not a one-to-one mapping between OCL collec-
tion operations and Clojure operations. For instance, in Clojure collection
concatenation (union in OCL) is not implemented in Java code but in Clo-
jure’s. Thus, only a part of the Clojure library can be reused, the rest has
to be implemented from scratch in Java.

4 Benchmarks

This section presents a couple of results from the performance benchmarks we
have carried out. While they are simple (more or less synthetic) benchmarks,
they confirm our insight that implementing true inmutable collections in the
ATL-VM will improve the performance of ATL transformations.

Each benchmark measures performance of the ATL-VM (EMF-VM) without
any modification, against a modified version which uses mutable operations (it
is unsafe, not usable in a real context), and against the a modified VM that uses
Clojure collections.

4.1 Sequence

The benchmark for the including operation consists of iterating over an OCL
sequence of n elements, adding the current element to another sequence in each
iteration step. The execution time for different input sizes is shown in Figure 1.

As can be seen, in the the current version of the VM including does not
scale well (i.e. time doesn’t grow linearly with respect to the model size). On
the contrary, execution time using the other three versions grows linearly. In-
terestingly, performance of PersistentList is comparable to using a mutable list.
Anyway, as explained, this is not a proper choice to implement OCL sequences
because of the semantics of “cons”. Performance of PersistentVector is slightly
worse, but still better than the current implementation.



4.2 Map

The performance benchmark for Map has consisted on implementing a simple
matching algorithm. It takes as input a model containing the same number of
elements A and B, randomly ordered. For each element A, the corresponding
matching element B is found (comparing the value of an attribute). The source
model ensures that there is one and only one matching element B for each element
A. At the beginning of the transformation all matches are computed and stored
in map. Applying a similar algorithm is needed in some model weaving problems.

Again, the current version of the VM does not scale well because of the
need to copy the whole map for each update. Both alternative versions improve
performance. Moreover the performance of PersistentMap is comparable to the
unsafe version.

5 Conclusion

In the paper, we have presented a proposal to improve performance of collections
in ATL. It has been compared to other two alternatives (current version of the
ATL-VM and modifying the ATL compiler to support mutable operations). It
does not require any change to the ATL compiler, and therefore will not require
re-compiling existing ATL programs, because it is only a change in the VM.
The initial results shows that our prototype, based on the Clojure collection
library, outperforms the current ATL-VM. This suggests that it is worth the
effort of implementing a complete solution based on true inmutable collections
(probably implementing a specific collection library for the ATL-VM).

References

1. Clojure programming language. http://clojure.org/.

2. J. S. Cuadrado, F. Jouault, J. Garcia-Molina, and J. Bézivin. Optimization patterns
for OCL-based model transformations. In Proceedings of the 8th OCL Workshop,
2008.

3. K. Krukow. Clojure hash-map implementation. http://blog.higher-
order.net/2009/09/08 /understanding-clojures-persistenthashmap-deftwice/.
4. K. Krukow. Clojure vector implementation. http://blog.higher-

order.net/2009/02/01 /understanding-clojures-persistentvector-implementation.



Time (seconds)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Benchmark - including

0_-_-_J

1000 2000 4000 8000 16000 32000
Model size (number of elements)

Normal ClojureVector
Mutable === ClojureSequence

Fig. 1: Results of the including benchmark for sequences. For model sizes of 16000 and
32000, the red bar is out of the chart (1.7648 and 9.2986 seconds).

Time (seconds)

Map benchmark

4.5

35

25

15

0.5

1000 2500 5000
Model size (number of elements)

Normal PersistentHashMap =
Mutable ===

Fig. 2: Results of the matching benchmark.



