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Abstract

This paper presents a novel approach to

the problem of hedge detection, which

involves the identification of so-called

hedge cues for labeling sentences as cer-

tain or uncertain. This is the classification

problem for Task 1 of the CoNLL-2010

Shared Task, which focuses on hedging in

biomedical literature. We here propose to

view hedge detection as a simple disam-

biguation problem, restricted to words that

have previously been observed as hedge

cues. Applying an SVM classifier, the

approach achieves the best published re-

sults so far for sentence-level uncertainty

prediction on the Shared Task test data.

We also show that the technique of ran-

dom indexing can be successfully applied

for compressing the dimensionality of the

original feature space by several orders of

magnitude, while at the same time yield-

ing better classifier performance.

1 Introduction

The problem of hedge detection refers to the task

of identifying uncertainty or speculation in text.

Being the topic of several recent shared tasks and

dedicated workshops,1 this is a problem that is re-

ceiving increased interest within the fields of NLP

and biomedical text mining. In terms of practical

motivation, hedge detection is particularly useful

in relation to information extraction tasks, where

the ability to distinguish between factual and un-

certain information can be of vital importance.

The topic of the Shared Task at the 2010 Confer-

ence for Natural Language Learning (CoNLL), is

hedge detection for the domain of biomedical re-

search literature (Farkas et al., 2010). The task is

1Hedge detection played a central part of the shared tasks
of both BioNLP 2009 and CoNLL 2010, as well as the NeSp-
NLP 2010 workshop (Negation and Speculation in NLP).

defined for two levels of analysis: While Task 1 is

described as learning to detect sentences contain-

ing uncertainty, the object of Task 2 is learning to

resolve the in-sentence scope of hedge cues. The

focus of the present paper is only on Task 1.

A hedge cue is here taken to mean the words

or phrases that signal the attitude of uncertainty

or speculation.2 Examples 1-4 in Figure 1, taken

from the BioScope corpus (Vincze et al., 2008), il-

lustrate how cue words are annotated in the Shared

Task training data. Moreover, the training data

also annotates an entire sentence as uncertain if

it contains a hedge cue, and it is the prediction of

this sentence labeling that is required for Task 1.

The approach presented in this paper extends on

that of Velldal et al. (2010), where a maximum en-

tropy (MaxEnt) classifier is applied to automati-

cally detect cue words, subsequently labeling sen-

tences as uncertain if they are found to contain a

cue. Furthermore, in the system of Velldal et al.

(2010), the resolution of the in-sentence scopes of

identified cues, as required for Task 2, is deter-

mined by a set of manually crafted rules operating

on dependency representations. For readers inter-

ested in more details on this set of rules used for

solving Task 2, the reader is referred to Øvrelid et

al. (2010b). The focus of the present paper, how-

ever, is to present a new and simplified approach

to the classification problem relevant for solving

Task 1, and also partially Task 2, viz. the identifi-

cation of hedge cues.

2 Overview

In Section 5 we first develop a Support Vector Ma-

chine (SVM) token classifier for identifying cue

2As noted by Farkas et al. (2010), most hedge cues typi-
cally fall in the following categories; auxiliaries (may, might,
could, etc.), verbs of hedging or verbs with speculative con-
tent (suggest, suspect, indicate, suppose, seem, appear, etc.),
adjectives or adverbs (probable, likely, possible, unsure, etc.),
or conjunctions (either. . . or, etc.).

72



(1) {ROI 〈appear〉 to serve as messengers mediating {directly 〈or〉 indirectly} the release of the inhibitory subunit I kappa
B from NF-kappa B}.

(2) {The specific role of the chromodomain is 〈unknown〉} but chromodomain swapping experiments in Drosophila
{〈suggest〉 that they {〈might〉 be protein interaction modules}} [18].

(3) These data {〈indicate that〉 IL-10 and IL-4 inhibit cytokine production by different mechanisms}.

(4) Whereas a background set of promoter regions is easy to identify, it is {〈not clear〉 how to define a reasonable genomic
sample of enhancers}.

Figure 1: Examples of hedged sentences in the BioScope corpus. Hedge cues are here shown using angle

brackets, with braces corresponding to their annotated scopes.

words. For a given sentence, the classifier con-

siders each word in turn, labeling it as a cue or a

non-cue. We will refer to this mode of cue classifi-

cation as performing word-by-word classification

(WbW). Later, in Section 6, we go on to show how

better results can be obtained by instead approach-

ing the task as a disambiguation problem, restrict-

ing our attention to only those tokens whose base

forms have previously been observed as hedge

cues. Reformulating the problem in this way sim-

plifies the classification task tremendously, reduc-

ing the number of examples that need to be consid-

ered, and thereby also trimming down the relevant

feature space to a much more manageable size. At

the same time, the resulting classifier achieves the

best published results so far on the Shared Task

data (to the best of our knowledge).

Additionally, in Section 7 we show how the

very large input feature space can be further com-

pressed using random indexing. This is essentially

a dimension reduction technique based on sparse

random projections, which we here apply for fea-

ture extraction. We show that training the classifier

on the reduced feature space yields better perfor-

mance than when using the original input space.

The evaluation measures and feature templates are

detailed in Sections 5.2 and 5.3, respectively. Note

that, while preliminary results for all models are

presented for the development data throughout the

paper, the performance of all models is ultimately

compared on the official Shared Task held-out data

in Section 8. We start, however, by providing a

brief overview of related work in Section 3, and

then describe the relevant data sets and preprocess-

ing steps in Section 4.

3 Related Work

The top-ranked system for Task 1 in the official

CoNLL 2010 Shared Task evaluation, described

in (Tang et al., 2010), approaches cue identifica-

tion as a sequence labeling problem. Similarly

to Morante and Daelemans (2009), Tang et al.

(2010) set out to label tokens according to a BIO-

scheme, i.e. indicating whether they are at the Be-

ginning, Inside, or Outside of a hedge cue. Tang et

al. (2010) train both a Conditional Random Field

(CRF) sequence classifier and an SVM-based Hid-

den Markov Model (HMM), finally combining the

predictions of both models in a second CRF.

In terms of the overall approach, i.e. viewing

the problem as a sequence labeling task, Tang et

al. (2010) are actually representative of the major-

ity of the ST participants for Task 1 (Farkas et al.,

2010), including the top three performers on the

official held-out data. As noted by Farkas et al.

(2010), the remaining systems approached the task

either as a WbW token classification problem, or

directly as a sentence classification problem. Ex-

amples of the former are the systems of Velldal et

al. (2010) and Vlachos and Craven (2010), sharing

the 4th rank position (out of 24 submitted systems)

for Task 1.

In both the sequence labeling and token classi-

fication approaches, a sentence is labeled as un-

certain if it contains a word labeled as a cue. In

contrast, the sentence classification approaches in-

stead tries to label sentences directly, typically us-

ing Bag-of-Words (BoW) features. In terms of the

official Task 1 evaluation, the sentence classifiers

tended to achieve a somewhat lower relative rank.

4 Data Sets and Preprocessing

The training data for the CoNLL 2010 Shared Task

is taken from the BioScope corpus (Vincze et al.,

2008) and consists of 14,541 sentences (or other

root-level utterances) from biomedical abstracts

and articles. Some basic descriptive statistics for

the data sets are provided in Table 1. We see that

roughly 18% of the sentences are annotated as un-

certain. The BioScope corpus also provides anno-
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Data Set Sentences Hedged Cues Multi-Word Tokens Cue Tokens
Sentences Cues

T
ra
in
in
g Abstracts 11,871 2,101 2,659 364 309,634 3,056

Articles 2,670 519 668 84 68,579 782

Total 14,541 2,620 3,327 448 378,213 3,838

Held-Out 5,003 790 1,033 87 138,276 1,148

Table 1: The Shared Task data sets. The top three rows lists the properties of the training data, separately

detailing its two components—biomedical abstracts and full articles. The bottom row summarizes the

official held-out test data (articles only). Token counts are based on the tokenizer described in Section 4.1.

tation for hedge cues as well as their scope. Out of

a total of 378,213 tokens, 3,838 are annotated as

being part of a hedge cue. As can be seen, the to-

tal number of cues is somewhat lower (3,327), due

to the fact that some tokens are part of the same

cue, so-called multi-word cues (448 in total), such

as indicate that in Example 3.

For evaluation purposes, the task organizers

provided newly annotated biomedical articles,

comprising 5,003 additional utterances, of which

790 are annotated as hedged (see overview in Ta-

ble 1). The data contains a total of 1,033 cues, of

which 87 are multi-word cues spanning multiple

tokens, comprising 1,148 cue tokens altogether.

4.1 Tokenization

The GENIA tagger (Tsuruoka et al., 2005) takes

an important role in our preprocessing set-up, as

it is specifically tuned for biomedical text. Never-

theless, its rules for tokenization appear to not al-

ways be optimally adapted for the BioScope cor-

pus. (For examples, GENIA unconditionally in-

troduces token boundaries for some punctuation

marks that can also occur token-internally.) Our

preprocessing pipeline therefore deploys a home-

grown, cascaded finite-state tokenizer (adapted

from the open-source English Resource Grammar;

Flickinger (2000)), which aims to implement the

tokenization decisions made in the Penn Tree-

bank (Marcus et al., 1993)—much like GENIA,

in principle—but properly treating certain corner

cases found in the BioScope data.

4.2 PoS Tagging and Lemmatization

For part-of-speech (PoS) tagging and lemmatiza-

tion, we combine GENIA and TnT (Brants, 2000),

which operates on pre-tokenized inputs but in its

default model is trained on financial news from the

Penn Treebank. Our general goal here is to take

advantage of the higher PoS accuracy provided by

GENIA in the biomedical domain, while using our

improved tokenization.

For the vast majority of tokens, we use GENIA

PoS tags and base forms (i.e. lemmas). However,

GENIA does not make a PoS distinction between

proper and common nouns, as in the Penn Tree-

bank, and hence we give precedence to TnT out-

puts for tokens tagged as nominal by both taggers.

5 Hedge Cue Classification

This section develops a binary cue classifier sim-

ilar to that of Velldal et al. (2010), but using

the framework of large-margin SVM classification

(Vapnik, 1995) instead of MaxEnt. For a given

sentence, the word-by-word classifier (referred to

as CWbW ) considers each token in turn, labeling it

as a cue or non-cue. Any sentence found to con-

tain a cue is subsequently labeled as uncertain.

5.1 Defining the Training Instances

As annotated in the training data, it is possible for

a hedge cue to span multiple tokens, e.g. as in

whether or not. The majority of the multi-word

cues in the training data are very infrequent, how-

ever, most occurring only once, and the classifier

itself is not sensitive to the notion of multi-word

cues. A given word token is considered a cue as

long as it falls within the span of a cue annotation.

As presented to the learner, a given token wi is

represented as a feature vector f(wi) = ~fi ∈ ℜ
d.

Each dimension fij represents a feature function

which can encode arbitrary properties of wi. Sec-

tion 5.3 describes the particular features we are us-

ing. Each training example can be thought of as a

pair of a feature vector and a label, 〈~fi, yi〉. If wi

is a cue we have yi=+1, while for non-cues the

label is −1. For estimating the actual SVM clas-

sifier for predicting the labels on unseen examples

we use the SVMlight toolkit (Joachims, 1999).
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5.2 Evaluation Measures

We will be reporting precision, recall and F1 for

two different levels of evaluation; the sentence-

level and the token-level. While the token-

level scores indicate how well the classifiers suc-

ceed in identifying individual cue words, the

sentence-level scores are what actually correspond

to Task 1, i.e. correctly identifying sentences as

being certain or uncertain.

5.3 Feature Templates

In the Shared Task system description paper of

Velldal et al. (2010), results are reported for Max-

Ent cue classifiers using a wide variety of feature

types of both surface-oriented and syntactic na-

ture. For the latter, Velldal et al. (2010) defines

a range of syntactic and dependency-based fea-

tures extracted from parses produced by the Malt-

Parser (Nivre et al., 2006; Øvrelid et al., 2010a)

and the XLE (Crouch et al., 2008), recording in-

formation about dependency relations, subcatego-

rization frames, etc. However, it turned out that the

simpler lexical and surface-oriented features were

sufficient for the identification of hedge cues.

Drawing on the observation above, the classi-

fiers trained in this paper are only based on sim-

ple sequence-oriented n-gram features collected

for PoS-tags, lemmas and surface forms. For all

these types of features we record neighbors for up

to 3 positions left/right of the focus word. For in-

creased generality, all these n-gram features also

include non-lexicalized variants, i.e. excluding the

focus word itself.

5.4 Preliminary Results

Instantiating all feature templates described above

for the BioScope training data, using the maximal

span for all n-grams (n=4, i.e. including up to 3
neighbors), we end up with a total of more than

6,500,000 unique feature types. However, after

testing different feature configurations, it turns out

that the best performing model only uses a small

subset of this feature pool. The configuration we

will be using throughout this paper includes; n-

grams over base forms ±3 positions of the focus

word; n-grams over surface forms up to +2 posi-

tions only; and PoS of the focus word. This re-

sults in a set of roughly 2,630,000 feature types.

In addition to reporting classifier performance for

this feature configuration, we also provide results

for a baseline model using only unigram features

over surface forms. The behavior of this classi-

fier is similar to what we would expect from sim-

ply compiling a list of cue words from the training

data, based on the majority usage of each word as

cue or non-cue.

As shown in Table 2, after averaging results

from 10-fold cross-validation on the training data,

the baseline cue classifier (shown as CUni
WbW )

achieves a sentence-level F1 of 88.69 and a token-

level F1 of 79.59. In comparison, the classifier

using all the available n-gram features (CWbW )

achieves F-scores of 91.19 and 87.80 on the

sentence-level and token-level, respectively. We

see that the improvement in performance com-

pared to the baseline is most pronounced on the

token-level, but the differences in scores for both

levels are found to be statistically significant at p
< 0.005 using a two-tailed sign-test.

6 Reformulating the Classification

Problem

An error analysis of our initial WbW classifier

revealed that it is not able to generalize to new

hedge cues beyond those that have already been

observed during training. Even after adding the

non-lexicalized variants of all feature types (i.e.

making features more general by not including the

focus word itself), the classifier still fails to iden-

tify any unseen hedge cues whose base form did

not occur as a cue in the training material. On the

other hand, only very few of the test cues are actu-

ally unseen (≈1.5%), meaning that the set of cue

words might reasonably be treated as a near-closed

class (at least for the biomedical data considered

in this study). As a consequence of these observa-

tions, we here reformulate the problem as follows.

Instead of approaching the task as a classification

problem defined for all words, we only consider

words that have a base form observed as a hedge

cue in the training material. In effect, any word

whose base form has never been observed as a cue

in the training data is automatically considered to

be a non-cue when testing. Part of the rationale

here is that, while it seems reasonable to assume

that any word occurring as a cue can also occur as

a non-cue, the converse is less likely.

While the training data contains a total of ap-

proximately 17,600 unique base forms (given the

preprocessing outlined in Section 4), only 143 of

these ever occur as hedge cues. By restricting the

classifier to only this subset of words, we man-
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Sentence Level Token Level

Model Prec Rec F1 Prec Rec F1

C
Uni

WbW 91.01 86.53 88.69 90.60 71.03 79.59

CWbW 94.31 88.30 91.19 94.67 81.89 87.80

CDisamb 93.64 89.68 91.60 94.01 83.55 88.45

C
RI

Disamb 93.78 88.45 91.03 94.05 81.97 87.58

Table 2: 10-fold cross-validation on the biomedi-

cal abstracts and articles in the training data.

age to simplify the classification problem tremen-

dously, but without any loss in performance.

Note that, although we view the task as a dis-

ambiguation problem, it is not feasible to train

separate classifiers for each individual base form.

The frequency distribution of the cue words in the

training material is very skewed with most cues

being very rare—many occurring as a cue only

once (≈ 40%). (Note, that most of these words

also have many additional occurrences in the train-

ing data as non-cues, however.) For the majority

of the cue words then, it seems we can not hope

to gather enough reliable information to train in-

dividual classifiers. Instead, we want to be able to

draw on information from the more frequently oc-

curring cues also when classifying or disambiguat-

ing the less frequent ones. Consequently, we still

train a single global classifier as for the original

WbW set-up. However, as the disambiguation

classifier still only needs to consider a small sub-

set of the number of words considered by the full

WbW classifier, the number of instantiated feature

types is, of course, greatly reduced.

For the full WbW classification, the number of

training examples is 378,213. Using the feature

configuration described in Section 5.4, this gener-

ates a total of roughly 2,630,000 feature types. For

the disambiguation model, using the same feature

configuration, the number of instantiated feature

types is reduced to just below 670,000, as gener-

ated for 94,155 training examples.

Running the new disambiguation classifier by

10-fold cross validation on the training data, we

find that it has substantially better recall than the

original WbW classifier. The results are shown in

the row CDisamb in Table 2. Across all levels of

evaluation the CDisamb model achieves a boost in

F1 compared to CWbW . However, when applying

a two-tailed sign-test, considering differences in

classifier decisions on both the sentence-level and

token-level, only the latter differences are found to

be significant (at p < 0.005).

7 Sparse Random Indexing

As mentioned in Section 5.1, each training ex-

ample is represented by a d-dimensional feature

vector ~fi ∈ ℜd. Given n examples and d fea-

tures, the feature vectors can be thought of as rows

in a matrix F ∈ ℜn×d. One potential problem

with using a vector-based numerical encoding of

local context features such as those described in

Section 5.3, is that the dimensionality of the fea-

ture space grows very rapidly with the number of

training examples. Using local features, e.g. con-

text windows recording properties such as direc-

tion and distance, the number of unique features

grows much faster than when using, say, BoW fea-

tures. In order to make the vector encoding scal-

able, we would like to somehow be able to put a

bound on the number of dimensions.

As mentioned above, even after simplifying the

classification problem, our input feature space is

still rather huge, totaling roughly 670,000 feature

types. Given that the number of training examples

is only around n≈ 95,000 we have that d≫n, and

whenever we want to add more feature templates

or add more training data, this imbalance will only

become more pronounced. It is also likely that

many of the n-gram features in our model will

not be relevant for the classification of new data

points. The combination of many irrelevant fea-

tures, and few training examples compared to the

number of features, makes the learner prone to

overfitting.

In previous attempts to reduce the feature space,

we have applied several feature selection schemes,

such as filtering on the correlation coefficient be-

tween a feature and a class label, or using simple

frequency cutoffs. Although such methods are ef-

fective in reducing the number of features, they

typically do so at the expense of classifier perfor-

mance. Due to both data sparseness and the likeli-

hood of many features being only locally relevant,

it is difficult to reliably asses the relevance of the

input features, and we risk filtering out many rele-

vant features as well. Using simple filtering meth-

ods, we did not manage to considerably reduce the

number of features without also significantly re-

ducing the performance of the classifier. Although

better results can be expected by using so-called

wrapper methods (Guyon and Elisseeff, 2003) in-

stead, this is not computationally feasible for large
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feature sets.

As an alternative to such feature selection meth-

ods, we here report on experiments with a tech-

nique known as random indexing (RI). This allows

us to drastically compress the feature space with-

out explicitly throwing out any features.

The technique of random indexing was initially

introduced by Kanerva et al. (2000) for modeling

the semantic similarity of words by their distribu-

tion in text.3 Actually RI forms part of a larger

family of dimension reduction techniques based

on random projections. Such methods typically

work by multiplying the feature matrix F ∈ ℜn×d

by a random matrix R ∈ ℜd×k, where k ≪ d,

thereby reducing the number of dimensions from

d to k:

G = FR ∈ ℜn×k, with k ≪ d (5)

Given that k is sufficiently high, the Johnson-

Lindenstrauss lemma (Johnson and Lindenstrauss,

1984) tells us that the pairwise distances (and

thereby separability) in F can be preserved with

high probability within the lower-dimensional

space G (Li et al., 2006). While the only condi-

tion on the entries of R is that they are i.i.d. with

zero mean, they are typically also specified to have

unit variance (Li et al., 2006).

One advantage of the particular random index-

ing approach is that the full n × d feature ma-

trix F does not need to be explicitly computed.

The method constructs the representation of the

data in G by incrementally accumulating so-called

index vectors assigned to each of the d features

(Sahlgren and Karlgren, 2005). The process can

be described by the following two simple steps:

- When a new feature is instantiated, it is as-

signed a randomly generated vector of a fixed

dimensionality k, consisting of a small num-

ber of −1s and +1s (the remaining elements

being 0). This is then the so-called index vec-

tor of the feature. (The index of the ith fea-

ture corresponds to the ith column of R.)

- The vector representing a given training ex-

ample (the jth row of G represents the jth

example) is then constructed by simply sum-

ming the random index vectors of its features.

Note that, although we want to have k ≪ d, we

still operate in relatively high-dimensional space

3Readers are referred to Sahlgren (2005) for a good intro-
duction to random indexing.

(with k being on the order of thousands). As

noted by Sahlgren (2005), high-dimensional vec-

tors having random directions are very likely to be

close to orthogonal, and the approximation to F
will generally be better the higher we set k.

Finally, it is worth noting that RI has tradition-

ally been applied on the type level, with the pur-

pose of accumulating context vectors that repre-

sent the distributional profiles of words in a se-

mantic space model (Sahlgren, 2005). Here, on

the other hand, we apply it on the instance level

and as a general means of compressing the feature

space of a learning problem.

7.1 Tuning the Random Indexing

Regarding the ratio of non-zero elements, the lit-

erature on random projections contains a wide

range of suggestions as to how the entries of the

random matrix R should be initialized. In the

context of random indexing, Sahlgren and Karl-

gren (2005) set approximately 1% of the entries

in each index to +1 or −1. It is worth bearing in

mind, however, that the computational complexity

of dot-product operations (as used extensively by

the SVM learner) depend not only on the number

of dimensions itself, but on the number of non-

zero elements. We therefore want to take care

to avoid ending up with a reduced space that is

much more dense.Nevertheless, the appeal of us-

ing a random projection technique is in our case

more related to its potential as a feature extraction

step, and less to its potential for speeding up com-

putations and reducing memory load, as the orig-

inal feature vectors are already very sparse. After

experimenting with different parametrizations, it

seems that the classifier performance on our data

sets are fairly stable with respect to varying the ra-

tio of non-zeros. Moreover, we find that the non-

zero entries can be very sparsely distributed, e.g.

≈ 0.05–0.2%, without much loss in classifier per-

formance. Figure 2a shows the effect of varying

the ratio of non-zero elements while keeping the

dimensionality fixed (at k=5,000), always assign-

ing an equal number of +1s and −1s (giving zero

mean and unit variance). For each parametrization

we perform a batch of 5 experiments using dif-

ferent random initializations of the index vectors.

The scores shown in Figure 2a are the average and

maximum within each batch. As can be seen, with

index vectors of 5,000 elements, using 8 non-zero

entries (corresponding to a ratio of 0.16%) here
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Figure 2: While varying various parameters of the random indexing, the plot shows averaged and maxi-

mum sentence-level F1 from 5 different runs for each setting (using different random initializations of the

index vectors), testing on 1/10th of the training data. In (a) we vary the number of non-zero elements in

the index vectors, while keeping the dimensionality fixed at k=5,000. In (b) we apply the disambiguation

classifier using random indexing while varying the dimensionality k of the index vectors. The number

of non-zeros varies from 2 (for k=1,250) to 32 (for k=20,000). For reference, the last column shows the

result for using the original non-projected feature space.

seems to strike a reasonable balance between in-

dex density and performance.

As expected, we do, however, see a clear dete-

rioration of classifier accuracy if the dimensional-

ity of the index vectors is set very low. Figure 2b

shows the effect of varying the dimensionality k
of the index vectors, while fixing the ratio of non-

zero entries per vector to 0.16%. Again we per-

form batches of 5 experiments for each value of k,

reporting the average and maximum within each

batch. For our cue classification data, the posi-

tive effect of increasing k seems to flatten out at

around k=5,000. When considering the standard

deviation of scores within each batch, however, the

variability of the results seems to steadily decrease

as k increases. For example, while we find σ=1.34
for the set of runs using k=1,250, we find σ=0.29
for k=20,000.

When looking at the maximum scores shown in

Figure 2b, one of the runs using k=5,000 turns

out to have the peak performance, achieving a

(sentence-level) F1 of 90.38. Not only does it

score higher than any of the other RI-runs with

k>5,000, it also outperforms the original CDisamb

model, which achieves an F1 of 89.36 for the same

single “fold” (the models in Figure 2b are tested

using 1/10th of the training material).

In our experience, although the random projec-

tion provided by the RI vectors only represents an

approximation to the original input space, it still

appears to preserve a lot more information than

feature selection based on filtering methods.

7.2 Preliminary Results

The bottom row of Table 2 (CRI
Disamb), shows the

results of applying an SVM-classifier by full 10-

fold cross-validation over the training set using the

same random index assignments that yielded the

maximum F1 in Figure 2b for k=5,000 (with eight

randomly set non-zeros in each index). We see that

the performance of CRI
Disamb is actually slightly

lower than for CDisamb. The differences are not

detected as being significant though (applying the

sign-test in the same manner as described above).

Moreover, it should also be pointed out that we

have not yet tried tuning the random indexing by

multiple runs of full 10-fold cross-validation on

the training data, which would be expected to im-

prove these results. Given the fact that the effec-

tive feature space for the classifier is reduced from

670,000 to just 5,000 dimensions, we find it no-

table that the CRI
Disamb model achieves comparable

results, with only preliminary tuning.

Another important observation is that the com-

plexity of the resulting SVM in terms of the num-

ber of support vectors (SVs), is considerably re-

duced for the RI-model: While the number of SVs

for CDisamb averages just below 8% of the train-

ing examples, this is reduced to just above 4% for

CRI
Disamb (using the SVMlight default settings). In
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Sentence Level Token Level

Model Prec Rec F1 Prec Rec F1

C
Uni

WbW 77.54 81.27 79.36 75.89 66.90 71.11

CWbW 89.02 84.18 86.53 87.58 74.30 80.40

CDisamb 87.37 85.82 86.59 85.92 76.57 80.98

C
RI

Disamb 88.83 84.56 86.64 86.65 74.65 80.21

Tang 85.03 87.72 86.36 – – –

Table 3: Results on the Shared Task test data.

addition to halving the number of SVs, as well as

reducing the feature space by two orders of mag-

nitude, the upper bound on the VC-dimension (as

estimated by SVMlight) is also reduced by 12%. It

is also worth noting that the run-time differences

for estimating the SVM on the original input space

and the reduced (but slightly denser) feature space,

are negligible (≈ 5 CPU-seconds more for the RI-

model when re-training on the full training set).

8 Held-Out Testing

Table 3 presents the final results for the various

classifiers developed in this paper, testing them on

the biomedical articles of the CoNLL 2010 Shared

Task held-out test set (see Table 1). In addition to

the evaluation results for our own classifiers, Ta-

ble 3 also include the official test results for the

system described by Tang et al. (2010). The se-

quence classifier developed by Tang et al. (2010),

combining a CRF classifier and a large-margin

HMM model, obtained the best results for the of-

ficial ST evaluation for Task 1 (i.e. sentence-level

uncertainty detection).

As seen from Table 3, all of our SVM clas-

sifiers CWbW , CDisamb, and CRI
Disamb, achieve a

higher sentence-level F1 than the system of Tang

et al. (2010) (though it is unknown whether the

differences are statistically significant). We also

note that our reformulation of the cue classifica-

tion task as a disambiguation problem leads to bet-

ter performance also on the held-out data, with

CDisamb performing slightly better than CWbW

across both evaluation levels. Interestingly, the

best performer of them all proves to be the ran-

dom indexing model (CRI
Disamb), even though this

model was not the top-performer on the training

data. One possible explanation for the strong held-

out performance of CRI
Disamb is that the reduced

complexity of this classifier (see Section 7.2) has

made it less prone to overfitting, leading to better

generalization performance on new data. Apply-

ing the sign-test as described above to the classi-

fier decisions of CRI
Disamb, we find statistically sig-

nificant differences with respect to CWbW but not

with respect to CDisamb. Nonetheless, the encour-

aging results of the CRI
Disamb model on the held-out

data means that further tuning of the RI configura-

tion on the training data will be a priority for future

experiments.

It is also worth noting that many of the sys-

tems participating in the ST challenge used fairly

complex and resource-heavy feature types, being

sensitive to document structure, grammatical rela-

tions, etc. (Farkas et al., 2010). The fact that com-

parable or better results can be obtained using a

relatively simple approach as demonstrated in this

paper—with low cost in terms of both computa-

tion and external resources—might lower the bar

for employing a hedge detection component in an

actual IE system.

Finally, we also observe that our simple uni-

gram baseline classifier proves to be surprisingly

competitive. In fact, comparing its Task 1 F1 to

those of the official ST evaluation, it actually out-

ranks 7 of the 24 submitted systems.

9 Conclusions

This paper has presented the incremental develop-

ment of uncertainty classifiers for detecting hedg-

ing in biomedical text—the topic of the CoNLL

2010 Shared Task. Using simple n-gram features

over words, lemmas and PoS-tags, we first develop

a (linear) SVM cue classifier that outperforms the

top ranked system for Task 1 in the official Shared

Task evaluation (i.e. sentence-level uncertainty de-

tection). We then show how the original classi-

fication task can be greatly simplified by view-

ing it as a disambiguation task restricted to only

those words that have previously been observed as

hedge cues. Operating in a smaller (though still

fairly large) feature space, this second classifier

achieves even better results. Finally, we apply the

method of random indexing, further reducing the

dimensionality of the feature space by two orders

of magnitude. This final classifier—combining

an SVM-based disambiguation model with ran-

dom indexing—is our best performer, achieving

a sentence-level F1 of 86.64 on the CoNLL 2010

Shared Task held-out data.
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