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Abstract. In this work we present a method for automated orthopaedic
measurements for patients that have undergone a partial or full joint
replacement in the lower limbs. In contrast to previously published ap-
proaches for partially occluded objects, we deal with objects were the
major part of the contour is missing, namely the epiphyses of the long
bones in the lower limbs, that have been replaced in large parts by ar-
tificial joint implants of varying appearance. We present an approach
based on the automatic detection and segmentation of implants and a
robust adaptation of a segmentation technique based on deformable mod-
els. We evaluated our method on a set of clinical images and achieve an
accuracy of 0.6 ◦ for angles and 1.3mm for lengths measurements while
significantly reducing assessment time and eliminating user interaction.

1 Introduction

Joint replacement surgery has become a standard procedure in orthopaedics. In
Germany, according to the German Federal Association of Medical Technology,
more than 400,000 artificial hip and knee joints are implanted each year [1].
To rate the success of a replacement surgery it is necessary to measure several
quantities on a pre- as well as a post-operative radiograph of the lower limbs.

There exist various methods for segmentation of the bone structure in digital
radiographs. In a recent publication, Gooßen et al. [2] achieve an average accu-
racy of 0.5mm when segmenting the joints of the lower limbs. However, as with
any of the previously published method, their approach does not incorporate
post-operative segmentation after joint replacement.

Dong et al. [3] evaluated their hybrid approach, based on geometric models
and shape priors, occluding small fractions of the bone contour. But an implant
typically replaces major parts of the bone and does therefore not match their
presumption. Though there exists a model-based approach for the segmentation
of total hip joints replacements (THR) by Kotcheff et al. [4], it only works up
to a certain degree of similarity between the trained and actual prostheses. The
German Federal Association of Medical Technology, however, reports more than
200 different types of prostheses for the hip joint alone [1], each available in
different sizes, ruling out any model-based technique.
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2 Materials and Methods

In order to tolerate implants when measuring orthopaedic quantities within the
lower limbs, we developed an approach consisting of two complementing stages.
The first one robustly detects the presence of implants and segments them with
pixel accuracy. Subsequently, a second step adapts the deformable templates
used for segmentation in order to avoid the implant structure and precisely
delineate the remaining bone contours.

2.1 Automatic Implant Segmentation

Implants in radiographs showcase a distinct sharpness of edges and homogeneous
brightness due to the high absorption of its materials. We exploit these features
by creating binary images B↔, B↕, containing pixels enclosed by strong hori-
zontal and vertical edges, respectively. Another binary image, Bhist, is created
via histogram-adaptive thresholding of the input image. Intersecting these bi-
nary images and morphologically eroding with structure element υ for leakage
avoidance yields the candidate image Bseed = (B↔ ∩B↕ ∩Bhist)⊖ υ.

To identify connected areas in Bseed we combine Region Growing with the
Level-Set cost function of Malladi et al. [5]

g =
1

1 + |∇(Gσ ∗ I)|
(1)

as the stopping criteria to benefit from the former speed and the latter accuracy.

To save processing time, preliminary processing up to this point utilizes a
lower level of a Gaussian pyramid, hence the implant segmentation result lacks
precision. To maximize accuracy, the now known location of the implant borders
are utilized in a further local adaptive thresholding procedure. Herein Otsu’s
algorithm [6] is applied to a small window which is shifted along the implant
outline in I to produce refined implant edges in image BOtsu. Since local image
content can display several general brightness classes (implant, dense bone tissue,
soft tissue, and direct radiation) we found that it is advantageous to perform the
thresholding with three classes. Fig. 1 displays the intermediate images resulting
in the implant delineation γ overlayed onto the original image I.

(a) I (b) B↔ (c) B↕ (d) Bhist (e) Bseed (f) g (g) BOtsu (h) γ

Fig. 1. Implant segmentation from (a) original image to (h) overlayed implant.
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2.2 Bone Structure Segmentation in Presence of Implants

For the joint segmentation in pre-operative images we trained dedicated de-
formable template models on over 100 radiographs of patients without joint
replacement. With x̄ denoting an average representation of a point distribution
model and P denoting the corresponding modes of variation we can approximate
any shape x by adding a linear combination of eigenvectors to the mean shape,
i.e.

x ≈ x̄+ Pb (2)

with b denoting the shape coefficients. When approximating an unknown shape
x̂, we determine the model parameters b that minimize the error

∆ = (x̂− (x̄+ Pb))TW (x̂− (x̄+ Pb)), W = diag (w1, . . . , w2n) (3)

between a shape candidate x̂ and the shape x, generated by using Eq. (2). The
weights w1, . . . , w2n control the influence of a specific landmark (xi, yi) [2].

In order to connect the trained shape to the image data we also have to
learn the local appearance around each of these landmarks. For this purpose we
extract a sampling vector si,j perpendicular to the local shape tangent for each
landmark. Similar to the training of the shape we derive the mean appearance
s̄i for all the models of the training set and the empirical covariance matrix,
estimated by Si.

We locate an initial position of the template model using a Generalized Hough
Transform (GHT) [7] and iterate on multiple scales until convergence. This
algorithm, however, fails for artificial objects within the capture range of the
template model and thus has to be adapted to reliably segment joints with
implants.

To avoid the implant edges from attracting the shape model we check whether
the search vector ŝi overlaps the segmented implant region γ. For any candidate
(x̂i, ŷi) with such a distorted search vector we set the weights

wi = wn+i =

{
0, ŝi ∩ γ

1, else
(4)

As we use a coarse-to-fine approach with increasing image resolution, candi-
dates that have been disabled on a coarser level might get a valid weight wi on

(a) Original (b) Implant (c) ASM result (d) Fused contour

Fig. 2. Fusion of ASM and implant segmentation.
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a finer resolution and contribute to the delineation. Thus we achieve maximum
accuracy while maintaining the robustness against artificial objects.

After the deformable template model has converged, the bone shape is merged
with the implant contour. In order to do this, intersection points between the
fitted shape and the implant contour need to be identified. In the tibial case the
closest landmarks of the fitted shape are dragged to the coordinates of maximum
lateral and medial elongation of the lower knee implant. For the femur, the
lateral and medial intersections between fitted shape and implant contour are
localized. In a last processing step, the incorrectly segmented portions of the
fitted shape are replaced by the respective implant borders (see Fig. 2).

We evaluated our method on 20 long-leg radiographs of the same patients
prior to and after joint replacement surgery using standard orthopaedic mea-
surements for the mechanical knee axis assessment (nomenclature according to
Paley & Herzenberg [8]). These measurements serve as guidance for therapy
planning prior to and success rating after surgical treatment.

3 Results

For the implant segmentation we achieve a true positive rate (TPR) of 97.5%.
Together with an average curve-to-curve error of 0.5mm for the bone segmen-
tation these accurate delineations result in precise measurements with a mean
deviation of 0.6 ◦ and 1.3mm for angle and length measurements, respectively.
Fig. 3 depicts automatically derived measurements on a pre-operative radiograph
and the post-operative examination of the same patient. We evaluated the pro-
posed method on 20 radiographs containing lower limbs. Half of the set consists
of pre-operative and the other half of the same patients post-operative imagery.
Fig. 4 compares our results to inter-observer variability according to a dedicated
study by Gordon et al. [9] for manual measurement and to our own study using
a computer assisted approach.

Fig. 3. Automatically derived pre- and post-operative knee joint morphometry of the
same patient (nomenclature according to Paley & Herzenberg [8]).
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Fig. 4. Accuracy of pre- and post-operative measurements. The bars depict mean de-
viations as well as 95% confidence intervals. Shaded bars correspond to inter-observer
accuracy. The pre-operative angular measurements show poor performance because
patients developed heavy arthritis leaving no visible border between femur and tibia.

4 Discussion

Our results indicate that the proposed automatic method on average outperforms
manual measurement. In all cases, except for the pre-operative mMPTA, the
mean error of automatic assessment is superior to manual derivation. Compared
to computer-assisted measurements, automatic results achieve comparable ac-
curacy, except for the pre-operative measurements of mechanical angles. These
are tampered by strong arthritis in the knee joints with no joint space and thus
overlapping borders of femur and tibia. Our method reduces the processing time
by a factor of 20-35 to 20 s compared to 394 s and 706 s for computer-assisted and
manual measurements [10], respectively, and does not require user interaction.
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