
ATL 3.1 – Industrialization improvements

William Piers1,

1 Obeo, 7 boulevard Ampère, 44481 Carquefou, France
william.piers @obeo.fr

Abstract. ATL is a standard solution for model to model transformation. Its
implementation is OpenSource and hosted by Eclipse. In 2008, development
and maintenance were handed over from INRIA to OBEO, in the ATL
Industrialization project context. This paper is about how industrial actors and
researchers collaborate in a project like ATL, what ATL 3.1 brings to the user
and what will be done in the future.

Keywords: Model transformation, Eclipse, M2M, ATL, industrialization.

1 Introduction

ATL [1] is a standard solution for model to model transformation. Its implementation
is OpenSource and hosted by Eclipse, in which it is recognized as the standard model
to model transformation solution. In 2008, development and maintenance were
handed over from INRIA [2] to OBEO [3], in the ATL Industrialization project
context. Now Regular releases are scheduled, and user-oriented features have been
added to the ATL tools. The ATL project is now considered as an industrial solution
for model transformation.

This paper is organized as follows. Section 2 presents the ATL Industrialization
project. Section 3 describes the ATL 3.1 release features. Finally the section 4 will
show the planned improvements for the next releases.

2 ATL Industrialization

ATL industrialization is the result of the collaboration between a laboratory
(AtlanMod [4]) and an SME (Obeo). The main scheme of such kind of collaboration,
as seen by public institutions, is to ask big industrial companies for their R&D needs,
then let researchers prototype them and finally build a viable commercial offer around
a product which meets the need. In the case of ATL, this work took place through
collaborative projects.

Obeo is involved in OpenSource since its creation, especially into the Eclipse
foundation (14 Eclipse commiters are working at Obeo). Obeo is an Eclipse strategic
member. ATL is recognized as a standard solution in Eclipse. From that, Obeo
became in charge of improving the legacy ATL software and build a service offer

34

mailto:LNCS@Springer.com

around ATL (support, expertise, training). The main purpose was to make AtlanMod
more focused on research themes when a company like Obeo was better qualified to
enhance user-oriented features and manage maintenance.

The ATL industrialization project consists on several development axis:
ergonomic, scalability, interoperability (compatibility with other MDE tools) and
integration of new concepts (traceability, iterative transformations). Since Obeo has
been in charge of the Industrialization project, ATL 2 and ATL 3 were released,
bringing a lot of improvements: core API refactoring, performances improvements,
user interface features. Obeo also provides a professional support for companies. The
industrialization process also allows researchers to develop prototypes based on ATL.
The objective is to finally integrate those prototypes as contributions.

3 ATL 3.1 features

In June 2010, ATL 3.1 will be released as part of the Eclipse Helios simultaneous
release. This release brings a lot of improvements, both at the user interface level and
core level.

3.1 Debugging and Profiling

A lot of work has been done around the legacy debugger. Initially the ATL
debugger was dedicated to the old ATL virtual machine (the core of the ATL
execution process) and strongly relied on it. A refactoring was necessary, which
consisted in making some parts more abstract in order to allow debugging on the
newest ATL virtual machine as well as for the old one. This work achieved, it also
made possible the integration of an ATL profiler, extending the same architecture as
the debugger.

The ATL profiler provides a way to detect performance issues on a given
transformation by a detailed analysis of the execution. An execution profile stores
informations about the global cost of one method, the memory used, etc... A set of
views display profiles as tables and trees, with sorting and filtering options. Execution
profiles can be saved as models (.xmi files): this could be useful for a non-regression
purpose for example.

35

Fig. 1. A profiling result sample. It shows that most of the time is spent in setting values on
meta-elements.

3.2 ATL file editor

Regarding the user interface, most of the improvements have been done in the ATL
file editor. An advanced type-inference engine has been implemented and integrated
into the existing editor to strongly extend the existing completion proposals. Now the
proposals cover complex code structures, like OCL expressions, whereas previously
limited to the left side of the bindings and model elements.

The types, variables, contexts computations have been added to the existing
completion system which was based on an analysis of partial parsing results. The
type-inference engine extends that system by visiting the parsing result and
computing types for each step.

Additionally, some content assist templates have been added to the completion
system, such as rules, helpers, operation calls templates.

The type engine has been reused to provide additional features, like hover
information, navigation through elements declarations. Those features reuse the same
type computing system as the completion processor.

36

Fig. 2. Hover information: when the mouse stays over a variable, an attribute or in this case an
helper call, it displays the type information. Here, the helper signature.

3.3 ATL plugins

ATL usability has been extended by the addition of a new wizard. This provides a
way to embed an existing transformation inside of an Eclipse plugin, with an
associated launching class written in Java. After that operation the ATL builder keeps
synchronization between the ATL file and the Java launching class. This feature eases
the integration of an ATL transformation into an application.

Fig. 3. The ATL plugin wizard page. The required in formations can be initialized from an
ATL transformation file as from an ATL launch configuration.

37

4 Planned releases

ATL industrialization is a continuous project, so each future release is planned and
brings bug corrections, new features and improvements. For the next releases, some
objectives have been set but the roadmap is open to contributions (research, partners).
At this time, for the ATL 3.2 release (scheduled June 2011), Obeo plans to work on
easing and speeding up transformation development.

Graphical tools will be added on the top of existing tools to allow the graphical
definition of transformation rules and the synthesis view of the matching currently
achieved by a transformation. The ATL language will also be reexamined to define
syntactic improvements. Finally, depending of the research teams, advanced
contributions could be integrated into the main ATL code.

5 Conclusion

This paper presented current works on ATL. Many of them are provided by Obeo in
the ATL industrialization context, but the door is still wide open to integrate research
contributions. In the future Obeo will keep making improvements on ATL and
maintenance.

The successful collaboration between Obeo, INRIA and industrial partners shows
that OpenSource is an efficient and valuable way to promote an innovative
technology.

References

1. ATL web site, http://www.eclipse.org/m2m/atl/
2. INRIA web site, http://www.inria.fr/
3. Obeo web site, http://www.obeo.fr/index.php?lang=en
4. AtlanMod web site, http://www.emn.fr/z-info/atlanmod/index.php/Main_Page

38

