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Abstract. A prototype Video Imagery Ontology has been developed to derive 

video imagery intelligence, VideoIMINT. The ontology includes the 

development of classes and properties to address video image content, and 

video collection metadata related to platforms, sensors and collection 

operations. Preliminary feature extraction of video imagery content classes was 

functionally utilized to identify important video segments in an integrated 

viewer. Integrated data storage systems and fusion processes are proposed and 

discussed. 
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1 Introduction 

For decades, the increasing volume of imagery data has been a growing challenge for 

the military and intelligence communities, ―too much to look at…‖ and ―most of the 

bits end up on the floor‖. The coming of age of Video Intelligence Surveillance and 

Reconnaissance (VISR) has only exacerbated the problem by orders of magnitude. 

For areal coverage with multiple, high resolution cameras [1], operating at two hertz 

and greater frame rates, data volume is now calculated in yotta-bytes (10^24 bytes). 

Notwithstanding the computational, storage and networking problems associated with 

this amount of data, finding content via database searches through these many 

instances of data becomes very problematic. Lt. Gen. David A. Deptula remarked that 

the Air Force could soon be ―swimming in sensors and drowning in data.‖ [2]. The 

recognition in this comment of the sensor, as well as the data volumes, as part of the 

overwhelming information glut, is very important and telling as to how these systems 

are utilized. 

Ontology structures, as a filter for domain information, and ontology enabled rules of 

organization, present many advantages to help navigate and automatically use such 

volumes of information. Ontologies can address apparent substantive conflicts of 
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detection when confronted with phenomena represented by different sensors 

(panchromatic, multispectral, infrared, RADAR…) on various platforms, collected 

under widely different circumstance in an automated, sensor to computer to human 

workflow. 

Collected imagery data, and to a larger extent, the information represented, is an 

organizational, if not a metaphysical, challenge. Consider just two sensors, infrared 

(IR) and RADAR on the same aircraft. Does all the IR data go here to the IR data bin 

and all the RADAR data over there in the RADAR bin? Suppose we have both from 

the same area on different days, or perhaps one for 5 minutes and another data set for 

5 hours? Specifically, how are such diverse collections correlated? Do we organize 

by spectra, by location, by time, or perhaps platform? Is intelligence driven or 

prioritized by location, time, content, or all these attributes and more? Obviously, 

these elements are all important, while to complicate matters, the importance varies 

from mission to mission. 

Additionally, there are operational classes that impact domain organization; including 

aspects of, surveillance utility or operational reconnaissance. Elements of platform 

specification and platform performance, sensors and sensor performance, and 

products derived from mission data are also important. The ontological effort is to 

separate these concepts so that sensor performance, for instance, can be applied to 

any mission, describing sensor success in some qualitative and quantitative manner. 

However, the most differentiating property of intelligence collections is data content: 

data defined features and objects extractable from a particular collection. While all 

other elements, or classes, of imagery collection, such as which aircraft, which 

sensor, provide a rich compilation of schematic information – subclasses and 

properties – it is the semantics of imagery content that moves this structure from the 

utility of databases to the world of ontologies. To understand this difference, consider 

the query ―which sensor observed the IED explosion at location x during time t‖, as 

compared to, ―were individuals observed prior to IED explosion at location x during 

time t‖. While building a database schema construct for object concept sensor is non-

trivial, adding a class such as individuals which is, in fact, detected content of 

imagery, becomes a significant semantic encounter. 

Thus, the initial effort has been to define, organize and build an ontology of the VISR 

domain, including imagery content classes, to enable automated data processing and 

domain query and management. Subsequent efforts will use this structure to develop 

the complex logic and relationships of this domain. Flexibility and change are driving 

principles so that the resulting ontology can be edited: modified as new knowledge is 

gained, particularly as imagery context is developed with more and more elements 

extracted from imagery data. 
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2 Initial Classes 

The VISR classes that were initially proposed include the following: 

 

Domain Classes Subclasses 
1. Platform 

Sensor and 
Sensor 
Operation 

 

a. Platforms 
b. Sensors 
c. Operational Parameters 
d. Calibration and Quality 

Metrics 
 

2. Collection and 
Collection 
Performance 

 

a. Collection Variables 
b. Collection Operational 

Parameters 
c. Collection Performance 

Metrics 
 

3. Mission and 
Targets 

a. Mission Description 
b. Detection and 

Characterization 

4. Imagery and 
Exploitation 
Products 

a. VideoIMINTHierarchy 
b. Product Descriptions 
c. Product Utility 
d. Data Assurance Metrics 

 

5. Integrated 
Ontology 

a. Relationship and Rule 
Algorithms 

Table 1. Initial Organizational Construct 

Due to programmatic limitation, only classes 1, 2, and 4d were developed. The 

Integrated Ontology concept was dropped because the major classes covered the 

domain rather completely for this application, requiring no further integration, and 

relationships were an outcome of structure, even at the lowest levels of, for example, 

sensor calibration and product utility. 

The AAF Profile for Aerial Surveillance and Photogrammetry Applications (ASPA) 

specification [3] provides an excellent starting structure to begin differentiating such 

concepts as performance and metrics in this ontology. This metadata specification is 

an XML type structured document that lends itself well to transition into a Resource 

Description Framework (RDF) for use in a hierarchical ontology. 

The ASPA specification covers a great deal of video support information, including 

where and when it was collected as well as sensor data and platform data, so that the 

consequent instances of a particular mission, reflected in the video metadata, easily 

populate the ontology classes of platform and sensor. Such information, semantically 

consistent, and further constrained by the ontology structure, can form the basis for 

subsequent queries that reveal much richer content than at first apparent. In fact, 

structuring the ontology in this manner sets up the entire domain in a logical and 

computationally complete structure. To further enhance the subsequent utility, the 

ontology is written in the Ontology Web Language (OWL) standardized by the 

World Wide Web Consortium (W3C) in the Descriptive Logic (DL) version. 
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The VISR ontology design was based upon an upper level ontology utilized by the 

National Center for Ontology Research (NCOR). In this approach, Entities and 

Events constitute the two main component classes of the upper level, with an entity 

comprised of two main branches, the Dependent and Independent Continuants. 

 

 

 

Figure 1. Upper Classes of the NCOR ontology. 

Working down through Independent Continuant branch to the class of Object, we 

find that this area of the ontology includes subclasses for Information Bearing Entity, 

Image Bearing Entity, and both VideoImage Bearing Entity and StillImage Bearing 

Entity. Including these as subclasses of Information Bearing Entity allows for the 

later expansion of the class to include other sensor data such as from SIGINT or 

MASINT collection systems. 

On the Dependent Continuant side of the ontology structure, we find the Information 

Content Entity from which is derived a Descriptive Information Content Entity, and 

subsequently the class Image and a subclass Video Image, an image that contains a 

moving (or extended temporal) representation of some Entity or Event, or Still Image, 

an image that contains a non-moving (or limited temporal) representation of some 

Entity or Event. These classes are what we would normally think of as the image or 

the video, while the Image Bearing Entity, including both VideoImage Bearing Entity 

and StillImage Bearing Entity are bearers of some Video Image or some Still Image 

found in the Dependent Continuant side of the ontology. 
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This differentiation provides for the description and definition of additional object 

classes such as Pixel and Geospatial Region as an Independent Continuant of the 

pictures that may be subsequently created. Additionally, the ontology can describe 

classes of Object such as Facility, Vehicle and Sensor independently of any particular 

Facility, Vehicle, and Sensor, again providing a means to specify facilities that are 

then imaged with particular attribute subclasses such as Airport or Aircraft. 

There is another type of Physical Entity class called Object Aggregate, of which a 

subclass is a Platform. This Platform has properties denoted as has_part, such as 

ImageSensor and another has_part, Aircraft. In this manner, we can now 

construct a complex object, a UAV, as shown in Figure 2. 

So with such a construct, we have the ability to present an image, describe its content 

(through some content extraction algorithm, such as feature extraction or automated 

target recognition) and relate that content to associated collection parameters (e.g. 

sensor, frame location, time, altitude…) as well as quality metrics of sensor 

performance that would be reflected in pixel characterizations, for example. 

 

 

 

Figure 2. Real World Object as multi-class constructs 

Note also that the instances of aircraft properties such as Speed, Direction and 

Location can be found in the ASPA metadata that is passed with the Predator UAV 

Datalink Local Metadata Set data elements (i.e. video metadata) [4]. Furthermore, 

since this information is dynamic, it can be updated and associated with any frame of 

the video collection. 
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3 Data as Image Content 

A key aspect of making this VideoIMINT ontology useful is the ability to extract 

content from image data. That is, to be able to identify objects (e.g. vehicles, people, 

weapons), preferably in an automatic manner, from the collected data. There are two 

aspects to this problem: first, the image content itself – the targets of interest, and 

second, the support data provided by the sensor and sensor platform as well as from 

other opportunistic sources. First, we will review the challenges associated with 

discovering imagery content. 

Ontological classes of content at first appear to be straight forward – vehicles, 

facilities, infrastructure, people… yet extracting these target object instances to 

populate these classes is a complex and elusive process to undertake in an automated 

manner. Manual tagging is an option that will be used for the foreseeable future, and 

facilitating this functionality in an efficient, icon driven manner is an additional 

objective of the VideoIMINT ontology effort, as is editing the classes of the ontology 

to be able to add additional target classes.  

Automated feature –object extraction from imagery, and in this case video, continues 

to be an evolving and complex process. Much of the early efforts in understanding 

and classifying data from overhead remote sensors were in the area of Geographical 

(or more recently, Geospatial) Information Systems (GIS). For earth observing 

systems, in order to classify sensor data and build an ontology, Camara et al [5] 

originally argued for a concept of objects as a subset of geospatial fields while 

acknowledging the overly generic boundaries of this idea. With this approach, 

everything in the world is a field or an object in the field. This bodes well for 

constructing a subsequent ontological model since the separation of objects is 

axiomatic. The problem with such an approach, is deciding, from a sensor viewpoint, 

rather than a geographer’s, which is field and which is object. From a purely GIS 

perspective the field/object solution is more semantic than image data content 

oriented; transcriptions of know objects in the world: mountains, rivers, 

roads…rather an a priori method of knowledge recording, provide a framework for 

ontology constructs: everyone knows a river, and there it is. However, the limitations 

of this world view were understood when, for example, one would try to decide 

where the very dynamic river object began and the river bank ended. This was 

difficult enough to ascertain during a ground survey, much less from overhead 

sensors looking at terrain during different times of year. 

For modern intelligence gathering systems, finding and identifying a road can be 

accomplished, for the most part, automatically. However, finding a road that is more 

earth than road can be difficult, requiring perhaps special sensor configurations as 

well as special data processing. This is a case of the ―object‖ merging with the 

―field‖. In fact, the entire problem of object recognition in sensed data can be reduced 

to first detecting the object,, that is, separating it from the background, and then 

recognizing what the object is and subsequently characterizing the target object [6]. 

Furthermore, tracking, or maintaining a view of the detection, a key capability for a 

video surveillance system, presupposes that 1) an object of interest has been detected 

and 2) the same object is being recognized in subsequent temporal increments: that is, 

being tracked. 
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While detection and tracking of objects in motion came into formal study during 

World War Two with the invention of RADAR, and the technical evolution of 

tracking since that time has of course been significant, yet the fundamental problems 

are the same. The issues have centered on state estimators, probability, statistics, and 

linear system analysis, all somewhat outside the scope of this paper. Yaakov Bar-

Shalom portrays the problem as ―…estimation of states of targets in surveillance 

systems operating in a multitatarget-multisensor environment. This problem is 

characterized by measurement origin uncertainty.‖[7]. However, once a system 

dominates uncertainty, target classification and population of ontological entity 

objects may proceed. Ontology refinement becomes a function of simply combining 

the extracted target objects with the collection associated metadata so that a vehicle 

image in one collect is differentiated from a vehicle image in a different collect. The 

fuzzy boundaries of the river-bank object can be quantified by a metadata structure 

with metrics appropriate to the target, or qualified by a time of year tag. Multiple 

target ambiguity is reduced in a sequence by noting position based on platform 

geoposition and camera pointing: information carried in the metadata stream [3]. 

In our preprocessing to populate ontology classes representing image content, we 

were able to successfully employ multiphase image decomposition and shape 

recognition algorithms [8] to extract target objects from video scenes. Local 

contextual information combined with statistical boosting was part of this image 

analysis process. Learning object representation is also an important part of the 

analysis and compatible with multiframe video so that subsequent collects of similar 

objects will enhance recognition success. 

4 Integration of Content 

The pivotal classes to be developed in the VideoIMINT ontology are the classes of 

imagery content and targets. Since both methods of extracting such imagery 

features: manual and automatic are utilized, an important aspect of the 

development effort was to define these classes and properties so as not preclude 

one or the other method while remaining consistent with other class and property 

descriptions. 

In the ontology design, we have already constructed a class of Property, a Dependent 

Continuant of Entity class. The elements of Property include physical properties such 

as Location, Direction, Distance, Height, Length and other physical features. While 

these properties can apply to aircraft, sensors or other Independent Continuant, 

Physical Entity Classes, they can also apply to imagery content classes such as an 

Airfield Control Tower. Thus, new classes can be added to capture the concepts of 

imagery content – targets, and the existing property classes can be used to define 

them, dimensions and location. 

The human analyst can efficiently recognize and tag content in videos, however, as 

was posited early in this paper, there is just too much to view. Therefore, automated 

extraction processing is an important mechanism for populating instances of the 

ontology while recognition of content detail and differentiation is not necessarily 

important. As was demonstrated in the development program, simple recognition of a 

―runway‖, a ―control tower‖ facility and ―aircraft‖ was sufficient to locate specific 
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video segments to vastly reduce the amount of data a human needed to review. The 

recognition of aircraft type was unnecessary, only the fact of presence of aircraft in 

the video made an enormous difference in video volume requiring human review. 

Figure 3 shows how segments of the video were highlighted by the ontology reasoner 

―knowing‖ that the class of Aircraft had been populated by the recognition engine. 

Those segments of identified video also reference the associated geospatial location, 

time, sensor and other details regarding the collection. 

 

 
Figure 3. Video viewer showing highlighted segments of recognized content. The 

analyst has only to skip to that segment to find aircraft – and perhaps add his own tag 

of type identification. 

5 Intelligence Assurance  

A practical aspect of all this metadata information, along with the imagery 

(InformationContentEntity) is the inherent ability to determine quality of collection at 

any time, and conversely, the ability to predict collection performance a priori, in 

order to manage missions in terms of platform/sensor and operations to complete 

mission requirements and fulfill Essential Elements of Information (EEI) needs. That 

is to say, if the mission is to image an SA-6 Integrated Air Defense System (IADS) as 

opposed to determine whether individuals in an urban area are carrying Man Portable 

Air Defense systems (MANPADS), the proper combination of aircraft/sensor/altitude 

can be determined prior to mission execution: essentially a dynamic National 

Imagery Interpretability Rating Scale (NIIRS) for video collection to drive tasking. 
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Furthermore, imagery can be subject to valuation for quality metrics, such as 

consistent General Image Quality Equation (GIQE) [9] performance in regards to 

factors such as spatial resolution in terms of ground sample distance (GSD), relative 

edge response (RER) and overall system modulation transfer function (MTF) [10], 

after the fact, to determine system performance efficacy. All of these factors can be 

calculated, in many cases dynamically, but certainly as simple reasoned queries into 

the ontology. The true value is that the semantics of system performance are enforced 

by the ontology such that the variables of formula are consistent, yielding 

comparative and useful results. It is then possible to understand how one 

platform/sensor combination will perform, or is performing, relative to another under 

varying conditions for various missions. 

6 Data Storage and Fusion 

An integrated approach to video collection systems that includes processing, ontology 

mapping, storage and fusion would certainly enhance the overall utility and value of 

this intelligence source. Integration of an ontology with a tightly coupled storage 

system can yield value in the same manner as designing a data schema will for any 

data storage system. In fact, there are many similarities between a database schema 

and an ontology. However, one of the major differences is that a schema is essentially 

a static construct and does not support logical inferences in the way an ontology does. 

[11, 12] For example, a query into ontology might ask if a particular imaged runway 

can support a large cargo aircraft. The ontology can explore data rules regarding 

classes of runways, aircrafts and their properties, one of which may be a relationship 

between aircraft type with a property of landing Distance (length), and Weight (Load) 

while the classes and subclasses of ObjectFacilityAirportRunway will have a 

similar property of Length and another of Load. Thus, if a runway image falls into a 

particular runway ontology class, then the inferred condition that it will support 

certain aircraft is straight forward. The Database, on the other hand, has the explicit 

requirement of a schema entry to identify that runway has a certain characteristics as 

part of a data storage tuple, without inferring a particular aircraft can use that runway. 

6.1 Storage Approaches 

While in theory, the ontology for VideoIMINT could operate on any data video that 

was known to the ontology (i.e. standard video products); a tightly coupled storage 

system is more efficient. The ability to reference the storage system upon which the 

ontology operates is a great advantage. Short-term storage will make searches more 

efficient and rapid while longer term retrieval, the forensic search, can be enhanced 

as a class in the ontology with rules guiding which data is stored for what periods of 

time. Temporal redundancy, similar to information redundancy, can guide the 

―compression‖ of video for longer term, more efficient, storage if the storage rules 

operating on this data are clearly defined (semantically consistent). For example, a 

vehicle ―track‖ can include the content of the tracked video as only a segment vector 

of the video frame through time. Utilizing a common method of video compression, 
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the ―background‖ can be intermittent frames (I-frames, B-frames or P-frames of the 

MPEG specification) that maintain the slower changes in the surrounding scene. I t 

would be unnecessary to retain all the traditional I, B, or P-frames but rather only 

those frames useful to understand the context of the tracked target. Further 

compression is achieved by rendering these frames as wavelet compressed data 

according to the JPEG2000 compression schemes [13]. The track itself can be stored 

as a separate class of wavelet, type Track, with useful subclasses and properties. 

Regardless of scheme employed to store data from video, control of a short-term 

storage of data will enhance the operation of the ontology. 

6.2 Data Fusion 

When building an ontology of imagery content and associated metadata, these classes 

become the inputs for stipulated data fusion processing, at least for lower levels of the 

Joint Directors of Laboratories (JDL) Data Fusion Model (1998 revision) [14] that 

include Object Detection and Assessment and Object Refinement. 

As targets are detected and assessed, declarations of object are made which in turn 

enables the population of ontological object classes (e.g. vehicle). The thresholds and 

rules governing this instancing are the same thresholds and rules that will (or will 

not) satisfy subsequent fusion processing of these detected objects. Associations of 

metadata, related to these instances will allow further Object Refinement in the sense 

of positioning, sizing and characterizing the ontological object thus enhancing fusion 

processes with associated metrics. Such qualifications will enable overall correctness 

of initial assessments in terms of accuracy, precision, and error within the fusion 

process. 

Consider fusing two different collects of video data, from different sensor types, at 

different times covering a similar geographical location. The imagery must be 

collected, located, registered spatially and temporally, while the characteristics of the 

sensor, the look angle and altitude (for resolution purposes) all need to be considered 

to just begin the fusion process. However, the classes and properties that have been 

described previously in this paper do just that. Utilizing the metadata alone, almost all 

sensors and platforms provide this information, and it is rendered by the ontology 

into appropriate classes with properties. That information which is not collected, for 

example, pixel image resolution, can be readily calculated from sensor specification, 

sensor pointing data, and platform performance data, all readily available. The only 

other fusion requirement is that the ontology enforces semantic consistency of units 

and metrics. The fusion processes can now be built into the data processing chain 

with sensor selection tasking ―switches‖ to choose appropriate sensors for a particular 

mission and appropriate systems operations. The data preconditioning for fusion is 

completed: leaving specific, mission related fusion processes, with inputs necessary 

for predictable, consistent sensor data fusion.  

The construction of the ontology must however, consider such subsequent processing 

in the design of classes and properties. While the necessary metadata and class 

descriptions can be built, they may not be consistently populated from one sensor to 

the next of one collect to the next. We may provide the facility for the subsequent 

operation, which does not, however, guarantee fusion. 
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7 Summary 

This prototype ontology construct for Video Imagery Intelligence collection 

demonstrated the value of integrating video metadata along with specification 

information and imagery content in an organized, semantically consistent structure 

based on standards. Additionally, direct logical queries into the ontology were able to 

identify video segments with tagged and extracted features and mark those segments 

for review by an analyst. The ontology structures appear to be a valuable and useful 

tool to bring under control the growing volumes of data that is being collected by 

Unmanned Aerial Vehicles in various mission circumstances. The ontologies, if 

developed correctly, can also be used as both a mission planning system and a 

dynamic control system based on proven approaches such as NIIRS guided tasking. 

Overall performance quality can be monitored in real time to ensure the efficient and 

effective operation of intelligence collection platforms. 

Finally, the use of ontologies enforces a semantic consistency as well as maintenance 

of performance information that forms the basis of sensor data fusion. Using the 

information collected and categorized by the ontology promises to facilitate building 

new fusion processes based on simple class relationships such as location, 

dimensional information and sensor operational performance. 
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