
Introducing Variability Rules in ATL for Managing
Variability in MDE-based Product Lines

Marten Sijtema

Universiteit Twente
Software Engineering Group, Enschede, The Netherlands

m.sijtema@ewi.utwente.nl

Abstract. Various approaches show that software product lines can be implemented us-
ing the Model-Driven Engineering concept of successive model refinements. An important
aspect of Product-Line Engineering (PLE) is the management of variability. In this paper
we propose a strategy to let the model transformation language ATL handle the vari-
ability. We consider a transformation sequence that can generate a family of products.
Furthermore, we model the variability separately in a feature diagram. In our case, the
features from this diagram will have corresponding feature realization artefacts whose
blueprints are defined as meta classes residing in meta models throughout the transforma-
tion sequence. We use model-to-model transformations written in ATL to instantiate these
feature realization artefacts from the meta models, guided by the feature model’s feature
selection. This paper shows that the conventional language constructs of ATL (ie. rules)
are ineffective in managing variability this way. We therefore extend the concrete syntax
of ATL with the concept of variability rules. This yields a first-class language construct
for variability management. Variability rules are declarative, use implicit scheduling and
are a true modular extension; they inherit from the normal rule class in the ATL meta
model. This means that they have the same quality properties as normal rules. The exe-
cution semantics of variability rules – execute iff the corresponding variant in the feature
model is selected – is implemented in a higher-order transformation, which compiles an
extended ATL model back to a normal ATL model, therefore no new ATL plugin needs
to be installed.

1 Introduction

Various approaches show that software product lines can be implemented using the Model-
Driven Engineering concept of successive model refinement. An important aspect of PLE is the
management of variabilities. This can be done in various ways [5][3][1][2].

This paper aims to provide first-class variability management means for the model transfor-
mation language ATL [4], using a separate feature model for configuration. The basic modular
construct of rule-based model transformation languages, a rule, is used as a starting point. In
ATL, there are five types of rules: normal rules, abstract rules, rules that inherit from other
rules (ie. sub rules), lazy rules and called rules. This paper introduces variability rules. Ideally,
variability rules should have the same quality properties as normal rules.

Variability rules are best used in the context of a transformation sequence which successively
refines models, and where blueprints of feature realization artefacts reside in the meta models.
Thus, meta models define the complete product space by defining feature realizations for every
feature. The variability rules instantiate and integrate a particular set of feature realizations into
a final product, according to the feature model’s selection.

The reason for using a transformation rule as key construct for managing variability is the
observation that features from a feature model have to be associated with, or mapped to, fea-

39

2 Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines

ture realization artefacts in order to enable automatic product derivation. Specifically, the fea-
ture model should be the driver for configuring/assembling a product family member. Rules
are purpose-built for defining mappings. Furthermore, since rules have mature mechanisms for
matching, querying and creating (instances of) meta model elements, and thus (instances of)
feature realization elements, they are well-suited for integrating feature realizations with the rest
of the system. Furthermore, rules are modular constructs with a declarative nature, which makes
them easy to use and allow elegant implementations as opposed to more imperative solutions.

2 Paper Outline

This paper first explains the need for variability management in model transformations in model
transformations in Section 3. Section 4 describes the concept of variability rules, their syntax
and semantics. Section 5 explains how the variability rules are implemented in a higher-order
transformation.

During this project, a more complex type of variability was discovered. This type of vari-
ability not only has a dependency on the feature model, but also on the input model of the
transformation. For handling this type of variability, the variability rule concept and concrete
syntax are extended a bit further, and this is explained in Section 6. This last part is currently
work-in-progress, but there are already some results worth mentioning.

The true open issues are explained in Section 7, followed by Section 8 which shows related
work. We conclude this paper in Section 9.

3 The Need for Variability Management in Model Transformations

Model transformations are a central concept in MDE, and by using a transformation sequence
as a software product line generator, model transformations should be capable of dealing with
variabilities.

3.1 Example of Model Transformations Managing Variability

To illustrate variability management in model transformations, we describe an example case
where transformations steer the feature assembly process. This example is based on a real case
where input meta models conforming to Ecore are transformed into a model of a web-based, data-
centric information systems with basic create/read/update/delete (CRUD) operation support,
which is in turn transformed into code. The model-to-model step is shown in Figure 1. The meta
model outMM is an excerpt of the real case meta model, and only shows a Model class (note: a
Model from the Model-View-Controller pattern), as well as a DatabaseTechnology element.

Every derived instance model of outMM will contain a Model element for each instance of an
EClass element from the source meta model inM. This Model element will have the same name
as the EClass’s name attribute, concatenated with the string ‘Model’. In this case there is only
one instance of EClass in the source meta model, Person. This results in the instantiation of a
Model element with the name attribute set to ‘PersonModel’. Note that a different input meta
model is likely to have multiple instances of EClass, and will therefore transform in a model with
multiple instances of the Model meta class. In the real case, an MVC pattern is generated for
each EClass.

The variability in this case (apart from varying the input model) is the type of database
technology that a resulting applications uses. There are two variants, as shown in the feature

40

Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines 3

Fig. 1. Typical model-to-model transformation scenario, using ATL and a feature model FM.

model FM : a relational database denoted by RDBMS, and an object database GoogleAppEngine.
The meta model outMM shows that each Model element has a DatabaseTechnology element
aggregated.

In the feature model FM of this example, the RDBMS variant is selected, so the resulting
model outM has an instance of an RDBMS realization artefact for each EClass source element.

The next section shows how implementing this using conventional ATL constructs raises some
problems.

3.2 First attempt — Using Rule Inheritance

In ATL, rule inheritance could be used for guiding the feature assembly process in the above
example, as shown (partially) in Listing 1.1.

1 rule EClass2Model {
2 from
3 a : inMM ! EClass
4 to
5 model : outMM ! Model (name <− a . name+’ Model ’) ,
6 db : outMM ! DatabaseTechnology
7 }
8
9 rule EClass2Model RDBMS extends EClass2Model {

10 from
11 a : inMM ! EClass (true)
12 to
13 db : outMM ! RDBMS

41

4 Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines

14 }
15
16 rule EClass2Model GoogleAppEngine extends EClass2Model {
17 from
18 a : inMM ! EClass (fa l se)
19 to
20 db : outMM ! GoogleAppEngine
21 }

Listing 1.1. Using rule inheritance in normal ATL to deal with variability management is insufficient.

Note that the from-clause in the rule EClass2Model matches on inMM!EClass, stating that
the instantiation of the feature realization artefact should be done for each EClass instance. We
use rule inheritance to instantiate a specific variant.

There is a sub rule for each feature, both specializing the rule EClass2Model with a specific
database technology. According to the selected feature, here simply switched by true if selected,
and false otherwise, the correct sub rule is called, and the super rule’s content is inherited.

This situation shows that feature realizations often have to be integrated into the common
base, according to some rationale, in this case for each EClass. Therefore this case uses rule
inheritance, which seems a necessary strategy, but the problem with this is that ATL does not
support matching a single source model element by more than one rule. So, what if there are more
features, apart from database technology, that also have to be instantiated for each EClass? Or
what if both features are allowed, because they are, for instance, both optional (ie. both from-
clauses are set to true)? Then, multiple rules should be called for a single source element, which
is not supported.

Note that also, the true/false must be switched manually here, or helpers have to be imple-
mented that navigate the feature model and check if a particular feature is selected.

3.3 Second Attempt — Matching on the Feature Model Elements

As an alternative, a rule which matches on elements from the feature model FM could be used,
instead of matching on the input meta model. This usually avoids having different rules with
the same from-clause. But doing something ‘for each EClass’ is now not possible, which was
specifically intended. One could use imperative code, but this is not recommended, nor is it
elegant.

Thus, there is not a good way to let features guide a model transformation, at least not
without resorting to imperative ATL code. We provide a more elegant, easy to use solution, by
extending ATL with the concept of variability rules, as the next section will explain.

4 The Concept of Variability Rules

This section describes the concept of variability rules. The syntax and semantics are not much
different from normal ATL rules.

4.1 Syntax

A variability rule looks like a normal rule, prepended with the variability keyword:

1 variabi l ity rule RDBMS configures EClass2Model {
2 from

42

Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines 5

3 a : inMM ! EClass
4 to
5 db : outMM ! RDBMS (
6 name <− a . name+’RDBMS’
7)
8 }

Listing 1.2. Extended concrete syntax of ATL with variability rules.

Observing the example from Listing 1.2, the syntax is a bit different than normal rules. In the
first line, ‘RDBMS’ refers to the feature from the feature model. Secondly, ‘EClass2Model’ refers
to a normal rule. This variability rule is said to ‘configure’ a normal rule. Finally, the from-clause
is identical to the one in ECLass2Model.

4.2 Semantics

The semantics is as follows: i) a variability rule ‘configures’ a normal rule, specializing its imple-
mentation, just like rule inheritance, ii) A variability rule is executed for each match, but if and
only if the corresponding feature is selected in the feature model, iii) multiple variability rules
can have the same from-clause, iv) multiple variability rules can configure the same normal rule.

This way, specific feature realization artefacts can be instantiated from the target meta model.
Also, multiple rules that match on a single source model element can be called. This solution is
very comparable to a conventional declarative mapping in a normal rule, the implicit execution
order property still holds.

Furthermore, the concern of selecting features is now cleanly separated. It is the feature model
editor’s responsibility to facilitate/constraint the selection. Variability rules act as a template;
a modular piece of code that is not part of an (explicitly defined) imperative process, used for
instantiating a particular feature. Thus, a developer can write one or more variability rules for
each feature, without having to worry about concerns like selection constraints or execution
order.The developer can just declaratively define what should be instantiated if a certain feature
is selected.

The next section shows how variability rules are implemented.

5 Implementing Variability Rules using a Higher-order
Transformation

The variability rules are implemented by a higher-order transformation (HOT), as shown in Fig-
ure 2. The HOT is created as follows: i) The ATL meta model is extended with a VariabilityRule
EClass, yielding the ATL’ meta model. ii) The concrete syntax of ATL is extended and a cor-
responding editor is created. iii) A HOT is developed in ATL which transforms an ATL’ model
into an ATL model. The HOT will be a used as preprocessing step in a transformation sequence.
The resulting ATL model is subsequently executed, to yield the aimed result.

The compilation step of the HOT works as follows. First all the to-clauses of variability rules
whose feature is selected are gathered, and these are grouped by the rule they configure. Then,
these consolidated to-clauses are added to the normal rule that is configured. This results in
a set of normal rules whose to-clauses only contain the to-clauses from the relevant variability
rules, effectively resulting in a transformation that transforms a source model into a target model
containing the selected features. In other words, the result is semantically equivalent to executing
multiple rules that match on the same source model element.

43

6 Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines

Fig. 2. A feature model together with a variability rule enriched ATL file (ATL’ M) are transformed
into a native ATL file with only the selected features transformed into normal ATL rules.

Note that since there is no de-facto standard for feature (meta) models, we used our own,
which is not shown here. If one would want to use its own, a custom version of the (simple) ATL
helper function isSelected(f : Feature) : Boolean (residing in the HOT) should be included in
the higher-order transformation.

6 A Different Type of Variability — Source Model Dependent
Variability

During this research we identified a different type of variability, which still cannot be solved using
the version of variability rules discussed so far, but appeared very relevant. This type is called
source model dependent variability, whereas the variability type discussed above is called source
model independent variability. The name explains what it means: there is a type of variability
that also depends on elements from the source model of the transformation. In other words,
whether or not a variability rule should be executed not only depends on the feature model, but
also on elements from the source model.

At this stage, the implementation of variability rules cannot handle source model dependent
variability, because there is no means to define a mapping between a feature from the feature
model and a particular (instantiated) class. Therefore the syntax and semantics of variability
rules are extended further, as this section shows.

To make things clear, we first give an example of this variability type.

6.1 Example of Source Model Dependent Variability

Consider the input model in Figure 3. The model has a Person class, which has a reference
to a Task class. In our real-life transformation sequence case, for each class a MVC pattern is
created. This means that there is a View class generated for a Person and for a Task. At this
point, assume that there are two types of views: a Grid and a Tree view, both displaying the
data in their own way. It could very well be that the Person should have a Grid while a Task
should have a Tree view. As can be seen, the transformation should only execute a variability
rule if its matching element is annotated with Grid or Tree.

The next section explains how the concrete syntax is extended, to allow defining this mapping
between source model elements and features.

44

Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines 7

Fig. 3. In the case of source model dependent variability, features from the feature model are also related
to source model elements. This means that annotation is needed in the source model, to provide enough
information for the transformation to run.

6.2 Extending Syntax of Variability Rules Further

The variability rule shown in Listing 1.3 shows a small syntax change. Next to referring to a base
rule that is configured, also a variable from this base rule’s to-clause is specified, in this case c
(lines 16 and 26). This target element is the point where the elements from the to-clause of the
variability rules will be bound.

This syntax provides enough information for the HOT to compile this into the code shown
in Listing 1.4.

1 −−Base r u l e
2 rule EClass2Model {
3 from
4 a : inMM ! EClass
5 to
6 c : outMM ! C o n t r o l l e r (
7 . . .
8 −− After running the HOT, the v iews are
9 −− bound here , s i n c e the v a r i a b i l i t y

10 −− r u l e s s p e c i f i e d t h i s
11)
12
13 }
14
15 variabi l ity rule GridView configures
16 EClass2Model . c {
17 from
18 a : inMM ! EClass
19 to
20 views : outMM ! Grid (
21 name <− a . name+’ TreeView ’
22)
23 }
24

45

8 Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines

25 variabi l ity rule TreeView configures
26 EClass2Model . c {
27 from
28 a : inMM ! EClass
29 to
30 views : outMM ! Tree (
31 name <− a . name+’ TreeView ’
32)
33 }

Listing 1.3. Extended concrete syntax of ATL with variability rules again to handle dependent vari-
ability.

6.3 Resulting Code after Running the HOT

After the HOT is run, the resulting ATL model will look as shown in Listing 1.4. Every dependent
variability rule will be compiled into a lazy rule. This lazy rule is called by the rule that is
configured. The point from which it is called is, in this case, the Controller with variable c, as
theconfigures-clause stated. The lazy rule call is part of an if-then-else expression, where the rule
is only called if the source model element isAnnotatedWith a certain feature.

This if-then-else statement is dynamic (ie. not hardcoded) from the perspective of the com-
piled ATL model, because it is the nature of the mapping. Hardcoding the binding is not possible,
since it can differ per EClass in this case. Thus, the binding needs to be postponed to run-time
of the ATL model that is resulted from the HOT. This was done so that the HOT (as shown
in Figure 2) does not require the input meta model as an input; just the feature model and the
ATL’ model. This makes the HOT more modular, and reusable.

The reader might have noticed that this approach allows for illegal feature selections, if the
annotations in the input meta model are wrongly put. To see this, assume that the class Person
has two annotations: << Grid >> and << Tree >>. But the feature model states that these
are alternatives, so only one is allowed. This check can no longer be the responsibility of the
feature model editor, as was the case with source model independent variability. In fact, the
semantics of what is allowed and what not can be interpreted in various ways: (i) a Grid and a
Tree are alternative per matching element (in this case inMM !EClass), or (ii) model-wide, ie.
in the whole model there can be either GridxorTree views. In our approach situation (i) seems
appropriate, and this is what we will implement. This validity check is currently work-in-progress.

1 −−Base ru le , a f t e r the HOT has run
2 rule EClass2Model {
3 from
4 a : inMM ! EClass
5 to
6 c : outMM ! C o n t r o l l e r (
7 . . .
8 views <− i f
9 thisModule . isAnnotatedWith (a , ’ GridView ’)

10 then
11 thisModule . Grid (a)
12 else
13 Sequence {}
14 endif ,
15 views <− i f

46

Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines 9

16 thisModule . isAnnotatedWith (a , ’ TreeView ’)
17 then
18 thisModule . Tree (a)
19 else
20 Sequence {}
21 endif ,
22)
23
24 }
25
26 −− The v a r i a b i l i t y r u l e s are
27 −− compi led i n t o l a z y r u l e s
28 lazy rule Grid {
29 from
30 a : inMM ! EClass
31 to
32 views : outMM ! GridView (
33 name <− a . name+’ TreeView ’
34)
35 }
36
37 lazy rule Tree {
38 from
39 a : inMM ! EClass
40 to
41 views : outMM ! TreeView (
42 name <− a . name+’ TreeView ’
43)
44 }

Listing 1.4. The HOT compiles the variability rules to lazy rules and the bindings are done in the
specified meta element in the base rule.

The method of annotating the model is also work-in-progress. Our approach will be similar to
[6], where a separate annotation model is used. A very simple concrete syntax is currently being
developed, that can be compared with Cascading Style Sheets (CSS) [7]. CSS is widely-adopted
to annotate HTML elements with style features. In our case, we use it to annotated source model
elements with features from the feature model. Having a separate annotation model keeps the
source model from being cluttered by annotations.

With this syntax, one is still able to create elements according to a rationale, in this case for
each EClass. In other words, one can still apply the rationale of matching elements, like that is
used when defining ordinary ATL rules.

7 Open Issues

Two things are currently work-in-progress and have not been solved completely. First, there is
not yet a check that validates an annotated model when it comes to the selection of source model
dependent features. As discussed, this responsibility cannot be outsourced to the feature model
editor. Second, the annotation model implementation is not yet complete.

47

10 Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines

8 Related Work

Our focus is not to give a complete overview of the related work, but to focus on handling
variability in step-wise model refinement, therefore we explain different related approaches briefly.
The approach of [5] is to weave variability capabilities into meta models using aspects. This
means that the variability is not modeled in a separate model, which differs from our approach,
where we separate this concern. In [3], also aspects are used, but this approach does use a separate
variability model. This approach provides variability management mechanisms in transformation
languages where aspects are used in the model transformation language XTend to implement
variability management. Our implementation approach (using a HOT) differs from their aspect-
oriented implementation. Furthermore, their model transformation language is different. The
authors of [1] provide an algebraic framework for managing variabilities, which is fundamentally
different. The approach in [6] describes a method of annotating the input model which drives the
transformation, using a separate annotation model. This approach is combined with our approach
in a solution for managing source model dependent variability as described in the previous section.
The approach from [2] also uses specialized types of rules to manage variability. However, their
rules are implemented using native ATL [4] language constructs, or put differently, their approach
is more a software pattern for managing variability. The usage of this pattern means that there
is imperative code involved, which our approach avoids.

9 Conclusion

In this paper we addressed the problem of handling variability in a product line that is im-
plemented using a transformation sequence. We proposed a way for handling variability in the
model transformation language ATL. We have shown that normal ATL rules are able to handle
variability, but not without problems (ie. imperative code, changing the transformation after the
feature selection has changed). Therefore the approach was to create variability management
means by introducing a new type of rule called variability rules. The motivation for adding a
new type of rule was the observation that rules are purpose-built to do mappings, thus they are a
good candidate to do the required mapping between feature model and meta models. Also, rules
provide mature mechanisms for matching, querying, and instantiating meta model elements. Our
concept achieved at least three things. First, the implicit execution order is maintained, yielding
the same modularity properties as normal rules. Second, all the advanced mapping features of
normal ATL can be used, as well as the rationale that is behind conventional rules; the developer
can use the same rationale (of matching elements) for variability rules as for normal rules. Third,
because it is a higher-order transformation, the ATL engine is not modified, so there is not a new
ATL version that has to be installed (and maintained!). Instead, one could just chain the HOT
into the transformation sequence. We have shown ways to solve two types of variability: source
model independent, and source model dependent variability. For the latter, there are some open
issues left. Firstly, there is not yet a way to check if a selection is valid. This check can no longer
be outsourced to the feature model editor because it needs information from the source model.
Secondly, the dependent case needs annotation on the source model of the transformation. This
mapping will be done using a separate annotation model. This has not yet been implemented
fully.

Finally, we are investigating cases of variabilities where parts of rules are affected, like to-
clauses or bindings.

48

Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines 11

References

1. Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement, 2003.
2. K. Garces, C. Parra, H. Arboleda, A. Yie, and R. Casallas. Variability management in a model-driven

software product line. In Avances en Sistemas e Informática, volume 4 No. 2, pages 3–12, Sept 2007.
3. I. Groher and M. Voelter. Aspect-Oriented Model-Driven Software Product Line Engineering. Lecture

Notes in Computer Science, 5560:111–+, 2009.
4. F. Jouault and I. Kurtev. Transforming models with ATL. In Satellite Events at the MoDELS 2005

Conference, pages 128–138. Springer, 2006.
5. Brice Morin, Gilles Perrouin, Philippe Lahire, Olivier Barais, Gilles Vanwormhoudt, and Jean-Marc

Jézéquel. Weaving variability into domain metamodels. Model Driven Engineering Languages and
Systems, pages 690–705, 2009.

6. Juan Manuel Vara, Veronica Andrea Bollati, Belén Vela, and Esperanza Marcos. Leveraging model
transformations by means of annotation models. In F. Jouault, editor, MtATL, pages 96–102, 2009.

7. w3 consortium. Cascading style sheets, http://www.w3.org/style/css/.

49

	Lecture Notes in Computer Science
	Introduction
	Paper Outline
	The Need for Variability Management in Model Transformations
	Example of Model Transformations Managing Variability
	First attempt — Using Rule Inheritance
	Second Attempt — Matching on the Feature Model Elements

	The Concept of Variability Rules
	Syntax
	Semantics

	Implementing Variability Rules using a Higher-order Transformation
	A Different Type of Variability — Source Model Dependent Variability
	Example of Source Model Dependent Variability
	Extending Syntax of Variability Rules Further
	Resulting Code after Running the HOT

	Open Issues
	Related Work
	Conclusion

