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Abstract

This paper presents a new approach that

exploits coreference information to ex-

tract event-argument (E-A) relations from

biomedical documents. This approach has

two advantages: (1) it can extract a large

number of valuable E-A relations based on

the concept of salience in discourse (Grosz

et al., 1995) ; (2) it enables us to iden-

tify E-A relations over sentence bound-

aries (cross-links) using transitivity involv-

ing coreference relations. We propose

two coreference-based models: a pipeline

based on Support Vector Machine (SVM)

classifiers, and a joint Markov Logic Net-

work (MLN). We show the effectiveness of

these models on a biomedical event corpus.

The both models outperform the systems

without coreference information. When

compared with the two models, joint MLN

outperforms pipeline SVM with gold coref-

erence information.

1 Introduction

The increasing amount of biomedical texts gen-

erated by high throughput experiments demands to

extract useful information automatically by Natural

Language Processing techniques. One of the more

recent information extraction tasks is biomedical

event extraction. With the introduction of the GE-

NIA Event Corpus (Kim et al., 2008) and the

BioNLP’09 shared task data (Kim et al., 2009), a

set of documents annotated with events and their

arguments, various approaches for event extraction

have been proposed so far (Björne et al., 2009;

Buyko et al., 2009; Poon and Vanderwende, 2010).

However, previous work has only considered the

problem on a per-sentence basis, neglecting possi-

Figure 1: Cross-Sentence Event-Argument Rela-

tion Extraction

ble information from other sentences in the same

document we may be able to exploit. In partic-

ular, no one has yet considered using coreference

information to improve event extraction. Here we

propose a new approach to extract event-argument

(E-A) relations that does make use of coreference

information.

Our approach includes two main ideas:

1. aggressively extracting coreferent arguments

based on salience in discourse

2. predicting arguments crossing sentence bound-

aries by transitivity.

First, when considering discourse structure

based on Centering Theory (Grosz et al., 1995),

arguments which are coreferent to something (e.g.

“The region”) have higher salience in discourse.

They are hence more likely to be arguments of

events mentioned in the document. Using this in-

formation helps us to identify the right arguments

for candidate events and increase the likelihood of

extracting arguments with antecedents correspond-

ing to the Arrow (A) in Figure 1. Note that iden-

tifying coreferent arguments is not just important

to increase F1 score on the dataset: assuming that

salience in discourse indicates the novel informa-

tion the author wants to convey, it is the set of

coreferent arguments we should extract at any cost.
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Secondly, previous work on this task has primar-

ily focused on identifying event-arguments within

the same sentence. See Figure 1 for an example

of such cross-sentence event-argument relations. It

illustrates an example of E-A relation extraction in-

cluding cross-sentence E-A. In the sentence S2, we

have “inducible” as an event to be identified. When

identifying intra-sentence arguments in S2, we can

obtain “The region” as Theme and “both interfer-

ons” as Cause. However, in this example, “The

region” is not sufficient as a Theme because “The

region” is coreferent to “The IRF-2 promoter re-

gion” in S1. Thus, the true Theme of “inducible”

is “The IRF-2 promoter region” and this phrase is

actually more informative as an argument. On the

other hand, “The region” is just an anaphor of the

true argument. Transitivity idea 1 allows us to ex-

tract cross-sentence E-A relations such as the Ar-

row (C) in Figure 1.

To implement both ideas we propose two models

to extract event-argument (E-A) relations involv-

ing coreference information. One is based on local

classification with SVMs, and another is based on

a joint Markov Logic Network (MLNs). To remain

efficient, and akin to existing approaches, both look

for events on a per-sentence basis. However, in

contrast to previous work, our models consider as

candidate arguments not only the tokens of the cur-

rent sentence, but also all tokens in the previous

sentences that are identified as antecedents of some

tokens in the current sentence.

We show the effectiveness of our models on a

biomedical corpus. They enable us to extract cross-

sentence E-A relations: we achieve an F1 score of

69.7% for our MLN model, and 54.1 % for the

SVM pipeline. Moreover, with the idea of salience

in discourse our coreference-based approach helps

us to improve intra-sentence E-A extraction, in par-

ticular when arguments have antecedents. In this

case adding gold coreference information to MLNs

improves F-score by 16.9%.

In place of gold coreference information, we

also experiment with predicted coreferences from a

simple coreference resolver. Although the quality

of predicted coreference information is relatively

poor, we show that using this information is still

better than not using it at all.

The remainder of this paper is organized as fol-

lows: Section 2 describes previous work for event

1e.g. If “The region” is a Theme of “inducible” and “The
region” is coreferent to “The IRF-2...”, then “The IRF-2...” is
also a Theme of “inducible”.

extraction and some issues; Section 3 explains our

proposed approach; Section 4 introduces our ex-

perimental setup; Section 5 presents results of our

experiments; and in Section 6 we conclude and

present some ideas for future work.

2 Event-Argument Relation Extraction

and the Issues of Previous Work

Figure 2: An Example of Biomedical Event Ex-

traction

2.1 Biomedical Event Extraction

Event extraction on biomedical text involves

the three sub-tasks; identification of event trigger

words; classification of event types; extraction of

the relations between events and arguments (E-A).

Figure 2 shows an example of event extraction. In

this example, we have three event triggers: “induc-

tion”, “increases”, and “binding”. The correspond-

ing event types are Positive regulation (Pos reg)

for “induction” and “increases”, and Binding for

“binding”. In Figure 2, “increases” has two argu-

ments; “induction” and “binding”. The roles we

have to identify fall into two classes: “Theme” and

“Cause”. In the case of our example the roles be-

tween “increases” and the two arguments are Cause

and Theme, respectively.

Note that biomedical corpora have large num-

bers of nominal events. For example, in Figure

2 the arguments of “increases” are both nominal

events. Such events can be arguments of other

events, and they are often hard to be identified.

2.2 Biomedical Corpora for Event Extraction

There are two major corpora for biomedical

event extraction. One is the GENIA Event Corpus

(GEC) (Kim et al., 2008), and the other is the data

of the BioNLP’09 shared task. 2 This data is in fact

derived from the GEC. There are some important

differences between both corpora.

event type GEC has fine-grained event type anno-

tations (35 classes), while BioNLP’09 data focuses

on only 9 event subclasses.

non-event argument BioNLP’09 data does not

differentiate between protein, gene and RNA,

while the GEC corpus does.

2http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA/SharedTask/
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coreference annotation Both GEC and

BioNLP’09 corpora provide coreference an-

notations related to event extraction. However,

in the case of the BioNLP’09 data coreference

information primarily concerns protein names and

abbreviations that follow in parenthesis. The GEC,

on the other hand, provides proper cross-sentence

coreference. Moreover, the sheer number of

coreference annotations is much higher 3.

For our work we choose the GEC, primarily be-

cause of the amount and quality of coreference

information it provides. This allows us to train

a coreference resolver, as well as testing our hy-

potheses when gold coreference annotations are

available. A secondary reason to prefer GEC over

the BioNLP’09 corpus is its fine-grained annota-

tion. We believe that this setting is more realistic.

2.3 Issues of Previous Work

Various approaches have been proposed for

event-argument relation extraction on biomedical

text. However, even the current state-of-the-art

does not exploit coreference relations and focuses

exclusively on intra-sentence E-A extraction.

For example, Björne et al. (2009) achieved the

best results for Task 1 in the BioNLP’09 competi-

tion 4. However, they neglected all cross-sentence

E-A. They also reported that they did try to detect

cross-sentence arguments directly without the use

of coreference. But this approach did not lead to

reasonable performance increase.

In BioNLP’09, Riedel et al. (2009) proposed a

joint Markov Logic Network to tackle the task, and

achieved the best results for Task 2. Their sys-

tem makes use of global features and constraints,

and performs event trigger and argument detection

jointly. Poon and Vanderwende (2010) also ap-

plied Markov Logic and achieved competitive per-

formance to the state-of-the-art result of (Björne

et al., 2009). However, in both cases no cross-

sentence information is exploited.

To summarize, so far there is no research

within biomedical event extraction which ex-

ploits coreference relations and tackles cross-

sentence E-A relation extraction. By contrast,

for predicate-argument relation extraction in a

3Björne et al. (2009) also mentioned that coreference re-
lations could be helpful to cross-sentence E-A extraction but
the necessary coreference annotation to train a coreference re-
solver is not presented in BioNLP’09 data.

4BioNLP’09 has three tasks 1, 2, and 3. Task 1 is core
event extraction and mandatory. Our work also focuses on
Task 1.

Japanese newswire text corpus, 5 Taira et al. (2008)

do consider cross-sentence E-A extraction. How-

ever, they directly extract cross-sentence links

without considering coreference relations. In ad-

dition, their approach is based on a pipeline of

SVM classifiers, and their achieved performance

on cross-sentence E-A extraction was generally

low. 6

2.4 The Direction of Our Work

We present a new approach that exploits coref-

erence information for E-A relation extraction.

Moreover, in contrast to previous work on the

BioNLP’09 shared task we apply our models in a

more realistic setting. Instead of relying on gold

protein annotations, we use a Named Entity tagger;

and instead of focusing on the coarse-grained anno-

tation of the BioNLP task, we work with the GEC

corpus and its the fine-grained ontology.

From now on, for brevity, we call cross-

sentence event-argument relations just “cross-

links” and intra-sentence event-argument relations

“intra-links”.

We propose two coreference-based models. One

is an SVM based model that extracts intra-links

first and then cross-links as a post-processing step.

The other is a joint model defined with Markov

Logic that jointly extracts intra-links and cross-

links and allows us to model salience of discourse

in a principled manner.

3 Coreference Based Approach

We have two ideas for incorporating coreference

information into E-A relation extraction.

• Aggressively extracting valuable E-A relations

based on “salience in discourse”

• Predicting cross-links by using “transitivity”

including coreference relations

According to these ideas, we propose two ap-

proaches. One is a pipeline model based on SVM

classifiers, and the other is a joint model based

Markov Logic.

Before we present these approaches in detail, let

us first describe coreference resolution as a pre-

processing step.

3.1 Coreference Resolution

There are some previous work for coreference

resolution on biomedical domains (Yang et al.,

2004; Su et al., 2008). However, in our work, we

introduce a simple coreference resolver based on a

5http://cl.naist.jp/nldata/corpus/
6Low 20s% F1
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Table 1: Used Local Features for SVM Pipeline and MLN Joint

Description

SVM 1st phase

event & eventType

SVM 2nd phase

role (E-A) MLN predicate

Word Form X X word(i, w)
Part-of-Speech X X pos(i, p)
Word Stem X X stem(i, s)
Named Entity Tag X X ne(i, n)
Chunk Tag X X chunk(i, c)
In Event Dictionary X X dict(i, d)
Has Capital Letter X X capital(i)
Has Numeric Characters X X numeric(i)
Has Punctuation Characters X X punc(i)
Character Bigram X bigram(i, bi)
Character Trigram X trigram(i, tri)
Dependency label X X dep(i, j, d)
Labeled dependency path between tokens X path(i, j, pt)
Unlabeled dependency path between tokens X pathNL(i, j, pt)
Least common ancester of dependency path X lca(i, j, L)

pairwise coreference model (Soon et al., 2001) 7. It

employs a binary classifier which classifies all pos-

sible pairs of noun phrases into “corefer” or “not

corefer”. Popular external resources like WordNet

do not work in biomedical domain. Hence, our re-

solver identifies coreference relations with only ba-

sic features such as word form, POS, and NE tag,

and achieves 59.1 pairwise F1 on GEC evaluating

5-fold cross validation.

3.2 SVM Pipeline Model

In our pipeline we apply the SVM model pro-

posed by (Björne et al., 2009). Their original

model first extracts events and event types with

a multi-class SVM (1st phase). Then it identi-

fies the relations between all pairs of event-proteins

and event-events by another multi-class SVM (2nd

phase). Note that, on our setting, the 1st phase clas-

sifies event types into 36 classes (35 types + “Not-

Event”). Moreover, while protein annotations were

given in the BioNLP’09 shared task, for the GEC

we have extract them using an NE tagger. The fea-

tures we used for the 1st and 2nd phases are sum-

marized in the first and the second columns of Ta-

ble 1, respectively.

After identifying intra-links, our model deter-

ministically attaches, for each intra-sentence argu-

ment of an event, all antecedents inside/outside the

sentence to the same event. Hence we implement

transitivity as a post-processing step. However, it

is difficult for SVM pipeline to implement the idea

of salience in discourse. We believe that a Markov

Logic model is preferable in this case.

3.3 MLN Joint Model

Markov Logic (Richardson and Domingos,

2006) is an expressive template language that uses

7Yang et al. (2004) also built the same kind of resolver as
a baseline with the original coreference annotations

weighted first-order logic formulae to instanti-

ate Markov Networks of repetitive structure. In

Markov Logic users design predicates and formu-

lae to describe their problem. Then they use soft-

ware packages such as Alchemy 8 and Markov the-

beast 9 in order to perform inference and learning.

It is difficult to construct Markov Logic Net-

works for joint E-A relation extraction and coref-

erence resolution across a complete document.

Hence we follow the two strategies: (1) restric-

tion of argument candidates based on coreference

relations; (2) construction of a joint model which

jointly identifies intra-links and cross-links. Re-

stricting argument candidates helps us to construct

a very compact but effective model. A joint model

enables us to simultaneously extract intra-links and

cross-links and contributes to improve the perfor-

mance. In addition, we will see that this setup still

allows us to implement the idea of salience in dis-

course with global formulae in Markov Logic.

3.3.1 Predicate Definition

Our joint model is based on the model pro-

posed by Riedel et al. (2009). We first define the

predicates of the proposed Markov Logic Network

(MLN). There are three “hidden” predicates corre-

sponding to what the target information we want to

extract.

Table 2: The Three Hidden Predicates
event(i) token i is an event

eventType(i, t) token i is an event with type t

role(i, j, r) token i has an argument j with role r

In this work, role is the primary hidden predicate

because role represents event-argument relations.

Next we define observed predicates representing

information that is available at both train and test

8http://alchemy.cs.washington.edu/
9http://code.google.com/p/thebeast/
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time. We define corefer(i, j), which indicates that

token i is coreferent to token j (they are in the same

entity cluster). corefer(i, j) obviously plays an im-

portant role for our coreference-based joint model.

We list the remaining observed predicates in the

last column of Table 1.

Our MLN is composed of several weighted for-

mulae that we divide into two classes. The first

class contains local formulae for event, eventType,

and role. We say that a formula is local if it consid-

ers only one atom hidden predicates. The formulae

in the second class are global: they involve two or

more atoms of hidden predicates. In our case they

consider event, eventType, and role simultaneously.

3.3.2 Basic Local Formulae

Our local features are based on previous work

(Björne et al., 2009; Riedel et al., 2009) and listed

in Table 1. We exploit two types of formula rep-

resentation: “simple token property” and “link to-

kens property” defined by Riedel et al. (2009).

The first type of local formulae describes prop-

erties of only one token and such properties are

represented by the predicates in the first section of

Table 1. The second type of local formulae rep-

resents properties of token pairs and linked tokens

property predicates (dep, path, pathNL, and lca)

in the second section of Table 1.

3.3.3 Basic Global Formulae

Our global formulae are designed to enforce con-

sistency between the three hidden predicates and

are shown in Table 3. Riedel et al. (2009) presented

more global formulae for their model. However,

some of these do not work well for our task setting

on the GENIA Event Corpus. We obtain the best

results by only using global formulae for ensuring

consistency of the hidden predicates.

3.4 Using Coreference Information

We explain our coreference-based approaches

with Figure 1. For our Markov Logic Network

let us describe the relations in Figure 1 with pred-

icates. First, the two intra-links in S2 are de-

scribed by role(13, 11,Theme) – Arrow (A) and

role(13, 15,Cause) – Arrow (D) 10. Next, we rep-

resent the coreference relation by corefer(11, 4) –

Bold Line (B). Finally, we express the cross-link as

role(13, 4,Theme) – Arrow (C).

With the example in Figure 1, we explain the two

main concepts : Salience in Discourse (SiD) and

10In these terms, phrasal arguments are driven by anchor
tokens which are the ROOT tokes on dependency subtrees of
the phrases

Transitivity (T). We also present an additional idea,

Feature Copy (FC).

Salience in Discourse Again, an important advan-

tage of our joint model with MLN is the implemen-

tation of “salience in discourse”. The entities men-

tioned over and over again are hence important in

discourse structure and accordingly it is highly pos-

sible for them to be arguments of some events.

In order to implement this idea of salience in

discourse, we add the Formula (SiD) in the first

row of Table 4. Formula (SiD) captures that if a

token j is coreferent to another token k, there is

at least one event related to token j. Our model

with Formula (SiD) prefers coreferent arguments

and aggressively connects them with events. In

addition, our coreference resolver always extracts

coreference relations which are related to events,

since coreference annotations in GEC are always

related to events.

Transitivity Another main concept is “transitivity”

for intra/cross-link extraction. 11 As mentioned

earlier, the SVM pipeline enforces transitivity as

a post-processing step.

For the MLN joint model, let us consider the ex-

ample of Figure 1 again.

role(13, 11,Theme) ∧ corefer(11, 4)

⇒ role(13, 4,Theme)

This formula denotes that, if an event “inducible”

has “The region” as a Theme and “The region” is

coreferent to “The IRF-2 promoter region”, then

“The IRF-2 promoter region” is also a Theme of

“inducible”. The three atoms, role(13, 11,Theme),
corefer(11, 4), and role(13, 4,Theme) in this for-

mula are respectively corresponding to the three

arrow edges (A), (B), and (C) in Figure 1. This

formula is generalized as Formula (T) shown in the

second row of Table 4.

The merit of using Formula (T) is that we can

take care of cross-links by only solving intra-links

and using the associated coreference relations.

Candidate arguments of cross-links are the only

arguments which are coreferent to intra-sentence

mentions (antecedents).

The improvement by Formula (T) depends on

the performance of intra-link role(i, j, r) and coref-

erence relation corefer(j, k). Clearly, this perfor-

mance depends partially on the effectiveness of

Formula (T) formula above. It should also be clear

11An antecedent of an argument is sometimes in a subordi-
nate clause within a same sentence
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Table 3: Basic Global Formulae
Formula Description

event(i)⇒ ∃t.eventType(i, t) If there is an event there should be an event type
eventType(i, t)⇒ event(i) If there is an event type there should be an event
role(i, j, r)⇒ event(i) If j plays the role r for i then i has to be an event
event(i)⇒ ∃j.role(i, j, Theme) Every event relates to need at least one argument.

Table 4: Coreference Formulae
Symbol Name Formula Description

(SiD) Salience in Discourse corefer(j, k)⇒ ∃i.role(i, j, r) ∧ event(i) If a token j is coreferent to another token k, there
is at least one event related to token j

(T) Transitivity role(i, j, r) ∧ corefer(j, k)⇒ role(i, k, r) If j plays the role r for i and j is coreferent to k
then k also plays the role r for i

(FC) Feature Copy corefer(j, k) ∧ F (k,+f)⇒ role(i, j, r) If j is coreferent to k and k has feature f then j
plays the role r for i

that the improvement due to Formula (SiD) are also

affected by Formula (T) formula because it impacts

on ∃i.role(i, j, r) in Formula (SiD). Thus, the for-

mulae representing the Salience in Discourse and

Transitivity interact with each other.

Feature Copy We implement additional usage of

coreference information through “Feature Copy”.

Anaphor arguments such as “The region” in Figure

1 are sometimes more difficult to be identified than

“The IRF-2 promoter region” because of the lack

of basic features (e.g. POS). Feature Copy supple-

ments the features of an anaphor by adding the fea-

tures of its antecedent. According to the example

of Figure 1, the formula,

corefer(11, 4) ∧ word(4, “IRF-2”)

⇒ role(13, 11,Theme)

injects a word feature “IRF-2” to anaphor “The re-

gion” in S2. Here word(i, w) represents a feature

that the child token of the token i on the depen-

dency subtree is word w. To be exact, this for-

mula allows us to employ additional features of the

antecedent to solve the link role(13, 11,Theme).
This formula is generalized as Formula (FC) in the

last row of Table 4. In Formula (FC), F denotes

the predicates which represent basic features such

as word, POS, and NE tags of the tokens. For-

mula (FC) copies the features of cross-sentence ar-

guments (antecedents) to intra-sentence arguments

(anaphors). Feature Copy is not a novel idea but

contributes to improve performance. The SVM

pipeline model also add the same features.

4 Experimental Setup

Let us summarise the data and tools we employ.

The data for our experiments is GENIA Event Cor-

pus (GEC) (Kim et al., 2008). For feature gen-

eration, we employ the following tools. POS and

NE tagging are performed with GENIA Tagger 12,

12http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA/tagger/

for dependency path features we apply Charniak-

Johnson reranking parser with Self-Training pars-

ing model 13, and convert the results to dependency

tree with pennconverter 14. Learning and infer-

ence algorithms for joint model are provided by

Markov thebeast 15, a Markov Logic engine tai-

lored for NLP applications. Our pipeline model

employs SVM-struct 16 both in learning and test-

ing. For coreference resolution, we also employ

SVM-struct for binary classification.

Figure 3: Figure of Experimental Setup

Figure 3 shows a structure of our experimental

system. Our experiments perform the following

steps. (1) First we perform preprocessing (tagging

and parsing). (2) Then we perform coreference res-

olution for all the documents and generate lists of

token pairs that are coreferent to each other. (3) fi-

nally, we train the event extractors: SVM pipeline

(SVM) and MLN joint (MLN) involving corefer-

ence relations. We evaluate all systems using 5-

fold cross validation on GEC.

5 Results

In the following we will first show the results of

our models for event extraction with/without coref-

erence information. We will then present more de-

tailed results concerning E-A relation extraction.

13http://www.cs.brown.edu/˜dmcc/

biomedical.html
14http://nlp.cs.lth.se/software/

treebank_converter/
15http://code.google.com/p/thebeast/
16http://www.cs.cornell.edu/People/tj/

svm_light/svm_struct.html
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5.1 Impact of Coreference Based Approach

Table 5: Results of Event Extraction (F1)
System Corefer event eventType role

(a) SVM NONE 77.0 67.8 52.3 ( 0.0)
(b) SVM SYS 77.0 67.8 53.6 (+1.3)
(b′) SVM GOLD 77.0 67.8 55.4 (+3.1)

(c) MLN NONE 80.5 70.6 51.7 ( 0.0)
(g) MLN SYS 80.8 70.8 53.8 (+2.1)
(g′) MLN GOLD 81.2 70.8 56.7 (+5.0)

We begin by showing the SVM and MLN re-

sults for event extraction in Table 5. We present

F1-values of event, eventType, and role (E-A re-

lation). The three columns (event, eventType, and

role) in Table 5 correspond to the hidden predicates

in Table 2.

Let us consider the rows of (a)-(b) and (c)-

(g). They compare SVM and MLN approaches

with and without the use of coreference informa-

tion. The column “Corefer” indicates how to in-

clude coreference information: “NONE”– without

coreference; “SYS”– with coreference resolver;

“GOLD”– with gold coreference annotations.

We note that adding coreference information

leads to 1.3 points F1 improvement for the SVM

pipeline, and a 2.1 points improvement for MLN

joint. Both improvements are statistically signifi-

cant. 17 With gold coreference information, Sys-

tems (b′) and (g′) clearly achieve more significant

improvements.

Let us move on to the comparisons between

SVM pipeline and MLN joint models. For

event and eventType we compare row (b) with

row (g) and observe that the MLN outperforms

the SVM. This is to be contrasted with results

for the BioNLP‘09 shared task, where the SVM

model (Björne et al., 2009) outperformed the

MLN (Riedel et al., 2009). This contrast may stem

from the fact that GEC events are more difficult

to extract due to a large number of event types

and lack of gold protein annotations, and hence lo-

cal models are more likely to make mistakes that

global consistency constraints can rule out.

For role extractions (E-A relation), SVM

pipeline and MLN joint show comparable results,

at least when not using coreference relations. How-

ever, when coreference information is taken into

account, the MLN profits more. In fact, with

gold coreference annotations, the MLN outper-

forms SVM pipeline by 1.3 points margin.

17ρ < 0.01, McNemar’s test 2-tailed

5.2 Detailed Results for Event-Argument Rela-

tion Extraction

Table 6 shows the three types of E-A relations

we evaluate in detail.

Table 6: Three Types of Event-Argument
Type Description Edge in Figure 1

Cross E-A relations crossing sen-
tence boundaries (cross-link)

Arrow (C)

W-ANT Intra-sententence E-As
(intra-link) with antecedents

Arrow (A)

Normal Neither Cross nor W-ANT Arrow (D)

They correspond to the arrows (A), (C), and (D)

in Figure 1, respectively. We show the detailed re-

sults of E-A relation extraction in Table 7. The all

scores shown in the table are F1-values.

Table 7: Results of E-A Relation Extraction (F1)
System Corefer Cross W-ANT Normal

(a) SVM NONE 0.0 56.0 53.6
(b) SVM SYS 27.9 57.0 54.3
(b′) SVM GOLD 54.1 57.3 55.4

(c) MLN NONE 0.0 49.8 ( 0.0) 53.2
(d) MLN FC 0.0 51.5 (+1.7) 53.7
(e) MLN FC+SiD 0.0 54.6 (+4.8) 53.3
(f) MLN FC+T 36.7 51.7 (+1.9) 53.7
(g) MLN FC+SiD+T 39.3 56.5 (+6.7) 54.3
(g′) MLN GOLD 69.7 66.7 (+16.9) 55.3

5.2.1 SVM pipeline Model

The first part of Table 7 shows the results of the

SVM pipeline with/without coreference relations.

Systems (a), (b) and (b′) correspond to the first

three rows in Table 5, respectively. We note that the

SVM pipeline manages to extract cross-links with

an F1 score of 27.9 points with coreference infor-

mation from the resolver. The third row in Table

7 shows the results of the system with gold coref-

erence which is extended from System (b). With

gold coreference, the SVM pipeline achieves 54.1

points for “Cross”. However, the improvement

we get for “W-ANT” relations is small since the

SVM pipeline model employs only Feature Copy

and Transitivity concepts. In particular, it cannot

directly exploit Salience in Discourse as a feature.

5.2.2 MLN joint Model

How does coreference help our MLN approach?

To answer this question, the second part of Table

7 shows the results of the following six systems.

The row (c) corresponds to the fourth row of Ta-

ble 5 and shows results for the system that does

not exploit any coreference information. Systems

(d)-(g) include Formula (FC). In the sixth (e) and

the seventh (f) rows, we show the scores of MLN

joint with Formula (SiD) and Formula (T), respec-

tively. Our full joint model with both (SiD) and (T)

formulae comes in the eighth row (g). System (g′)
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is an extended system from System (g) with gold

coreference information.

By comparing Systems (d)(e)(f) with System (c),

we note that Feature Copy (FC), Salience in Dis-

course (SiD), and Transitivity (T) formulae all suc-

cessfully exploit coreference information. For “W-

ANT”, Systems (d) and (e) outperform System

(c), which establishes that both Feature Copy and

Salience in Discourse are sensible additions to an

MLN E-A extractor. On the other hand, for “Cross

(cross-link)”, System (f) extracts cross-sentence E-

A relations, which demonstrates that Transitivity is

important, too. Next, for cross-link, our full system

(g) achieved 39.3 points F1 score and outperformed

System (c) with 6.7 points margin for “W-ANT”.

The further improvements with gold coreference

are shown by our full system (g′). It achieved

69.7 points for “Cross” and improved System (c)

by 16.9 points margin for “W-ANT”.

5.2.3 SVM Pipeline VS MLN Joint

The final evaluation compares SVM pipeline and

MLN joint models. Let us consider Table 7 again.

When comparing System (a) with System (c), we

notice that the SVM pipeline (a) outperforms the

MLN joint model in “W-ANT” without corefer-

ence information. However, when comparing Sys-

tems (b) and (g) (using coreference information by

the resolver), MLN result is very competitive for

“W-ANT”, 11.4 points better for “Cross”.

Furthermore, with gold coreference, the MLN

joint (System (g′) outperforms the SVM pipeline

(System (b′)) both in “Cross” and “W-ANT” by

15.6 points margin and 9.4 points margin, respec-

tively. This demonstrates that our MLN model

will further improves extraction of cross-links and

intra-links with antecedents if we have a better

coreference resolver.

We believe that the reason for these results

are two crucial differences between the SVM and

MLN models:

• With Formula (SiD) in Table 4, MLN joint has

more chances to extract “W-ANT” relations. It

also effects the first term of Formula (T). By

contrast, the SVM pipeline cannot easily model

the notion of salience in discourse and the ef-

fect from coreference is weak.

• Formula (T) of MLN is defined as a soft con-

straint. Hence, other formulae may reject a sug-

gested cross-link from Formula (T). The SVM

pipeline deterministically identifies cross-links

and is hence more prone to errors in the intra-

sentence E-A extraction.

Finally, the potential for further improvement

through coreference-based approach is limited by

the performance on intra-links extraction. More-

over, we also observe that the 20% of cross-links

are cases of zero-anaphora. Here the utility of

coreference information is naturally limited, and

our Formula (T) cannot come into effect due to

missing corefer(j, k) atoms.

6 Conclusion and Future Work

In this paper we presented a novel approach to

event extraction with coreference relations. Our

approach incorporates coreference relations with

two concepts of salience in discourse and transi-

tivity. The coreferent arguments we focused on

are generally valuable for document understand-

ing in terms of discourse structure and they should

be aggressively extracted. We proposed two mod-

els: SVM pipeline and MLN joint and they im-

proved the attachments of intra-sentence and cross-

sentence related to coreference relations. Further-

more, we confirmed that the more improvements

of coreference resolution led to the higher perfor-

mance of event-argument relation extraction.

However, potential for further improvement

through coreference-based approach is limited by

the performance of intra-sentence links and zero-

anaphora cases. To overcome this problem, we

plan to propose a collective approach for a whole

document. Specifically, we are constructing a joint

model of coreference resolution and event extrac-

tion considering all tokens in a document based on

the idea of Narrative Schema (Chambers and Ju-

rafsky, 2009). If we take into account of all tokens

in a document at one time, we can consider vari-

ous relations between events (event chains) through

anaphoric chains. But to implement such a joint

model by Markov Logic, we cannot escape from

fighting against time and space complexities. So,

we are investigating a reasonable approximation

for learning and inference of joint approaches.
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