
Towards using OWL DL as a metamodelling
framework for ATL

Dennis Wagelaar?

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
dennis.wagelaar@vub.ac.be

Abstract. Ontologies have become increasingly relevant to the mod-
elling community, providing a knowledgebase to support several software
engineering activities. As such, several efforts have been made to inte-
grate ontology technology with modelling technology. This has resulted
in the Ontology Definition Metamodel (ODM), which allows model trans-
formation languages to interact directly with ontologies. The ODM limits
itself to data structure, however, and does not integrate the reasoning
capabilities within ontologies. Therefore, we have done an experiment
with an OWL DL driver for ATL, where ATL has direct access to the
reasoning capabilities of the OWL DL ontology language. OWL DL is
used as a metamodelling framework, where OWL classes serve as meta-
classes and OWL individuals serve as model elements. The envisioned
benefits are optimisation possibilities through automatic classification,
and static analysis of ATL transformations written using OWL DL ex-
pressions. This paper will discuss our findings so far regarding these two
envisioned benefits.

1 Introduction

Ontologies are becoming more and more prominent, and they can provide a
supporting knowledgebase for several software engineering activities, such as
domain engineering [1], semantic middleware [2], inconsistency management [3],
platform dependency management [4], and several others [5]. As such, they are
also gaining in relevance to the modelling community. This has resulted in the
Ontology Definition Metamodel (ODM) [6][7], which provides a metamodel of the
OWL ontology language, and allows model transformation languages to interact
directly with ontologies. However, the ODM limits itself to the structural aspects
of an ontology, and does not provide an interface for the reasoning capabilities for
ontologies. Therefore, we have done an experiment with an OWL DL driver for
ATL, which allows for direct access to the reasoning capabilities of the OWL DL
language. The driver itself uses the OWLAPI ontology repository framework [8]
and the Pellet ontology reasoner [9] to access ontologies and reason about them.

? The author’s work is funded by a postdoctoral research grant provided by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders)

79



In this experiment, OWL DL is used as a metamodelling framework, where OWL
classes serve as metaclasses and OWL individuals serve as model elements. The
OWL DL reasoner provides the inferred OWL class hierarchy, as well as the
inferred classes for each OWL individual. Whereas in the modelling world OCL
is used to express constraints, OWL DL provides its own language constructs for
this purpose. The OWL DL language allows constraints – or restrictions – to be
encapsulated inside (by subsumption) or even encapsulated as (by equivalence)
an OWL class. An OWL DL restriction encapsulated as a class can automatically
be classified in an inferred class hierarchy by the OWL DL reasoner, such that
the OWL restriction is represented as a metaclass in the metamodel. The OWL
DL reasoner also automatically infers the instances of this metaclass, which are
those instances that conform to the OWL DL restriction.

The envisioned benefits of using OWL DL as a metamodelling framework
are optimisation possibilities through automatic classification of OWL DL class
expressions, and static analysis of ATL transformations written using OWL DL
expressions. In the remainder of this paper, we will first discuss the development
of the OWL4ATL driver, and our findings of mapping the ATL metamodelling
constructs onto OWL DL constructs. Then, we will discuss our findings so far
regarding the two envisioned benefits.

2 OWL4ATL

The ATL virtual machine allows for defining new drivers that implement ATL’s
model and metamodel abstractions. We’ve implemented such a driver for OWL
DL1, which maps metaclasses onto OWL classes and model elements onto OWL
individuals. Table 1 shows how ATL’s main language constructs for (meta-)
model representation are mapped onto OWL language constructs, with the im-
plementing Java classes in parentheses. ATL’s primitive data types are mapped
onto the closest XSD data types used by OWL.

ATL language construct OWL language construct

Model (ASMModel) OWLOntology (ASMOWLModel)

Metaclass (ASMModelElement) OWLClass (ASMOWLModelElement)

Model element (ASMModelElement) OWLIndividual (ASMOWLModelElement)

Reference (ASMModelElement) OWLObjectProperty (ASMOWLModelElement)

Attribute (ASMModelElement) OWLDataProperty (ASMOWLModelElement)

Table 1. ATL language construct to OWL language construct mappings.

1 http://soft.vub.ac.be/viewvc/ATL/org.eclipse.m2m.atl.drivers.owl4atl/

80

http://soft.vub.ac.be/viewvc/ATL/org.eclipse.m2m.atl.drivers.owl4atl/


2.1 Mapping metamodels to OWL

As the OWLAPI does not provide a metacircular implementation of OWL-
Class (where OWLClass is an instance of OWLClass) in the OWL DL lan-
guage, the metametamodel must be implemented separately. This has not yet
been done, and as a result only M2 models can be used as metamodels. This
means that OWL ontologies of instances can be transformed, using OWL on-
tologies of classes as metamodels. As a consequence, we’ve used the Eclipse
EODM2 implementation of the ODM to generate an initial metamodel in OWL,
consisting of OWL classes. As an example metamodel, we’ve used the Eclipse
UML metamodel, as it covers all features of the EMF Ecore metamodelling
language. The ATL transformation module used is called “ECORE2OWL.atl”,
the resulting metamodel “ontologies/UML.owl”, which can both be found at
http://soft.vub.ac.be/viewvc/ATL/OWLMatching/.

During the mapping of the UML metamodel to OWL, some of the semantic
differences between Ecore and OWL became apparent:

– OWL properties are defined within the namespace of the ontology,
not the namespace of the OWL class on which one can define
property values. Whereas Ecore EAttributes and EReferences are defined
within the namespace of a single EClass, OWL properties have a domain
and a range. The domain specifies all OWL classes for which one can define
property values, and the range specifies the valid types of the values. The
domain of an EReference or EAttribute is always limited to a single EClass.
When mapping only from Ecore to OWL, it is sufficient to add the name of
the domain class to the property name to make sure the OWL property has
a unique name within the ontology.

– OWL properties do not support containment. EMF models are in
the form of a containment tree, where EReferences can be defined as con-
tainment references. OWL does not support the concept of containment,
other than ontology elements being contained in an ontology (namespace).
In order to retain the information of whether an OWL property represents
a containment EReference, four “meta-properties” are introduced in the on-
tology: “allContainment”, “allContainer”, “containment”, and “container”.
“allContainment” is a transitive property and represents the transitive clo-
sure of contained model elements. “allContainer” is a transitive property
that represents the transitive closure of containing (parent) model elements.
“containment” and “container” are non-transitive subproperties of “allCon-
tainment” and “allContainer”, and represent the direct contained and con-
taining model elements. All containment properties are represented as sub-
properties of “containment”, and all container properties are represented as
subproperties of “container”. The OWL subproperty relationship means that
each value of a subproperty can also be considered as a value of its super-
properties. For example, any value of the UML “packagedElement” property
is also a value of the “containment” and “allContainment” property. This

2 http://www.alphaworks.ibm.com/tech/semanticstk

81

http://soft.vub.ac.be/viewvc/ATL/OWLMatching/
http://www.alphaworks.ibm.com/tech/semanticstk


representation also allows for the implementation of the ATL “refImmedi-
ateComposite()” helper method.

2.2 Mapping models to OWL

Bridging the above semantic differences between Ecore and OWL is sufficient to
create an OWL representation of the UML metamodel expressed in Ecore. It is
also possible to copy a UML model based on Eclipse UML to an ontology based
on the generated UML meta-ontology. Another, more fundamental semantic dif-
ference became apparent when trying to copy that UML ontology to another
UML ontology:

– OWL DL follows the Open World Assumption, whereas Ecore fol-
lows the Closed World Assumption. This basically comes down to the
principle that OWL DL assumes the available knowledge to be incomplete,
whereas Ecore assumes it to be complete. The concrete issue that rises here
is whether or not a model element can be considered an instance of a specific
class. In Ecore, declaring a model element to be an instance of a metaclass
is sufficient to know that it is only an instance of that metaclass (and its
superclasses). In OWL DL, however, one must explicitly state that an indi-
vidual is not an instance of a certain class. A partial solution for bridging
this difference is to assert each new OWL individual as an instance of its
OWL class, as well as of the complement of each subclass of that OWL class.

The ATL transformation rules that triggered this issue is the following:
rule Model {

from s : UML2!Model
to t : UML2!Model (

...)
}

rule Package {
from s : UML2!Package (s.oclIsTypeOf(UML2!Package ))
to t : UML2!Package (

...)
}

The Model rule copies all instances of the “Model” metaclass, and Package
copies all instances of “Package”. The Package rule explicitly checks that it does
not accidentally copy “Model” instances, as “Model” is a subclass of “Package”
in the metamodel, and would otherwise trigger the Package rule. In OWL DL,
any instance s of “Package” must explicitly be marked as not an instance of
“Model” for the reasoner to conclude that s.oclIsTypeOf(UML2!Package) is
false.

A complete solution to the Open World vs. Closed World Assumption prob-
lem would require additional “closing” assertions to be added to the OWL rep-
resentation of the metamodel:

– Each pair of OWL classes that do not have a common sub- or su-
perclass must be declared disjoint. This enforces that OWL individuals

82



are considered not to be instances of other classes than its asserted class,
or superclasses of its asserted class. This follows the general semantics of
metamodelling languages such as Ecore. This cannot be done statically, as
Ecore models and OWL ontologies can both be extended with new classes.
Multiple inheritance may cause a pair of classes that previously had no com-
mon subclasses to now have common subclasses. Currently, OWL4ATL does
not address this issue.

2.3 Mapping OCL expressions to OWL restrictions

Up to this point, the experiment has remained limited to OWL class/property
expressions that reflect Ecore expressions. ATL uses OCL to navigate over meta-
models and express restrictions on from statements. OWL DL provides its own
language constructs for expressing restrictions. Consider the following example
ATL rule, which transforms all UML Properties that are public:
rule PublicProperty {

from s : UML2!Property (
s.oclIsTypeOf(UML2!Property) and s.visibility = #public)

to t : UML2!Property (
...)

}

In OWL DL, this OCL restriction can be written as an OWL class expression
in extended OWL Manchester syntax:
PublicProperty subClassOf Property
PublicProperty equivalentWith (

(Property_visibility value "public ") and not ExtensionEnd and not Port)

This means that PublicProperty is the set of all Property instances that have
Property visibility set to “public” and are not an ExtensionEnd or a Port (the
subclasses of Property). As this expression is encapsulated as an OWL class, it
can be used from ATL as follows:
rule PublicProperty {

from s : UML2!PublicProperty
to t : UML2!Property (

...)
}

The OWL DL reasoner also automatically classifies OWL class expressions
in the inferred class hierarchy. Consider the following ATL rule and its OWL
representation:
rule AllProperty {

from s : UML2!Property (
s.oclIsTypeOf(UML2!Property ))

to t : UML2!Property (
...)

}

AllProperty subClassOf Property
AllProperty equivalentWith (not ExtensionEnd and not Port)

The OWL DL reasoner would classify PublicProperty as a subclass of All-
Property, which in turn is a subclass of Property. Based on the inferred OWL

83



class hierarchy, we can derive whether there is any overlap between the from
parts of ATL rules. Overlap is not allowed between separate matched rules, while
overlap is required between a super- and subrule in ATL.

3 Discussion

This paper has presented an experiment with using OWL DL as a metamod-
elling framework for ATL. The experiment is still in progress, but some results
are already available. First of all, the development of the OWL4ATL driver that
enables the use of OWL DL within ATL has uncovered several semantic dif-
ferences between a regular metamodelling language, such as Ecore, and OWL
DL. Two of these differences are structural differences, regarding namespaces
and containment of elements, and can be bridged without many problems. An-
other difference is the Open World vs. Closed World Assumption, which is a
fundamental difference in language semantics. The result is that complex map-
pings are required between regular metamodelling and OWL DL in order to
represent the same modelling language. A start has been made with providing
these mappings, but more mappings are required. Some of these mappings are
also dynamic, and can change as the metamodel is extended. Whether or not
these mappings are needed, depends on whether one wants to represent a regular
metamodel in OWL DL, or whether one just wants to use an existing OWL DL
ontology as a metamodel (and retain the Open World Assumption).

The first envisioned benefit of using OWL DL as a metamodelling framework
is the possibility to optimise through automatic classification of OWL DL class
expressions. We have demonstrated how OWL DL class expressions can be used
in the from part of an ATL rule. ATL currently relies on caching of helper at-
tributes to achieve a performance speedup. This only works if the developer uses
helper attributes in the right places. By using OWL DL class expressions, the
OWL DL reasoner can use its inferred class hierarchy to make smart assumptions
about the instances of the classes. A subclass will have no more instances than
its superclass, for example. We currently don’t know if the OWL DL reasoner
can be more efficient in finding class instances that ATL using helper attribute
caching. We do know that current OWL DL reasoners have a limit in how many
class equivalence expressions in combination with property restriction expres-
sions they can handle, which lies somewhere below 1000. This puts a limit on
the complexity of the transformation module.

The second envisioned benefit is the ability to perform static analysis of ATL
transformations written using OWL DL expressions, similar to what is currently
done in graph transformation using critical pair analysis [10] or in OCL using
constraint programming tools [11]. Using the inferred OWL class hierarchy, it
is possible to determine whether there is overlap between two class expressions.
In addition, the OWL DL reasoner will be able to determine whether a class
expression is satisfiable at all (a non-satisfiable class expression cannot have
any instances). As long as we can translate an ATL from part expression to
an OWL class expression, it is possible to perform this kind of static analysis.

84



As soon as recursive helper methods are used, however, a translation to an
OWL DL expression is no longer possible. Currently, only a few examples have
been translated into OWL DL expressions. An exhaustive translation of ATL
expressions to OWL DL expressions will have to be developed. As most of the
work consists of translating OCL to OWL DL, the work of Cabot et al., amongst
other presented in [11], may serve as a basis here.

Acknowledgements

The author would like to thank Ragnhild Van Der Straeten, Ulrike Sattler,
and Carsten Lutz for their discussion on mapping regular MOF/Ecore style
metamodelling languages onto OWL DL, and using OWL DL as a metamodelling
framework in a model transformation context.

References

1. Musen, M.A.: Domain ontologies in software engineering: use of Protégé with the
EON architecture. Methods of Information in Medicine 37 (1998) 540–550

2. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing Semantics to Web Services
with OWL-S. World Wide Web 10 (2007) 243–277

3. Van Der Straeten, R., Jonckers, V., Mens, T.: A formal approach to model refac-
toring and model refinement. Software and Systems Modelling 6 (2007) 139–162

4. Wagelaar, D., Van Der Straeten, R.: Platform Ontologies for the Model-Driven
Architecture. European Journal of Information Systems 16 (2007) 362–373

5. Happel, H.J., Seedorf, S.: Applications of Ontologies in Software Engineer-
ing. In: International Workshop on Semantic Web Enabled Software Engineering
(SWESE’06). (2006)

6. Bézivin, J., Devedz̆ić, V., Djurić, D., Favreau, J., Gas̆ević, D., Jouault, F.: An M3-
Neutral infrastructure for bridging model engineering and ontology engineering. In:
Proceedings of the First International Conference on Interoperability of Enterprise
Software and Applications (INTEROP-ESA’05) Geneva, Switzerland, Springer-
Verlag (2005) 159–171

7. Object Management Group, Inc.: Ontology Definition Metamodel. (2006) Sixth
Revised Submission to OMG/ RFP ad/2003-03-40, ad/2006-05-01.

8. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL
2 Ontologies. In: OWLED 2009, 6th OWL Experienced and Directions Workshop.
(2009)

9. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5 (2007) 51–53

10. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electr. Notes Theor. Comput. Sci. 127 (2005) 113–
128

11. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Analysing Graph Transformation
Rules Through OCL. In Vallecillo, A., Gray, J., Pierantonio, A., eds.: Proceedings
of the First International Conference on Theory and Practice of Model Trans-
formations (ICMT 2008), Zürich, Switzerland. Volume 5063 of Lecture Notes in
Computer Science., Springer-Verlag (2008) 225–239

85


	Towards using OWL DL as a metamodelling framework for ATL
	Dennis Wagelaar
	1 Introduction
	2 OWL4ATL
	2.1 Mapping metamodels to OWL
	2.2 Mapping models to OWL
	2.3 Mapping OCL expressions to OWL restrictions

	3 Discussion



