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Abstract

An important task in biological information ex-

traction is to identify descriptions of biologi-

cal relations and events involving genes or pro-

teins. We propose a graph-based approach to

automatically learn rules for detecting biologi-

cal events in the literature. The detection is per-

formed by searching for isomorphism between

event rules and the dependency graphs of com-

plete sentences. When applying our approach to

the datasets of the Task 1 of the BioNLP shared

task, we achieved an 37.28% F-score in detecting

biological events across 9 event types.

1 Introduction

Recent research in information extraction in the bio-

logical domain has focused on extracting semantic re-

lations between molecular biology concepts (Fundel et

al., 2007). State-of-the-art protein annotation methods

have achieved reasonable success with a performance

of 88% F-score (Wilbur et al., 2007). A task of in-

terest is to automatically extract protein-protein inter-

actions (PPI). To date, most of the biological knowl-

edge about these interactions is only available in the

form of unstructured text from scientific articles (Abu-

laish and Dey, 2007). The best-performing system from

the BioCreative II challenge (Hunter et al., 2008) only

achieved a 29% F-score in identifying protein pairs in a

sentence that have a biologically relevant relationship.

This suggests that the problem of biological relation ex-

traction is difficult and far from solved.

Sentences in the biological literature often have

long-range dependencies. Therefore, co-occurrence

based or surface pattern based shallow analysis on bio-

logical texts suffers from either low precision or recall

(Fundel et al., 2007; Abulaish and Dey, 2007). As a re-

sult, full parsing has been explored as the basis for rela-

tion extraction to perform intensive syntactical and se-

mantic analysis (Abulaish and Dey, 2007; Fundel et al.,

2007; Rinaldi et al., 2007). In the BioNLP’09 shared

task on biological event extraction (Kim et al., 2009),

20 out of the total 24 participating teams resorted to

a full parsing strategy, including all top 10 perform-

ing teams. However, most of previous work extracts

relevant relations based on a limited set of manually

designed rules that map interpreted syntactic structures

into the semantic relations. We propose an approach to

automatically learn rules that characterize a wide range

of biological relations and events from a syntactically

and semantically annotated corpus, and our approach is

also based on full parsing of biological texts.

More recently, the dependency representation ob-

tained from full parsing, with its ability to reveal long-

range dependencies, has shown an advantage in bi-

ological relation extraction over the traditional Penn

Treebank-style phrase structure trees (Miyao et al.,

2009). Relations are generally extracted from the de-

pendency representation by two approaches. In one

approach, the dependency representation is traversed

and paths that contain the relevant terms describing the

relations predefined in the rules are extracted as can-

didate relations (Fundel et al., 2007; Rinaldi et al.,

2004). In the other, relations are learned from the

dependency representation using supervised machine

learning based on specialized feature representations or

kernels, encoded with dependency paths from the rep-

resentation (Airola et al., 2008; Björne et al., 2009).

Graphs provide a powerful primitive for modeling

biological data such as pathways and protein interac-

tion networks (Tian et al., 2007; Yan et al., 2006).

Since the dependency representation maps straightfor-

wardly onto a directed graph (de Marneffe and Man-

ning, 2008), properties and operations of graphs can

be naturally applied to the problem of biological rela-

tion extraction. We propose a graph matching-based

approach to extract biological events from the scientific

literature in tackling the primary task of the BioNLP’09

shared task on biological event extraction. The ex-

traction is performed by matching the dependency rep-

resentation of automatically learned rules to the de-
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pendency representation of biological sentences. This

process is treated as a subgraph matching problem,

which corresponds to the search for a subgraph isomor-

phic to a rule graph within a sentence graph.

The rest of the paper is organized as follows: In

Section 2, we introduce the BioNLP’09 shared task

on event extraction. Section 3 describes our subgraph

matching-based event extraction method. Sections 4

elaborates the implementation details. Performance is

evaluated in Section 5. Finally, Section 6 summarizes

the paper and introduces future work.

2 BioNLP’09 Shared Task

The BioNLP’09 shared task (Kim et al., 2009) focused

on the recognition of biological events that appear in

the biological literature. When a biological event is

described in text, we can analyze it by recognizing an

event type, the event trigger, one or more event argu-

ments, and the source text (ST ), where the event is de-

scribed. The source text is composed of tokens, which

are defined as finite strings of characters from a finite

alphabet. The alphabet is a finite set of symbols Σ.
Tokens come from W , the set of all finite strings of

characters from Σ, i.e.,W = Σ+. The source text is a

finite sequence of tokens, i.e., any member ofW ∗. We

define a biological event in a way consistent with the

shared task, which is as follows:

Definition 1. A biological event is a four-tuple e =
(Type, Trigger, Arguments, ST). ST ∈ W ∗, called the

source text, is a sequence of tokens that contains the

event; Type ∈ Te is an event type from a finite set of

event types Te; Trigger is a substring of tokens from ST

that signals the event; Arguments is a non-empty, finite

set of pairs (l, a) where l ∈ L is a label from a finite set

of semantic role labels L, and a is a token from ST, or

another biological event.

For the shared task, Te consists of nine event types

defined in Table 1, and L = {Theme, Cause}. A gold
event denotes a biological event where all the informa-

tion has been manually annotated by domain experts.

The primary task of the shared task was to detect bi-

ological events such as protein binding and phosphory-

lation, given only the annotation of protein names. It

was required to extract type, trigger, and primary argu-

ments of each event. This task is an example of extrac-

tion of semantically typed, complex events for which

the arguments can also be other events. We focus on

the primary task and propose a graph matching-based

method to cope with the problem.

3 Subgraph Matching-based Event Extraction

3.1 Dependency Representation

The dependency representation is designed to provide a

simple description of the grammatical relationships in

a sentence that can be effectively used to extract textual

relations (de Marneffe and Manning, 2008).

The dependency representation of a sentence is

formed by tokens in the sentence and the binary re-

lations between them. A single dependency relation

is represented as relation(governor, dependent), where
governor and dependent are tokens, and relation is a

type of the grammatical dependency relation. A depen-

dency representation is essentially a labeled directed

graph, which is named dependency graph.

3.2 Event Rule Induction

A biological event rule is defined as follows:

Definition 2. A biological event rule is a pair

r = (e,Gr). Gr = (Vr, Er) is a dependency graph,

which characterizes the contextual structure of events.

e = (Type, Trigger, Arguments) encodes a detailed

event frame, where Type is the event type, Trigger =

{(t1, v1), (t2, v2), · · ·} records the event trigger and is

a non-empty finite sequence of tokens associated with

nodes in Gr, i.e., Trigger ∈ (W × Vr)
+, and Argu-

ments = {(t1, l1, v1), (t2, l2, v2), · · ·} records the event

arguments and is a non-empty finite sequence of tokens

associated with semantic role labels and nodes in Gr,

i.e., Arguments ∈ (W × L× Vr)
+.

The biological event rules are learned from la-

beled training sentences using the following induction

method. Starting with the dependency graph of each

training sentence, the directions of edges are first re-

moved so that the directed graph is transformed into an

undirected graph, where a path must exist between any

two nodes since the graph is always connected. For

each gold event, the shortest dependency path in the

undirected graph connecting the event trigger nodes to

each event argument node is selected. The union of all

shortest dependency paths is then computed for each

event, and the original directed dependency representa-

tion of the path union is retrieved and used as the graph

representation of the event.

For multi-token event triggers, the shortest depen-

dency path connecting the node of every trigger token

to the node of each event argument is selected, and the

union of the paths is then computed for each trigger.

For regulation events, when a sub-event is used as an

argument, only the type and the trigger of the sub-event
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are preserved as the argument of the main events. The

shortest dependency path is extracted so as to connect

the trigger nodes of the main event to the trigger nodes

of the sub-event. In case that there exists more than

one shortest path, all of the paths are considered. As a

result, each gold event is transformed into the form of

a biological event rule. The obtained rules are catego-

rized in terms of the nine event types of the task.

3.3 Sentence Matching

We propose a sentence matching approach to attempt

to match event rules to each testing sentence. Since

the event rules and the sentences all possess a depen-

dency graph, the matching process is a subgraph match-

ing problem, which corresponds to the search for a

subgraph isomorphic to an event rule graph within the

graph of a testing sentence. This problem is also called

subgraph isomorphism, defined in this work as follows:

Definition 3. An event rule graph Gr = (Vr, Er)
is isomorphic to a subgraph of a sentence graph Gs =
(Vs, Es), denoted by Gr

∼= Ss ⊆ Gs, if there is an

injective mapping f : Vr → Vs such that, for every

directed pair of nodes vi, vj ∈ Vr, if (vi, vj) ∈ Er then

(f(vi), f(vj)) ∈ Es, and the edge label of (vi, vj) is
the same as the edge label of (f(vi), f(vj)).

The subgraph isomorphism problem is NP-complete

(Cormen et al., 2001). Considering that the graphs of

rules and sentences involved in our matching process

are small, a simple subgraph matching algorithm us-

ing a backtracking approach is appropriate. It is named

“Injective Graph Embedding Algorithm” and designed

based on the Huet’s graph unification algorithm (Huet,

1975). The main and the recursive part of the algorithm

are formalized in Algorithm 1 and Algorithm 2.

For each sentence, the algorithm returns all the

matched rules together with the corresponding injec-

tive mappings from rule nodes to sentence tokens. Bio-

logical events are then extracted by applying the event

descriptions of tokens in each matched rule such as the

type to the corresponding tokens of the sentence. In

practice, it only takes the algorithm a couple of seconds

to return the results.

4 Implementation

We assume that a sentence is a suitable level of text

granularity in event extraction. The target text is first

segmented into sentences. Then, each sentence is to-

kenized with whitespace separating tokens. We re-

quire that every protein be separated from surrounding

text and become one individual token. All the protein

Algorithm 1 Main algorithm

Input: Dependency graph of a testing sentence s, Gs = (Vs, Es)
where Vs is the set of nodes and Es is the set of edges

of the graph; a finite set of biological event rules R =
{r1, r2, · · · , ri, · · ·}, where ri = (ei, Gri). Gri =
(Vri , Eri) is the dependency graph of ri.

Output: MR : a set of biological event rules from R matched with

s together with the injective mapping

Main algorithm:

1: MR← ∅
2: for all ri ∈ R do

3: stri ← StartNode(Gri) //StartNode finds the start

4: //node stri of the rule graph Gri

5: STs ← {sts1 , sts2 , · · · , stsj , · · ·}
6: //STs : the set of start nodes of the sentence graph Gs

7: for all stsj ∈ STs do

8: create an empty stack σ and push (stri , stsj ) onto
9: the stack σ

10: IM← ∅ //IM : records of injective matches
11: //between nodes in Gri and Gs

12: call MatchNode(σ, rIM, Gri , Gs)
13: //rIM : reference of IM
14: if MatchNode returned TRUE then

15: MR ← MR ∪ {ri with IM }
16: return MR

names are replaced with a unified tag “BIO Entity”.

GENIA tagger (Tsuruoka et al., 2005) is used to as-

sociate each word in the tokenized sentences with its

most likely Part-of-Speech tag. The POS-tagged sen-

tences are submitted to the Stanford unlexicalized nat-

ural language parser (Klein and Manning, 2003) to an-

alyze the syntactic and semantic structure of the sen-

tences. The Stanford parser returns a dependency graph

for each sentence after parsing.

For each gold event, the shortest path in the undi-

rected graph connecting the event trigger to each event

argument is extracted using the Dijkstra’s algorithm

(Cormen et al., 2001) with equal weight for edges. Sen-

tence matching is performed following the procedure of

Algorithm 1 and Algorithm 2.

5 Results and Evaluation

5.1 Dataset

We use the BioNLP’09 Shared Task datasets for evalu-

ation. A training set and a development set are provided

for the purpose of developing task solution. They are

prepared based on the publicly available portion of the

GENIA event corpus (Kim et al., 2008) with the gold

protein annotation and the gold event annotation given.

A testing set is prepared from a held-out part of the cor-

pus and provided without the gold event annotation.

Table 1 shows the nine event types considered in the
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Algorithm 2 Recursive subroutine

Recursive subroutine: MatchNode(σ, rIMparent, Gri , Gs)
1: IMcurrent ← IMparent //assign IMparent from the

2: //parent level to the current IMcurrent

3: while stack σ is not empty do

4: pop node pair (vr, vs) from stack σ

5: if an injective match between vr and vs already exists

6: in IMcurrent then

7: do nothing

8: else if an injective match is possible between vr and

9: vs then

10: IMcurrent ← IMcurrent ∪ { the match between
11: vr and vs }
12: else

13: return FALSE

14: for all edges er adjacent to node vr in Gri do

15: let (vr, nr) be the edge er
16: for all edges es adjacent to node vs in Gs do

17: let (vs, ns) be the edge es
18: if er and es share a same direction and

19: possess identical edge labels then

20: S ← S ∪ ns //S : the set of candidate
21: //nodes for matching nr
22: for all ns ∈ S do

23: if an injective match between nr and ns
24: already exists in IMcurrent then

25: go to Line 14 and proceed with next edge er
26: else if an injective match is possible between

27: nr and ns then

28: σn ← σ //copy σ to a new stack σn
29: push (vr, vs, nr, ns) onto the stack σn
30: call MatchNode(σn, rIMcurrent, Gri , Gs)
31: //rIMcurrent : reference of IMcurrent

32: if MatchNode returned TRUE then

33: IMparent ← IMcurrent

34: //update IMparent using IMcurrent

35: return TRUE

36: return FALSE

37: IMparent ← IMcurrent

38: return TRUE

shared task. Since these types are all related to protein

biology, they take proteins (P) as their theme. Regu-

lation events always take a theme argument and, when

expressed, also a cause argument. As a unique feature

of the shared task, regulation events may take another

event (E), namely sub-event, as its theme or cause.

5.2 Rule Induction Results

For training data, only sentences that contain at least

one protein and one event are considered candidates

for further processing. For testing data, candidate sen-

tences contain at least one protein. Our proposed graph

matching-based method focuses on extracting biolog-

ical events from sentences. Therefore, only sentence-

based events are considered in this work. After re-

moving duplicate rules, we obtained 6,435 event rules,

Event type Primary arguments

1 Gene expression Theme(P)

2 Transcription Theme(P)

3 Protein catabolism Theme(P)

4 Phosphorylation Theme(P)

5 Localization Theme(P)

6 Binding (Theme(P))+

7 Regulation Theme(P/E), (Cause(P/E))?

8 Positive regulation Theme(P/E), (Cause(P/E))?

9 Negative regulation Theme(P/E), (Cause(P/E))?

Table 1: Event types and primary arguments

which are distributed over nine event types.

We observed that some event rules of an event

type are overlapped with rules of other event types.

For instance, a Transcription rule is isomorphic to a

Gene expression rule in terms of the graph represen-

tation and they also share a same event trigger token.

In fact, tokens like “gene expression” and “induction”

are used as event trigger of both Transcription and

Gene expression in training data. Therefore, the de-

tection of some Gene expression events is always ac-

companied by certain Transcription events.

In tackling this problem, we processed the rules and

built a non-overlapping rule set. When the dependency

graphs of two rules across different event types are iso-

morphic to each other and two rules share a same event

trigger token, we keep the rule of the event type in

which the trigger token of the rule occurs more frequent

as a trigger in the training data, and remove the rule of

the other event type from the set.

5.3 Event Extraction Results on Development Set

The non-overlapping rule sets in terms of different

combinations of matching features are then applied

to the 988 candidate development sentences using our

graph matching algorithm. Table 2 shows the event ex-

traction results based on each feature.

The least specific matching criterion when match-

ing between rules and sentences is “E”, which assumes

that, without checking any information about nodes, as

long as edge directions and labels are the same, both

edges and nodes of a rule and a sentence can match

with each other. It achieves the highest recall among all

the runs and captures more than half of the gold events

in the sentences. However, the precision is quite low,

leading to a low F-score as too many false positives are

generated due to the disregard of node information.

As the strictest matching criteria, “E+P+A” requires
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that the edges (E), the POS tags (P) and all tokens (A)

be exactly the same for the edges and the nodes of a rule

and a sentence to match with each other. It achieves

the highest precision 69.72% and an F-score over 40%.

This indicates that a certain number of biological events

are described in very similar way in the literature, in-

volving the same grammatical structures and identical

contextual contents. Comparing to “P+A”, adding the

edge features improves the overall precision of event

extraction by a large margin, nearly 13%. “E+P+T” re-

quires that edge directions and labels of all edges be

identical, POS tags of all tokens be identical, and to-

kens of only event triggers (T) be identical. It achieves

better performance than “E+P+A” when relaxing the

matching criteria from all tokens being the same to only

event trigger tokens having to be identical. The best 2

of the first 6 runs in Table 2 are “E+P+T” and “P+A”.

Next, we attempted to relax the matching criterion

of POS tags for nouns and verbs. For nouns, the plural

form of nouns is allowed to match with the singular

form, and proper nouns are allowed to match with reg-

ular nouns. For verbs, past tense, present tense and base

present form are allowed to match with each other. Fur-

ther, the event trigger tokens are stemmed to their root

forms allowing the trigger tokens derived from a same

root word to match. “E+P*+T*” and “P*+A+T*” in

Table 2 demonstrate the improved performance to the

above best two runs. These modifications improve the

recall but produce many incorrect events, leading to

only a small increase on the overall F-score.

Feature Prec.(%) Recall(%) F-score(%)

E 1.22 52.26 2.38

E+P 2.23 45.33 4.25

E+P+A 69.72 28.06 40.02

E+P+T 58.85 31.02 40.63

P+A 57.00 32.53 41.42

P+T 40.65 36.95 38.71

E+P*+T* 50.86 34.71 41.26

P*+A+T* 51.51 35.22 41.84

Table 2: Event extraction of non-overlapping set on devel-

opment set using different features

5.4 Event Extraction Results on Testing Set

We decided to conduct four runs on the testing

sentences in terms of 4 features: “E”, “E+P+A”,

“E+P*+T*” and “P*+A+T*”. For “E” and “E+P+A”,

aiming to investigate the highest recall and precision

on the testing sentences that can be achieved by our

method. Table 3 gives the event extraction results on

the 1,670 testing sentences in terms of the 4 features.

Feature Prec.(%) Recall(%) F-score(%)

E 0.84 52.17 1.65

E+P+A 58.64 26.02 36.05

E+P*+T* 41.77 33.66 37.28

P*+A+T* 39.61 32.18 35.51

Table 3: Event extraction of non-overlapping set on testing

sentences using different features

“E+P*+T*” achieves the best overall F-score of

37.28% among all the runs. Similarly to the develop-

ment set, the highest precision 58.64% on the testing

sentences is achieved by the strictest matching criteria

“E+P+A”. The highest recall 52.17% is obtained by the

least specific matching criterion “E”, indicating that a

large amount of biological events is described in quite

different grammatical structures in the literature. Al-

though “P*+A+T*” produced the best performance on

the development set, it does not perform as well on the

testing set. This clearly suggests that when requiring

every token to be exactly the same for matching nodes

of a rule and a sentence, the event rules have less stable

generalization power to capture the underlying events.

Table 4 gives the performance comparison of our

method with top-performing teams in the task. The of-

ficial evaluation shows that our best results would rank

6th in extracting biological events in the testing data

compared to the results of the 24 participating teams.

Team Prec.(%) Recall(%) F-score(%)

UTurku 58.48 46.73 51.95

JULIELab 47.52 45.82 46.66

ConcordU 61.59 34.98 44.62

UT+DBCLS 55.59 36.90 44.35

VIBGhent 51.55 33.41 40.54

DalhousieU 41.77 33.66 37.28

UTokyo 53.56 28.13 36.88

UNSW 45.78 28.22 34.92

Table 4: Performance comparison with participating teams

6 Conclusion and future work

We use dependency graphs to automatically induce bi-

ological event rules from annotated events. These rules

are then used to extract biological events from the lit-

erature. The extraction process is treated as a subgraph

matching problem to search for the graph of an event

rule within the dependency graph of a sentence. We
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conducted the experiments to tackle the primary task

of the BioNLP shared task, and our method achieves

an 37.28% F-score on the testing data in detecting bio-

logical events across nine event types.

In future work, we would like to experiment with

more matching criteria when mapping event rules to

sentences. We also plan to expand the coverage of event

trigger tokens using external lexical resources for new

event triggers and synonyms of existing triggers.
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