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Abstract. The analysis of architectural features in neural tissue sections
and the identification of distinct regions is challenging for computer aided
diagnosis (CAD) in neuropathology. Due to the difficulty of locating a
tissue’s origin and alignment as well as the vast variety of structures
within such images an orientation independent (i. e. rotation invariant)
approach for tissue region segmentation has to be found to encode the
structural features of neural layer architecture in the tissue. We propose
to apply the Ripley’s-L̂ function, originating from the field of plant ecol-
ogy, to compute feature vectors encoding the spatial statistics of point
patterns described by selectively stained cells. Combining the Ripley’s
L̂ features with unsupervised clustering enables a segmentation of tissue
sections into neuropathological areas.

1 Introduction

Visual inspection of microscopy images from neural tissue sections taken from
human brains immediately show a variety of structure orientation and distribu-
tion of neural cells (Fig. 1a). Depending on the tissue’s origin, the position and
direction of the cut and the selected part of the tissue to be captured, several
input factors determine the initial data to be analyzed. The images analyzed
here contained captions of the cortical layers of the human brain. These layers
are indexed by roman numbers. Beginning at the outside with layer I which is
an almost empty region, five layers of different internal structure follow, end-
ing with layer VI where the amount of neurons faints towards the white matter
(Fig. 1b). By just looking at the images, be it the original microscopy outcome or
a binarized or centroided one, it is possible to distinguish some major structures
although it is a subjective task. Hence the challenge is to enable a computer
to identify similar regions, even by means of minor dissimilarities, making it
possible to get an objective, reproducible and understandable identification of
tissue structures and distortions in the neural architecture. To gain an unbiased
insight to the data, we chose to apply the Ripley’s-L̂ function, which has only
recently been introduced to the field of microscopy [1].
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2 Materials and Methods

2.1 Imaging Protocol

Diagnostic samples were derived from neurosurgical resections at the Bethel
Epilepsy Center, Bielefeld, Germany for therapeutic purposes, routinely pro-
cessed for formalin fixation and paraffin embedded. Four µm thick microtome
sections were immunostained using an antibody against NeuN, a marker label-
ing almost all mature cortical neurons. Positive staining of cells rendered them
brown, leaving surrounding structures with a faint blue counterstain. Archival
slides of 19 cases from the years 2009 and 2010 were selected for representing
largely normal lateral temporal isocortex cut perpendicular to the brain sur-
face. Slides were analyzed on a Zeiss Axioskop 2 plus microscope with a Zeiss
Achroplan 2.5x/0.07 lens. After manually focusing and automated background
correction, 1300 × 1030 pixels, 24 bit, true color RGB pictures were taken at
standardized 3200 K light temperature in TIF format using Zeiss AxioVision
3.1 software and a Zeiss AxioCam HRc digital color camera (Carl Zeiss AG,
Oberkochen, Germany). All images are fully anonymized and our work did not
influence the diagnostic process or the patient’s treatment.

2.2 Segmentation

The Ripley’s-K̂ function [2] is defined for point patterns, so nuclei segmentation
was applied to all images using a color channel based algorithm, that takes the
average of the three channels of the RGB image at each pixel and compares this
value to a given thresholding parameter. All values below this threshold were
treated as background, all values above or equal were thought of as neural cells.
The binary image for different thresholds was visually compared to the estimated
result and a threshold value of about 70 has shown good outcomes. To get a
point pattern, the binarized image was segmented, i.e. all connected pixels were
combined to a cell region and the centroid of this region was computed as the
cells representative point (RP). All RPs together create the nuclei point pattern
of an image or an image region.

2.3 Ripleys-L̂ Function

The original Ripley function was developed as the Ripley’s-K̂ function which
analyses the distribution of n points in a given area A. It centers an imaginary
circle of a given radius at each point of the observed pattern and counts the
number of other points found within this circle. This number is set into relation
to the expected amount of points within the circle determined by the size of the
complete region (“study region” A) and the total number of points (n) and then
summed up for all points i. The K̂ value
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is computed for all radii within a given interval (i.e. from r = 1 to r = rmax),
with δ in the numerator is 1 for point distances d(i,j) < r, else it is 0. The
denominator is the fraction of the circle area with radius r at point i within the
study region so the point counts for points i close to the study region borders
are adjusted [3]. A drawback of the K̂ function are its fast growing values for
increasing radii. Therefore the L̂ function was introduced which is a normalized
representation and has values around zero

L̂(r) =

√
K̂(r)

π
− r (2)

L̂ values above zero for a given radius indicate more, values below zero indicate
less points within this radius than expected.

2.4 Confidence Envelopes

To evaluate the significance of an observed point pattern, a reference point pat-
tern is required. Therefore usually the assumed pattern creation process is sim-
ulated to create a set of further point patterns [4]. There is a variety of possible
point processes, the easiest of which is complete spatial randomness which was
used here. We simulated a similar study region and randomly distributed the
same amount of points as in the original pattern within this region. We then
again calculated the L̂ function and repeated this procedure nineteen times to
yield 95 percent confidence envelopes by taking the highest and lowest calculated
values for each radius as envelope limits.

2.5 Feature Set

Each captured 1300×1030 pixel image was cut into overlapping tiles. Each tile
was 150×150 pixel and the overlap in each direction was 140 pixels creating a
set of 116×89 tiles. Each tile was represented by one Ripley’s-L̂ feature vector,
yielding 10,324 feature vectors per image. To avoid edge effects the tiles had to
be completely inside the image, leaving a 70 pixel border at each side which was
not analyzed. We then computed standard point pattern features like density
(λ), mean point distance (d̄) and deviation of mean distance (σ). The density
gave good approximations for the underlying brain structure as can be expected.
But being a one-dimensional measure, it was not able to identify semantic dif-
ferences between the layers, e.g. layers I and VI (Fig. 1, B) both feature low
density but resemble the far inner/outer layer and show distinctive structures at
the transitions towards their neighboring layers. To compute Ripley’s-L̂ based
features, we computed the L̂ function (with rmax = 20) on each tile’s point
pattern, so A = 150×150 in (1), and calculated features from the resulting L̂
function like the amount of null points (N), area above (Ia), below (Ib) and
outside (Io) confidence envelopes. In order to achieve a compact representation
of the L̂ function shape, we approximated the L̂-function by a polynomial of
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degree m and used the polynomial coefficients as features. However in our ini-
tial experiments we found that we had to include all the L̂ functions numerical
values to get a more comprehensive description of its slope. Since we needed to
take the confidence envelopes into account here, we calculated a shifted version
of the L̂ function, that is zero for all radii at which the function is within the
confidence envelope and the difference between the function and the envelope
otherwise. As a result of several experiments we found, that a joint feature vec-
tor v, containing density (λ) and all numerical values of the original as well as
the shifted L̂ function, produced the best results and so we joined those features
to a 41-dim feature space.

2.6 Clustering, Segmentation and Visualization

The feature vectors from all tiles of all images were fused to one training set
(19 · 10,324 = 196,156 items). Each vector was normalized to |v| = 1 before
clustering. Batch k-means was applied to fit k=20 prototype vectors vα,α=1..20

to regions of high feature vector density. The clustering was stopped if at most
50 iterations were performed or less than 0.1 % of the assignments of feature
vectors to their best matching unit (BMU) changed during one iteration. Af-
terwards each pixel was mapped to its BMU to achieve a first segmentation i.e.

Fig. 1. A: an original input image, beginning on the left with white matter, then layers
VI to I, attached to the right is the next cerebral gyrus, again beginning with layer I
and II; B: a hand labeled image with highlighted regions and an arbitrary color coding;
C: The original image as a background with a density overlay; D: The clustering result
where less occupied regions are dark blue whereas the filled layers are purple and pink
at sharp edges towards empty regions.
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pixel labeling result. To visualize and evaluate this segmentation result, each
prototype vα was assigned to a RGB color (r,g,b)α. To preserve topology in
the mapping from the feature to the color space, we assigned RGB components
using projections of the prototype vectors onto the eigenvectors belonging to the
three highest eigenvalues of the feature set (Fig. 1d). We reran the experiments
with the same settings to confirm the cluster results and found that small dif-
ferences can occur due to the randomization effects during confidence envelope
calculation.

3 Results

The segmented result (Fig. 1d) shows a layered structure comparable to the
density image (Fig. 1c). However the color scale compared to density of the
prototypes shows that the prototypes describe a manifold of a higher dimension
i.e. the features encode spatial features more complex than density. At least three
eigenvectors, belonging to the three highest eigenvalues are necessary to encode
95 percent of the data variance. The less occupied regions are separated into the
white matter and layer I. Layers II to VI show similar results as both feature
pattern distributions of moderate to high density and are only discerned by their
relative position to each other. The resulting structure shows good overlap with
the hand labeled image (Fig. 1, B) although there are differences especially for
layers V and VI where the subjective coloring shows a smaller region V but the
data driven approach assigns more tiles to the comparable region.

4 Discussion

The outcome of our proposed method used as an initial attempt is encourag-
ing for further optimization. Beginning with binarization and centroid finding,
moving on to feature selection and normalization, ending up with clustering and
result visualization, every component of this project could be improved. On the
other hand every part of it is simple and easily understandable which is im-
portant to avoid explanation problems of black-box solutions. Our results are
promising to provide in the future a computer aided tool for visualizing subtle
developmental brain abnormalities associated with human epilepsy.

References

1. Mattfeld T, Eckel S, Fleischer F, et al. Statistical analysis of labelling patterns of
mammary carcinoma cell nuclei on histological sections. J Microscopy. 2009;235:106–
18.

2. Ripley BD. The second-order analysis of stationary point processes. J Appl Prob.
1976;13:255–66.

3. Goreaud F, Pelissier R. On explicit formulas of edge effect correction for Ripley’s
K-function. J Veget Sci. 1999;10:433–8.

4. Wiegand T, Moloney KA. Rings, circles and null-models for point pattern analysis
in ecology. Oikos. 2004;104:209–29.


