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Abstract

Background: The increasing volume and growing complexity of drugs lead to an increased risk of prescription
errors and adverse events. A correct drug choice must be modulated to acknowledge both patients’ status and
drug-specific information. This information is reported in free-text on drug fact sheets. It is often overwhelming
and difficult to access. There is thus a rising need for generating comprehensive and structured data that help
prevent such events by improving access to fact sheet information. This work presents a machine learning based
system for the automatic prediction of drug-related entities (active ingredient, interaction effects, etc.) in textual
drug fact sheets, focusing on drug interactions.

Results: Our approach learns to classify this information in the structured prediction framework, comparing con-
ditional random fields and support vector machines. Both classifiers are trained and evaluated using a corpus of
100 drug fact sheets. They have been hand-annotated with fourteen semantic labels that have been derived from
a previously developed domain ontology. Our experimental results show that the two models exhibit similar overall
performance. They achieve an average F1-measure of about 93 per cent, which is promising. The performance
results of both models on the individual labels are also comparably good.

Conclusions: We have shown that it is possible to perform the task of information extraction from drug fact sheets
using supervised machine learning techniques. Although we have focused on drug interactions, the encouraging
results and the adaptability of the approach we adopted means that our system has general significance for the
extraction of detailed information on drugs (drug targets, contraindications, side effects, etc.).

Background

The medication management process is highly com-
plex and involves a large number of choices from dif-
ferent health care professionals. Medication errors
occur frequently among patients, at any point in the
medication administration process. The Institute of
Medicine (IOM) reports that more than 1.5 million
adverse drug events (ADEs) are preventable each
year in the US alone [1]. Examples of errors in-
clude a patient receiving the wrong medication, a
medication to which they have a known allergy, or

a patient receiving an incorrect dose of medicine.
This phenomenon is aggravated by aging patients’
multi-pathologies and the ever-growing number and
complexity of drugs (e.g. drugs combining more than
one active ingredient deserve more attention for in-
teractions and contraindications). Physicians need
to take into account many drug-specific and patient-
specific characteristics and studies show that these
factors are often overlooked or recognized too late.

In recent years, considerable efforts have been
made to reduce medication errors and to detect



and prevent ADEs. Computerized systems that in-
corporate specific applications in electronic medical
records or in clinical information systems support
medication ordering, dispensing and administration
functions. These systems are referred to as Com-
puterized Provider Order Entry – CPOE [2]. To
enhance their performance, such systems have to in-
clude rich domain knowledge. Thus, they will be
able to support clinical decision, assisting the physi-
cian, for example, by screening orders for allergies
and drug-drug or drug-laboratory tests interactions,
generating alerts tailored to patients’ characteristics.
Not much of such knowledge is available in semi-
structured form, and even less in normalized, struc-
tured form. In particular, drug-related information
is reported in free-text on fact sheet. For effec-
tive use, this information locked in natural language
must first be transformed into structured data.

In this work, we consider the problem of auto-
matic extraction of drug information conveyed in the
Summary of Product Characteristic (SPC), focusing
on a specific section concerned with drug-related in-
teractions. Our contributions are:

1. We formulate the problem in a machine learn-
ing framework, in which we seek to assign the
correct semantic label, such as InteractionEf-
fect or ActiveDrugIngredient, to each word on
a drug fact sheet. To this end, we employ two
state-of-the-art classifiers: linear-chain condi-
tional random fields (CRFs) and structured
support vector machines (SVMs). These clas-
sifiers discriminate the semantic labels trough
the automatic adaptation of hundreds of engi-
neered text features, taking into account both
local (on a word level) and global (sentence or
fact sheet level) information.

2. We introduce a corpus of 100 interaction sec-
tions in Italian language that have been anno-
tated with fourteen semantic labels, with re-
spect to a previously implemented ontology.

3. We apply both CRF and SVM to our data set
and evaluate their overall and individual label
performances. Both classifiers achieve an av-
erage F1-measures of about 93%—a promising
result with regard to real-world applications.

Methods
Named Entity Recognition in SPCs
SPCs represent a source of information for health
professionals on how to use medicines safely and ef-

fectively. It forms an intrinsic and integral part of
the marketing authorisation. In order to obtain an
authorization to place a medicinal product on the
market, a SPC shall be included in the application
made to the competent authority. Its content is
regulated by Article 11 of Directive 2001/83/EC. A
SPC sets out the agreed position (results of physico-
chemical, biological or microbiological tests, toxico-
logical and pharmacological tests, clinical trials etc.)
on the medicinal product as collected during the
course of the assessment process.

SPCs of specialty medicines for human use are
organized into 12 sections: name, therapeutic cate-
gories, active ingredient, excipients, indications, con-
traindication/side effects, undesired effects, posol-
ogy, storage precautions, warnings, interactions, use
in case of pregnancy and nursing. Access to this
comprehensive information provides a wide range of
coded data, which are then available for new or im-
proved clinical applications, facilitating and improv-
ing the prescription process. It is therefore an im-
portant step in preventing medical errors.

We propose a first approach to extracting drug-
related interaction information reported as free-
text in SPCs, following a named entity recogni-
tion (NER) approach. NER is an important step
of an integral information extraction task and aims
at identifying words or phrases in natural language
text that belong to certain classes of interest, and
labeling them according to their type. As an exam-
ple, consider the following sentence (translated from
Italian):

〈Enoxaparin〉ActiveDrugIngredient dosed as
a 〈1.0 mg/kg〉Posology 〈subcutaneous
injection〉IntakeRoute for 〈four
doses〉Posology 〈did not alter the
pharmacokinetics〉InteractionEffect of
〈eptifibatide〉ActiveDrugIngredient.

In NER, each token is sought to be associated with a
label that indicates its appropriate domain-specific
category.

Typically, the first step in most NER tasks is to
identify the named entities (labels) that are relevant
to the concepts, relations and events described in
the text. A system for NER is thus based on spe-
cific knowledge on the domain. Thus, as part of an
understanding of the factual information process, we
previously developed a domain ontology defining the
entity classes, relations and attributes [3]. Based on



the ontology, an extensive knowledge base of con-
cepts is maintained.

One of the most successful methods for perform-
ing such labeling and segmentation tasks is that of
employing supervised machine learning techniques.
These methods automatically tune their own param-
eters to maximize their performance on a set of ex-
ample texts that have been annotated by hand. The
machine then generalizes from these examples.

We developed a framework for simultaneously
recognizing occurrences of multiple entity classes us-
ing linear-chain CRFs [4] and structured SVMs [5,6].
Both supervised machine learning approaches pre-
dict words’ labels using a large number of descrip-
tive characteristics (features) of the input by assign-
ing real-valued weight to these features. They can
be seen as a way to “capture” the hidden patterns
in both labels and features, and “learn” what would
be the likely output considering these patterns. Due
to paucity of space, however, we limit the treatment
of these subjects to a presentation of the employed
features and refer the reader to the original publica-
tions for details on the statistical properties.

Features
The feature construction process aims at capturing
the salient characteristics of each token in order to
help the system predict its semantic label. Since
statistical models such as the CRF and the SVM
crucially depend on a wise choice of these features,
their defintion has critical impact on the overall per-
formance of the system.

Defining features means to construct a set of gen-
erally binary-valued feature functions f(x, t) for a
sentence x and a word position t. For example,

fenoxaparin(x, t) =

 1 : if the word at position t
in x is enoxaparin

0 : otherwise

is a binary word feature which returns 1 whenever
the word at position t in sentence x is enoxaparin

and 0 otherwise.
We implemented and employed a large variety of

informative features that can be derived from the
fact sheets – both locally on a token or word level
and globally on a sentence or section level.

Before the actual feature assignment process, we
split each input sentence into tokens. We use a sim-
ple, but robust tokenization method which considers
white-space, colon and parenthesis as token bound-
aries. We then remove all punctuation with the ex-

ception of hyphens occuring between alphanumeric
strings in a second preprocessing step. Due to some
length constraints our original database is not prop-
erly hyphenated. To remedy this we consulted an
Italian language lexicon [7]. We now describe the
features we used in our experiments.

Word and Neighbouring Word Features

Each word in the stream of tokens has been con-
verted into a binary feature. Moreover, we equally
created features for the words preceding or follow-
ing the current position t in a sentence x, mod-
eling local context. Consider the excerpt from
page 2, for instance. Apart from fenoxaparin(x, t)
which is 1 only for t = 1, we also have a feature
fenoxaparin, -1(x, t) which is 1 whenever the preced-
ing word is enoxaparin, here for t = 2. In our ex-
periments, we report results for context sizes 0 (no
context), −3/3 and −7/7.

Orthographical Features

Besides word features, we added orthographical fea-
tures that indicate whether a token consists of digits.
This is useful for identifying Posology entities.

Word Substring Features

Some substrings can provide good clues for classify-
ing named entities. In particular, we identified a set
of words which occur frequently with the same label;
for example Italian words which start with “effet-”
(effect) are usually Interaction Effects, those start-
ing with “mg-” (mg) have usually been tagged as
Posology, and so on.

Punctuation Features

Also notable are features which characterize inter-
esting punctuation in sentences. After browsing our
corpora we found that colons and brackets may be
helpful. Given a medication, colons are usually pre-
ceded by the interacting substance and followed by
the explanation of the specific interaction effects.
Round brackets show extra information. For each
token, the punctuation features test if it is preceded
or followed by a colon or a parenthesis. All punctu-
ation features have been used in conjunction with a
context window of sentence length.

Active Ingredient Dictionary Feature

Finally, we added an examplary feature carrying
domain-specific knowledge. Farmadati Italia [8]
database provides a complete archive of active in-
gredients. The dictionary feature is based on these
database entries and tells us whether a token is an
active ingredient or not.



Table 1: Overall experimental results (in %) of CRF and SVM.

Model
Micro-averaged Macro-averaged Overall

Precision Recall F1-measure Precision Recall F1-measure Accuracy
CRF 93.89 93.88 93.72 95.80 77.31 81.50 93.88
SVM 93.72 93.76 93.61 95.30 76.15 80.59 93.75

Experiments
Data Collection

The goal of this work lies in extracting information
from SPCs, with a focus on drug-related interac-
tions. We created a corpus which consists of 100
manually annotated interaction sections of specialty
medicines for human use. They have been extracted
from SPCs selected uniformly at random from the
Farmadati Italia database. We used the BDF (Ban-
cadati Federfarma) software [9] for an exploratory
data analysis and for exporting the SPCs to a text
file.
Ontology-based Annotation Process

Semantic annotation is used to establish links be-
tween the tokens in the SPCs and their semantic
descriptions or concept classes. For a reliable anno-
tation, the semantic descriptions must be well de-
fined and easy to understand by the domain expert
who annotates the text. We therefore annotated the
text with respect to a previously developed ontology-
based model of drug information as conveyed in the
SPCs [3], which specifies the classes of concept (i.e.
concepts representing drug characteristics), the rela-
tionships that bind them and other distinctions that
are relevant for modeling the application area. The
annotation process was performed by a biomedical
engineer with domain knowledge. A review of the
data has been used to validate and, when necessary,
correct the annotations.

Leveraging the established ontology, we mapped
its elements to the SPCs’ text content. We accu-
rately inspected all the corpus lines distinguishing
the different senses with respect to the ontology; we
then annotated each word in the extracted SPC in-
teraction sections with the corresponding class in the
ontology. Active ingredients have also been auto-
matically extracted using the Farmadati database.

Experimetal Setup

We randomly split the 100 interaction sections into
two sets; one for training which consists of 60 sec-
tions and one for testing which contains 40 sections.
In total, there are 840 input sentences for training
and 413 input sentences for testing.

We measure and evaluate the performance of our
models based on precision (P), recall (R) and F1-
measure (F1) [10]. We report results for the two
classifiers in terms of overall and individual label
performance. When dealing with multi-label classi-
fication and imbalanced labels, the performance on
the individual labels can essentially be aggregated
into overall performance results in two complemen-
tary ways: either we compute their arithmetic mean,
giving equal weight to each of the labels (macro-
averaged); or we compute the mean by weighting
each label by the number of times they occur in the
data set (micro-averaged).

Results and Discussion
Table 1 presents a summary of key performance fig-
ures for both CRF and SVM. Overally, our exper-
iments show that the two classifiers, with carefully
designed features, can identify information related
to drug interactions with very high accuracy (about
93%). There is no clear superiority of one model
over the other. Although the data might contain
noise inherent to manual annotation, the learning
algorithms reach high performance. This high recog-
nition performance can be attributed to the latent
structural regularities of natural language text and
the regularity of the appearance of groups of named
entities in the investigated paragraphs. Approaching
the problem of information extraction from SPCs in
the described machine learning approach is promis-
ing.

Table 2 shows the performance of CRF and SVM
on the individual labels, employing all available fea-
tures and a context of size -7/7. The labels Other-
Substance and DiagnosticTest are most difficult to
extract, which is probably due to the tiny number
of examples available. Rare labels as AgeClass, In-
takeRoute exhibit better performance, they may in
fact profit from a precise definition, contributing to
high performance.

Moreover, we investigate the influence of the
word neighbouring features with regard to overall
performance. Using local word context appears to



Table 2: Performance results (in %) of the two classifiers on individual labels.

Label Ntrain Ntest
CRF SVM

Precision Recall F1-measure Precision Recall F1-measure
ActiveDrugIngredient 1405 685 97.94 96.93 97.43 98.36 96.50 97.42
AgeClass 16 8 1 1 1 1 1 1
ClinicalCondition 61 41 1 82.93 90.67 1 80.49 89.19
DiagnosticTest 95 33 1 60.61 75.47 1 48.48 65.31
Drug 1 1 1 1 1 1 1 1
DrugClass 1397 764 90.18 87.70 88.92 90.61 87.17 88.86
IntakeRoute 40 21 94.12 76.19 84.21 93.75 71.43 81.08
InteractionEffect 1927 936 91.83 87.71 89.73 89.56 88.89 89.22
None 12711 6290 94.33 97.36 95.82 94.46 97.07 95.75
OtherSubstance 91 86 1 44.19 61.29 93.18 47.67 63.07
PharmaceuticalForm 1 0 - - - - - -
PhysiologicalCondition 3 0 - - - - - -
Posology 412 219 88.44 90.87 89.64 92.09 90.41 92.09
RecoveringAction 856 495 92.79 80.61 86.27 89.80 81.82 85.62

be useful for determining the semantic labels. The
larger the context window size, the better and the
more precise the results. Table 3 illustrates the per-
formance of both classifiers for varying context win-
dow sizes. We followed an additive strategy: starting
with no word neighbouring features (i.e. a window
size of 0), we increased the window size piecemeal,
measuring the performance of the resulting classi-
fiers at each step. The initial classifiers didn’t use
a word neighbouring feature set. The addition of
neighbouring words in the window -3/3 as features
improves the F1-measure by about 3 − 4% (micro-
averaged), and 7−9% (macro-averaged). Increment-
ing the context window to a size of -7/7 gives rise
to an improvement on all metrics, boosting micro-
averaged F1 by about 6% and the macro-averaged
F1 by about 7%. Non-zero context window sizes
hence provide an important benefit with respect to
the overall classification performance. An analysis
of the different performance increments for contexts
of size -3/3 and -7/7 will be left to future work.

Conclusions
We have presented a framework for simultaneously
recognizing occurrences of multiple entity classes in
textual drug fact sheets, using supervised machine
learning techniques. We compared the performance
of two state-of-the-art discriminative classifiers with
carefully engineered features. Our empirical eval-
uation shows that the two classifiers exhibit similar
overall performance, achieving high overall accuracy.
Although we have focused on drug interactions, the
encouraging results and the adaptability of adopted
approach show that our system is significant for the
extraction of detailed information about drugs (drug
targets, contraindications, side effects).

Table 3: Variation in performance (in %) for different word feature context sizes.
Context Size

Metric CRF SVM
0 -3/3 -7/7 0 -3/3 -7/7

Micro-averaged
Precision 84.12 87.64 93.89 83.70 87.93 93.72
Recall 84.60 87.83 93.88 84.34 88.22 93.76
F1-measure 84.14 87.31 93.72 83.45 87.96 93.61

Macro-averaged
Precision 82.80 91.45 95.80 83.45 83.12 95.30
Recall 60.16 68.62 77.31 61.92 72.30 76.15
F1-measure 65.70 74.67 81.50 66.34 73.10 80.59
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