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Abstract  

Background 

Text mining challenges have been organised to measure the performance of automatic text mining 

solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-

consuming and costly and the final corpus consists at the most of a few thousand documents annotated 

with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) 

have produced a large-scale annotated biomedical corpus with four different semantic groups through the 

harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard 

Corpus (SSC-I). The four semantic groups were chemical entities and drugs (CHED), genes and proteins 

(PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC 

Challenge asking the participants to annotate the corpus with their annotation solutions. 

Results 

All four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed 

annotated data sets for evaluation against the SSC-I.  CPs could ignore the training data and deliver the 

annotations from their annotation system, or could train a machine-learning approach on the provided pre-

annotated data.  In general, the performances of the annotation solutions were lower for the CHED and 

PRGE in comparison to the identification of DISO and SPE. The best performance over all semantic 

groups were achieved from two annotation solutions that have been trained on the SSC-I. 
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The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if 

the participant did not make use of the annotated data set from the SSC-I for training purposes. The 

performances of the participants’ solutions were again measured against the SSC-II. The performances of 

the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE.  

Conclusions 

The SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 

Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous 

to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the 

annotation solutions against the SSC-II leads to better performance for the CPs’ annotation solutions in 

comparison to the SSC-I. 

Background  
Biomedical text mining (TM) has developed into a bioinformatics discipline seeking IT methods delivering 

accurate results from an automatic literature analysis into bioinformatics research. This objective requires 

the development of benchmarks and the assessment of existing TM solutions against these benchmarks. A 

number of challenges have been proposed to achieve this goal: BioCreAtive I and II, JNLPBA and others 

[1-5]. In all these approaches, the organisers deliver a set of manually annotated documents and ask the 

CPs to reproduce the results with their automatic methods. The annotated corpora are provided to the 

public after the challenge is closed and all the results are published. 

The first CALBC Challenge is similar in the sense that the project partners (PPs) of the CALBC project 

also provided an annotated corpus to the challenge participants (CPs) of the first CALBC challenge to 

reproduce the annotations with automatic means. On the other side, the first CALBC Challenge was 

different to the before-mentioned challenges with regards to the following modifications: (1) the annotated 

corpus has been generated automatically and not manually (Silver Standard Corpus, SSC-I), and (2) the 

size of the SSC-I is significantly bigger than the corpora mentioned produced for the other challenges, i.e. 

the annotated corpus contains 50,000 Medline abstracts for training and the corpus for annotation consists 

of 100,000 test documents. This difference in size requires that all assessment is performed fully 

automatically, that the CPs apply annotation solutions that can cope with such a large-scale corpus and that 

the assessment solutions can evaluate the contributions in a short period of time. The automatic annotation 

of the corpus also requires new solutions to harmonise the contributions from different automatic 

annotation solutions.  The term “harmonisation” refers to the process that determines a set of annotation 

boundaries in the text. Overall these annotations should have the characteristic that all annotation solutions 

show high performance against the set of annotations, for example when measuring the F-measure of the 

annotation solution [6]. 

When comparing different NER solutions, it becomes clear that they do not generate the same results 

depending on the technology behind and the type of resources used for the instantiation of the solutions 

(see BioCreative II). On the other side, when combining the results from different automatic annotation 

solutions, we can achieve an improvement of the results of the combined solution (see BioCreative Meta-

Server) [7]. As a consequence, the PPs of the CALBC project have combined their automatic annotation 

solutions to produce the first Silver Standard Corpus of the CALBC project.  

In addition, each annotation solution is optimised for a single semantic type and solutions for a larger 

scope of semantic groups are still missing. This is again partly due to the fact that manually curated 

corpora can only cover a small number of semantic groups to focus the ongoing work to the amount of 

work that is achievable in a fixed period of time and according to the available budget. The proposed 

approach of the CALBC project can cover a larger number of annotations due to the fact that the 

annotations are produced automatically and harmonised with automatic means.  

In this manuscript, we report on the results of the first CALBC challenge. The CPs have submitted one or 

several sets of annotated documents. All the submissions have been assessed against the SSC-I. In 

addition, the submissions have been used to generate the second Silver Standard Corpus (SSC-II) and all 

the submissions have been assessed against the SSC-II. The results are presented in this manuscript to 

support a better understanding to which extent the automatic generation of an annotated corpus contributes 

to the benchmarking of annotation solutions in a domain where a large number of NERs have to be 

identified inside a large number of scientific documents. 
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Methods 
In the CALBC project and challenge the PPs and CPs contribute their annotations on a given corpus to 

enable the harmonisation of all annotations for a large-scale annotated corpus.  A priori the annotation 

solutions do not share any properties and the contributed annotations should be produced by independent 

systems, but should be similar in the sense that they contribute annotations for entities in the biomedical 

domain.  This leads to the result that the different solutions make use of similar biomedical data resources 

for the representation of terms and concepts and thus should show similarities in the annotation  

 

Solution
PPs | 

CPs

Use of 

Training 

Data

PRGE CHED DISO SPE

P01 [ / ] UniProtKb Jochem UMLS NCBI taxonomy

P02 [ / ]

Different resources 

incl. UniProtKb, 

EntrezGene

Jochem UMLS NCBI taxonomy

P04 [ / ]
UniProtKb, 

EntrezGene
Jochem

MeSH, MedDRA, 

NCI, SNOMED-CT

NCI, MeSH, 

SNOMED-CT

P06 [ / ] UMLS

P10 [ / ]
UniProtKb, 

EntrezGene
NCBI taxonomy

P13 [ / ]

Indexing of tokens 

and terms
P15 [ / ] UMLS UMLS UMLS UMLS

Both, trained & rule-

based solutions
P03 [ / ]

UniProtKb, 

EntrezGene
Jochem UMLS NCBI taxonomy

Case-based 

reasoning
P09 [ / ] UMLS

P07 [ / ]

P16 [ / ] Genia UMLS

P11 YES [ / ] [ / ] [ / ] [ / ]

P12 YES [ / ] [ / ] [ / ] [ / ]

P14 YES [ / ] [ / ] [ / ] [ / ]

CRF based, trained 

NER solution

Dictionary-based 

concept recognition

 

Table 1: The table gives an overview on the annotation solutions that have been used for the 

generation of the SSC-I and the SSC-II.  For the generation of the SSC-I only the annotations 

from the 4 project partners (P01 – P04) have been integrated, whereas the SSC-II combines the 

annotations from the challenge participants (P06-P10, P13 and P15), not including P11, P12 and 

P14, since they have used the training data. Please refer to the proceedings of the first CALBC 

workshop for further details [8]. 

Generation of the first CALBC Silver Standard Corpus (SSC-I) 

All PPs annotated the corpus of 150,000 Medline abstracts with their annotation solutions.  The project 

partners P01, P02 and P04 used dictionary-based concept recognition methods with techniques for quality 

improvements, whereas partner P03 applied a combination of solutions that are either dictionary-based or 

is based on machine-learning techniques.  All annotations were delivered in the IeXML format and concept 

normalisation should make use of standard resources such as UMLS, UniProtKb, EntrezGene or should 

follow the UMLS semantic type system [9-13].   

The alignment is based on the methods described in [6,14].  The applied method used pair-wise alignment 

between two annotated sets for a given semantic type.  For every sentence the annotations from one 

contribution for a given type is aligned with the annotations from the next contribution for the same 

semantic type.  The tokens have been weighted with the inverse document frequency (IDF) for the token 

across the whole corpus and the cosine similarity of the two annotations has been measured.  If the 

similarity is above 0.98, then the alignment is considered successful and the boundaries of the shorter 

annotation have been selected as the final annotation.  If at least two partner contributions agree on the 

same annotation (2-vote agreement), then the annotation has been selected for the final corpus.  Only in the 

case of CHED the PPs shared the terminological resource for the annotation [15].  

Generation of the SSC-II 

The contributions of the CPs were evaluated against the SSC-I.  Different evaluation schemes were used to 

determine the performance of the solutions [6,14].  All contributions were assessed against the SSC-I by 

applying exact matching, nested matching and cosine similarity matching with a 0.98 and 0.9 cosine 

similarity score (results not shown). The measurements were performed on the basis of a reduced but 

standardised set of 1,000 Medline abstracts that have been selected at random from the full corpus.   
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Nr. Of 

anntoations 

in the SSC-

I

Nr. Of CPs

Nr. Of 

submissions 

from CPs

Average 

nr. Of 

annotations 

from all 

CPs

Nr. Of 

annotations 

in the SSC-

II

CHED 228,622 6 11 233,398 238,431

PRGE 275,235 9 15 343,681 435,797

DISO 300,637 8 11 255,599 245,524

SPE 317,211 7 9 277,071 304,503  

Table 2: The table shows the number of annotations that are contained in the SSC-I. This corpus 

has been generated from the contributions of the PPs. Not all challenge participants (CPs) have 

participated in all parts of the challenge. A smaller number of CPs have submitted annotations for 

chemical entities. The average number of annotations for CHED and PRGE in the submitted 

corpora was above the number of annotations in the SSC-I and for DISO and SPE below the 

number of the ones in the SSC-I. 

The best average F-measure performances were achieved when applying 0.9 and 0.98 cosine similarity 

scoring.  All submissions from all participants have been evaluated and the contributions with the best F-

measure performance against the SSC-I have been selected for the harmonisation into the SSC-II. 

For the harmonisation of the contributions (SSC-II), a varying number of contributions had to be 

considered for the different semantic groups, i.e. 6 for CHED, 7 for SPE, 8 for DISO and 9 for PRGE (see 

table 2). A 3-vote agreement in combination with a 0.98 cosine similarity score in the alignment was 

required for the acceptance of the annotation across the different contributions.  For all semantic groups, 

different voting schemes (i.e. 2- to 6-vote agreement) were evaluated to determine the best performing 

voting scheme in terms of the highest average F-measure performance across the contributions of the CPs.  

The 3-vote agreement delivered the best balance between the recall and the precision of the contributions 

against the harmonised SSC-II.  All presented results are based on the annotations on the subset of 1,000 

Medline abstracts. 

The alignments of the 100,000 documents were either performed on Sun Fire opteron servers (4 or 8 CPUs, 

RAM sizes from 32 to 256 Gb RAM, 9-12 hours) or on the compute farm of 700 IBM compute engines 

(dual CPU, 1.2-2.8 Ghz, 2 GB RAM, 3 hours). 

Challenge participation and challenge contributions 

12 CPs actively took part in the challenge. Each CP could contribute several submissions at any time. 

Overall the CALBC challenge received 19 valid submissions. 3 CPs used the SSC-I as training data and 

contributed in total 8 submissions (ref. to table 2). 2 CPs did not use the SSC-I, but used an annotation 

solution that has been trained on a different annotated corpus for the challenge. All other partners (in total 

11) used dictionary-based solutions and in one case used a combination of different solutions without 

training on the SSC-I.  

Five CPs only focused on a single semantic group. All the other CPs covered three or more semantic 

groups. CP P10 delivered for PRGE a very high number of annotations, which impaired the performance 

of the system against the SSC-I. 

Results  
The PPs contributions have been aligned to generated the SSC-I. The SSC-I has been contributed to the 

public to train machine-learning based NER solutions on the corpus and to gather the annotations of the 

CPs for performance assessments. The contributions of the CPs have been used to generate the SSC-II. 

Evaluation of the contributed annotated corpora against the SSC-I 

The submissions of the CPs were compared against the SSC-I (see below).  Table 3 shows that two 

solutions that were based on the provided training data reproduced the SSC-I annotation „standard“ at a 

high level of quality: for SPE the solutions achieved 93% F-measure and for the other semantic groups the 

F-measure was above 80% [8]. This shows that the SSC-I was homogeneous enough so that a trained 

system could reproduce the annotations. As a consequence, we can expect that complex automatic 

annotation solutions could be replaced with a machine learning approach to reproduce the annotations. 
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Cos-98 P12 P11 P03 P04 P01 P02 P10 P14 P08 P15 P09 P06 P07 P09 P13 P16

SPE 93% 93% 79% 83% 71% 69% 84% 69% 56% 42% 2%

DISO 87% 89% 71% 69% 82% 76% 78% 62% 51% 32% 3% 73%

CHEM 83% 84% 75% 82% 49% 68% 51% 20% 17% 3% 23%

PRGE 81% 73% 77% 66% 66% 59% 40% 52% 12% 18% 2% 50% 11% 28%

Avg. 86% 85% 76% 75% 67% 68% 68% 58% 35% 27% 2%  

Table 3: The table shows the F-measure performance of the PPs and the CPs against the SSC-I 

(cos-98 harmonisation, 2 vote agreement). The project partners are part of the comparison (P01 – 

P04). P11, P12, and P14 used the training data for their annotations (red label in a green box). 

Only the best performing submission of each CP was included into the analysis. P09 only 

contributed a small number of annotations in the submitted corpus. 

Performance measures of the CPs’ solutions against the SSC-I 

The performances of the annotation solutions against the SSC-I and the SSC-II . 
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Figure 1 (Proteins/Genes in SSC-I and SSC-II): The figure displays the comparison of the CPs 

performances to the SSC-I (left side) and to the SSC-II (right part) for the annotation of proteins 

and genes (PRGE). Only a smaller number of contributions of CPs can be compared against the 

SSC-II, since a few submissions are based on solutions that have been trained on the SSC-I.  

The diagrams display scatter plots for the precision and recall values of the annotation solutions. 

Red circles denote systems that have used the training data and yellow circles denote the 

annotations delivered by the PPs’ annotation solutions.  

The PPs’ tagging solutions share the same range of performance, i.e. their precision and their recall ranges 

from 55 to 80%. The performance of CPs’ solutions that did not rely on the training data was lower than 

the PPs’ performances. Two of the trained systems showed higher performances than the PPs’ solutions. 

The two best-performing machine-learning based solutions produce results that are comparable to known 

solutions for the gene mention task [16,17]. On the other side, the performances have been measured 

against a corpus that includes a higher degree of variability in the annotations in comparison to the gold 

standard corpora that are usually used for the measurement of gene-tagging solutions. 
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Figure 2 (Chemical Entities in SSC-I and SSC-II): The figure displays the performances for the 

PPs’ and CPs’ annotated datasets for chemical entities (CHED) measured against the SSC-I (left 

side) and the SSC-II (right part). For details see Fig. 1. 

Fig. 2 shows a distribution for the performance for the annotation for chemical entities. The two best 

performing machine-learning solutions outperform again all other annotation solutions and the PPs’ 

annotation solutions have performances that are rather similar to each other and quite different from the 

performances of the contributions from the CPs.  Comparing the results in fig. 1 and fig. 2, we note that the 

best annotation solutions show better performance for chemical entities than the same solutions 
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demonstrate for the annotation of proteins/genes. We conclude that the annotation of PRGEs in the SSC-I 

have higher variability (or more noise) than the annotations for the chemical entities in the same corpora. 

The following figures (fig. 3 and 4) show the same distribution for disease and species mention 

identification. For these two tasks the annotation solutions show better performance than for the previous 

two tasks (PRGE and CHED). We can derive that a good performance on these two tasks can be reached 

by the majority of the annotation solutions in comparison to the other two tasks. 
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Figure 3 (Diseases in SSC-I and SSC-II): Distribution of the CPs’ contributions in a Prec/Rec 

scatter plot for diseases (DISO). The best performing solutions were again trained on the training 

data and achieved performances of almost 90% recall at 90% precision.  

The diagram for the identification of the diseases (DISO, fig. 3) demonstrates that the majority of the 

proposed systems identified the diseases at a recall of 60% and above, and at a precision of 55% and 

above. Two rule-based solutions from CPs showed similar performances to the PP’s solutions. We can 

conclude that the representation of the diseases in the SSC-I is better standardised and thus includes less 

variability or noise than the representation of proteins/genes and chemical entities. 
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Figure 4 (Species in SSC-I and SSC-II): Distribution of the CPs’ contributions in a Prec/Rec 

scatter plot for species (SPE). The two machine-learning approaches showed almost identical 

performances.  

The identification of species could be solved to the best precision and the best recall values from the large 

majority of all proposed solutions.  Again the two best performances were achieved by two machine-

learning approaches that reproduced the annotations from the training data. The performances of the other 

solutions, i.e. the PPs’ solutions and the CPs’ solutions, had the best performances for the identification of 

species in contrast to the other tasks. It is clear that the identification of species can be performed at a level 

of quality which is above the measured performances of the other semantic groups. 

Performance against the SSC-II 

Partners Participants

P01 P02 P03 P04 P08 P09 P15 P06 P10 P16 avg

SPE 69.9% 66.6% 72.6% 79.1% 60.2% 2.3% 44.2% 87.8% 60.3%

DISO 77.2% 67.4% 68.9% 65.6% 53.5% 2.5% 31.5% 75.7% 80.6% 58.1%

CHEM 40.3% 76.8% 70.8% 58.6% 26.0% 4.4% 16.0% 41.8%

PRGE 62.6% 47.1% 58.9% 58.6% 33.1% 3.2% 34.6% 54.0% 47.1% 44.4%  

Table 4: F-measure performance of the contributions from the PPs and the challenge participants 

against the SSC-II (harmonisation: 98% cosine similarity, 3 vote agreement, 1,030 documents, see 

Material & Methods).  
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The results of the CPs and the PPs were compared against the SSC-II in addition to the SSC-I. Both 

harmonised sets were generated by using 98% cosine similarity and the comparison against the corpus was 

done with the same measure. 

Tagging of proteins/genes and chemical entities measured against the SSC-II 

The performances of the PPs’ annotation solutions for genes/proteins showed lower results in the 

assessment against the SSC-II than in comparison to the SSC-I (refer to fig. 1). Since the SSC-II represents 

the harmonisation of annotations across a larger number of contributions, it can be expected that the 

annotations in the SSC-II are more heterogeneous than in the SSC-I.  

The performance of the CPs’ annotation solutions has improved against the SSC-II in comparison to the 

SSC-I: the precision against the SSC-II has increased in comparison to the SSC-I. Recall has also 

improved. This result shows that the SSC-II incorporates characteristic features that are shared amongst all 

annotation solutions.  

In the SSC-II the annotation solutions of the PPs for chemical entities show lower performance in 

comparison to the SSC-I (refer to fig. 2). The performance of the CPs’ annotation solutions has improved. 

Altogether the distribution of the performances of the PPs’ annotation solutions and the CPs’ solutions is 

comparable. 

 

 

 

 

 

 

 

 

 

 

Figure 5 (F-measure performances for PRGE and CHED): The left and the right diagram 

show the performances for the different annotation solutions against the SSC-I (blue diamond) 

and against the SSC-II (red box). Each pair-wise entry represents a single annotation solution. The 

first four solutions have been provided by the PPs, the other solutions are taggers from the CPs. 

The left diagram shows the results for the PRGE annotations and the right diagram shows the 

results for the CHED annotations. 

As can be seen in fig. 5, the performances of the annotation solutions for the four PPs deteriorated when 

comparing the performance against SSC-II instead of SSC-I. Furthermore, the performance of the four PPs 

against the SSC-II shows an F-measure that seems to be more evenly distributed across the different PPs, 

i.e. the systems seem to be more equal.  

The performances of the CPs’ annotation solutions have improved when moving from the SSC-I to the 

SSC-II. This result can be explained by the fact that the contributions of the CPs have been included into 

the SSC-II in comparison to the SSC-I.  

The results from the comparison of the annotation solutions for the chemical entities are not as clear as the 

results for the annotation of proteins/genes. In the case of the chemical entities, the performances of the 

PPs’ solutions deteriorate except for one PP. The performance of the CPs’ solutions varies to a small 

extent. 

Tagging of diseases and species measured against the SSC-II 

The PPs’ annotation solutions and the CPs’ solutions show similar performance against the SSC-II and the 

SSC-I. The two corpora seem to have the same characteristics concerning the annotated entities in the 

corpus. In other words, the contribution of the CPs to the harmonised corpus did not change the quality of 

the silver standard corpus when producing the SSC-II from the PPs’ and the CPs’ contributions in 

comparison to the SSC-I. We can conclude that the annotation of disease entities is better normalised than 

the two other semantic groups, i.e. chemical entities and protein/genes, respectively. 

Similar to the assessment of disease annotations, the species tagging solutions of the PPs and the project 

CPs did not vary when the annotations were evaluated against the SSC-II in comparison to the SSC-I. For 

both corpora, the annotation solutions yielded similar results. This leads to the conclusion that the SSC-I 

and the SSC-II have similar annotations and also to the result that the different contributing systems had 
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similar performances right from the beginning. Overall, we can conclude that the representation of species 

is better normalised or standardised in the scientific literature than chemical entities or gene/protein 

representations. 

In the last analysis, we compared the F-measures reached from the individual systems against the SSC-II 

directly against the F-measures from the SSC-I. This should give an overview on the solutions that gained 

performance in the SSC-II over the SSC-I and the other solutions that deteriorated their performance. 

 

 

 

 

 

 

 

 

 

 

Figure 6 (F-measure Performances for SPE and DISO): The left diagram shows the results for 

the species annotations and the right diagram shows the results for the disease annotations (for 

details please refer to fig. 5). 

When analysing the performance of the different solutions for species annotations and for diseases 

annotations, we find only small differences in the performances of the systems against the SSC-I and the 

SSC-II.  

Direct measurement of the SSC-I against the SSC-II 

Reference: SSC-I (cos 0.98)

SSC-II DISO SPE PRGE CHED

Rec 89.0% 94.5% 59.7% 49.6%

Prec 71.6% 90.0% 96.8% 49.4%

F-meas 79.3% 92.2% 73.8% 49.5%  

Table 5: The table shows the direct measurement of the SSC-I against the SSC-II that has been 

generated with the similarity measure of 98% cosine similarity scoring and a 3-vote agreement 

between the participants.  The comparison is based on a 98% cosine similarity score.   

In the direct comparison between the SSC-I and the SSC-II, the annotations for SPE and DISO 

show better agreement than the comparison of the annotations for PRGE and CHED.  The latter 

shows the lowest performance indicating that higher diversity exists between the two corpora. 

Discussion & Conclusions 
Manual inspection of the SSC-I and the SSC-II 

The manual analysis of the SSC-I and the SSC-II is ongoing work.  Due to the size of the corpus, it 

requires special IT solutions to oversee the regularities and irregularities in the corpus.  A selection of 

irregularities result from the methods applied.  First, a number of annotations are not captured (“false 

negatives”, FN, reduced recall) if none of the solutions identifies the entities.  An increasing number of 

contributing annotation solutions reduces the risk that annotations are missed: a bigger number of included 

annotation solutions lead to a bigger number of annotations that are captured.  This achievement is counter-

balanced by the number of agreements that have to be available at minimum to accept an annotation. 

Second, for the same type of entity, e.g. “insulin”, different annotation solutions use a different tag, e.g. 

PRGE instead of CHED and vice versa.  The harmonisation of the corpus can account for this, but will not 

produce this type of polysemous annotation throughout the whole corpus, since not all mentions have been 

consistently annotated with the two different groups over the whole corpus.   

Third, inflections of terms, e.g. “tumour” vs. “tumours” and “bear” vs. “bearing”, lead to disagreements 

between the different annotation solutions.  In the first case, the inflectional variability could be resolved 

and would lead to higher agreement, in the second case assumptions about the usage of the verb or noun 

have to be made to resolve conflicts.   
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Conclusions  

The comparison of the proposed solutions against the SSC-I is a new approach to evaluate annotation 

solutions. Until now, no large-scale corpus was available to achieve this task. In addition, it became clear 

that the SSC-I is homogeneous enough to be used as training data to achieve the same annotation task 

across the different semantic groups. 

The generation of a harmonised corpus is a challenging task, but the presented results demonstrate that the 

produced harmonised corpus integrates the characteristics from the different annotation solutions. As a 

result, we can determine the features in the harmonised corpus by the annotation solutions that contribute 

to the generation of the SSC.  

From a different perspective, we can argue that each of the used annotation solutions represents a piece of 

the complete annotation task. The more solutions are combined, the more closely we approximate an 

assumed consensus in the annotation task, which can be reproduced with a machine-learning tagging 

solution. 
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