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Abstract. Robust and accurate automatic detection of anatomical fea-
tures on organic shapes is a challenging task. Despite a rough similarity,
each shape is unique. To cope with this variety, we propose a novel
clustering-based feature detection scheme. The scheme can be used as a
standalone feature detection scheme or it can provide meaningful start-
ing points for surface analyzing-based detection algorithms. The scheme
includes the identification of a representative set of shapes and the us-
age of a specialized iterative closest point algorithm for the registration
of shapes, which is followed by the projection of the features using the
transformation matrix of the registration. Evaluation is based on a large
set of expert annotated shapes and showed superior performance com-
pared to state-of-the-art surface analyzing methods. Accuracy increased
of 32% and detection of all features is ensured.

1 Introduction

Shape analysis typically involves the abstraction of complex structures by remov-
ing redundant details. It captures the essence of geometry via a representative
set of distinctive features, such as 3-D points, planes, curves or areas. These
features can be employed for classification, registration and for driving the au-
tomation of shape transformations. The problem is very challenging due to the
variability of organic surfaces. In this work, we focus on the robust and accu-
rate detection of anatomical features found on ear impressions. An example ear
impression with annotated features is given in Fig. 1. Theses features provide
the basic structure for the automatic design of customized in-the-ear hearing
aids [1, 2].

Previous work in this field was reported by Paulsen et al., they employed
anatomical features (landmarks) to build a statistical shape model of the human
ear canal for shape analysis and the automatic design of customized hearing
aids [2, 3]. Zouhar et al. focused on the detection of anatomical features to
guide a fast registration of 3-D ear impressions and also for automation pur-
poses [4, 5]. Baloch et al. worked on the detection of a canonical ear signature to
capture the structure of an ear impression [6]. So far, the proposed algorithms
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for feature detection on ear impressions were solely based on the analysis of sur-
face properties, like peaks, depressions, concavities, ridges and bumps. Hence,
the result is sensitive to the quality of the acquired ear impression mesh and can
fail in case of unusual ear impressions [6]. Problematic cases are characterized
by containing large amounts of excess material, very short ear canals, holes all
over the impression and a very jagged opening contour at the bottom of the im-
pression. Furthermore, due to the shape variety some features will not always be
very distinctive. We specifically address the named problems by enhancing the
current methods with a clustering-based detection (CBD) scheme as described
in the following.

2 Materials and Methods

Our CBD scheme is based on three methods: (i) robust alignment of ear im-
pressions, (ii) identification of a representative set of ear impressions, and (iii)
feature projection from one impression to another.

2.1 Robust Alignment of Ear Impressions

Similar to Zouhar et al. [4], we use a specifically adapted version of an iterative
closest point (ICP) algorithm to register ear impressions. In contrast to them,
we employ a version without previously detected features, since we want to be
independent of them. Our approach is divided in two steps: (i) rough registra-
tion using a centerline representation and (ii) fine registration using the mesh
representation.

The initial centerline is computed by equidistantly slicing the mesh parallel
to a plane defined by the open contour at the bottom of the impression (Fig. 1).

(a) Frontal view (b) Backward view

Fig. 1. 3-D mesh representation of an ear impression (ear negative) consisting of the
external ear and the ear canal. Some of the later considered features are annotated.
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For each slice the center of mass is computed resulting in an ordered set of
points l1, . . . , lN . Afterwards the centerline is refined and improved by applying
internal and external forces as defined below

Eint,i = li−1 + li+1 − 2li (1)

Eext,i =
1

N

N∑
r=1

xr,i

|xr,i|
(2)

l′i = li + αEint,i + βEext,i (3)

In eqs. (1) to (3), xr,i denotes the intersection of a random ray r with the mesh
emitted from the centerline point li, and N is the number of rays. The final
update rule of a centerline point li is a weighted combination of the internal
and external force, where α = 0.04 and β = 1.0. The centerline points are
updated according to eq. (3) until convergence. An example for the initial and
final centerline is given in Fig. 2. A critical step of the ICP is the matching
of point pairs, which can be computational expensive. We can use the fact
that the centerlines are ordered from top to bottom to employ an efficient point
matching technique. We shift the centerlines along each other. In each shift
step the overlapping parts are extracted. The point matching is then reduced
to matching the index i. For every step, we compute the ICP (point-to-point
error metric) and store the transformation matrix along with the registration
error. To solve the ICP, we utilize the SVD-based strategy proposed by Arun
et al. [7]. For the fine registration an ICP with the point-to-plane error metric
is used. It utilizes the surface normals as additional information and, therefore,
allows that smooth or planar areas of the meshes slide over each other easily.
Here, no closed-form solutions are available. Thus, we linearize the problem
using the assumption that incremental rotations are small, which is valid due to
our centerline registration.

2.2 Identification of a Representative Set of Ear Impressions

To identify a representative set of ear impressions, we aligned a sample set of 473
ear impressions with each other and stored the averaged squared error of each

Fig. 2. Centerline of an ear impression. The
initial centerline (jagged) is colored in red and
the refined smooth centerline in black. The initial
centerline is biased by the concha area (left part
of the impression), while the corrected centerline
follows the canal.
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alignment along with its transformation matrix T. This information was given
as input into an agglomerative hierarchical clustering (AHC) algorithm. AHC
was used, because no evidence for a certain number of clusters was available.
We employed the complete-linkage criterion to identify the closest clusters and
analyzed the development of the dissimilarity measure along with scatter criteria
to identify the most natural clustering. The cluster centers collectively define our
representative set of ear impressions SRep = {S1, . . . , Sn}. Finally, each member
of SRep was annotated by an expert designer.

2.3 Feature Projection

To detect the features on a so far unknown ear impression Snew it is registered
with each surface in SRep. In the following only surface Sref ∈ SRep with the
smallest registration error is considered. The features Fref of Sref are transformed
using Tref resulting in a new feature set F ′

ref. Since F
′
ref typically will not end up

directly on the surface Snew a final projection is necessary. Currently, we employ
only simple projection algorithms. In case of feature points or point sets, the
projection is achieved by projecting the given point on the closest point of Snew.
In case of feature planes, no projection is necessary.

3 Results

The clustering of a set of 473 ear impressions resulted in a representative set of
10 ear impressions. Major distinctive properties of the clusters are thickness of
the ear canal, direction of the ear canal, thickness and length of the helix and
the shape of the anti-tragus concavity (Fig. 1).

For the evaluation of the feature detection we restricted ourselves to the
feature points listed in Tab. 1. We compared our CBD scheme with a surface-
analysis-based (SBD) one developed by Baloch et al. [6]. The results presented
in Tab. 1 are based on the evaluation of 117 expert annotated ear impressions.
For each feature point the accuracy (Euclidean distance to annotated feature),
the detection rate and the tolerance rate is calculated. The latter is defined as
not exceeding a certain threshold θ. In agreement with the design experts, θ was
set to 3 mm. The results clearly indicate that the CBD is superior. On average
it is 1mm (≈ 32%) closer to the target and offers a smaller standard deviation
compared to the SBD. The achieved detection rates are both very good: 98.8%
for SBD and 100% for CBD, respectively. As expected from the numbers given
in Tab. 1, the tolerance rates differ strongly. The SBD obtained a tolerable result
in 62.3% of the cases, while the CBD was good in 71.0% of the cases.

4 Discussion

A novel clustering-based feature detection scheme specifically adapted to ear
impressions was presented. The scheme involves the identification of a represen-
tative set of ear impressions and the development of a robust alignment proce-
dure for ear impressions. The feature detection is carried out by registering a
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Table 1. Comparison of SBD and CBD. µ denotes the mean distance in mm and σ
the standard deviation.

Feature point µSBD ±σSBD µCBD ±σCBD

tragus 2.91 2.53 1.94 1.18

anti-tragus 3.40 3.18 2.38 2.02

anti-helix 4.63 3.86 3.12 3.13

helix-peak 3.62 6.42 3.14 1.91

concha-peak 3.47 3.69 2.91 2.77

low-aperture 2.89 1.72 2.02 0.97

crus-concha-intersection 4.61 5.75 3.25 1.68

canal-concha-intersection 4.42 5.14 2.52 3.03

canal-crus-intersection 4.64 6.66 2.11 1.13

Overall 3.84 4.32 2.59 1.98

new impression with the impressions of the representative set. Followed by a
projection of the features taken from the impression with the best registration
result. We could show that our scheme is superior compared to an approach that
analyzes the surface for peaks, concavities, ridges and bumps. On average an
improvement of 1mm could be achieved. Due to the template based approach,
the detection rate is 100%. The tolerance rate, defined as detecting a feature
in a certain area around the labeled feature, could be improved about 9%. Fur-
thermore, the standard deviation of the detection error is greatly reduced, which
corresponds to a more robust detection of the features.

So far, the presented results are preliminary and restricted to feature points.
The next steps in our work are extending the implementation to feature planes
and feature areas and better feature projection algorithms.

References

1. Sickel K, et al. Semi-automatic manufacturing of customized hearing aids using a
feature driven rule-based framework. Proc VMV. 2009; p. 305–12.

2. Paulsen RR, et al. Using a shape model in the design of hearing aids. Proc SPIE.
2004; p. 1304–11.

3. Paulsen RR, et al. Building and testing a statistical shape model of the human ear
canal. Proc MICCAI. 2002; p. 373–80.

4. Zouhar A, et al. Anatomically-aware, automatic, and fast registration of 3D ear
impression models. Proc 3DPVT. 2006; p. 240–7.

5. Unal GB, et al. Customized design of hearing aids using statistical shape learning.
Proc MICCAI. 2008; p. 518–26.

6. Baloch S, et al. Automatic detection of anatomical features on 3D ear impressions
for canonical representation. Proc MICCAI. 2010; p. 555–62.

7. Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-D point sets. IEEE
Trans Pattern Anal Mach Intell. 1987;9(5):698–700.


