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Abstract. 2D vessel segmentation algorithms working on 2D digital
subtraction angiography (DSA) images suffer from inhomogeneous con-
trast agent distributions within the vessels. In this work, we present a
novel semi-automatic vessel segmentation method based on local adap-
tive contrast enhancement. Either a forward projected 3D centerline or
a set of manual selected seed points define the vessel branches to be seg-
mented on the image. The algorithm uses bilateral filtering followed by
local contrast enhancement to eliminate intensity inhomogeneity within
the vessel region that is caused by unequally distributed contrast agent.
Our segmentation algorithm is extensively evaluated on 45 different DSA
images and exhibits an average Hausdorff distance of 22 pixels and sen-
sitivity of 89 %.

1 Introduction

X-ray based 2D DSA plays a major role in diagnosis, treatment planning and as-
sessment of cerebrovascular disease, i.e. aneurysms, arteriovenous malformations
and intracranial stenosis. 2D vessel segmentation is considered as important
support for analyzing complex vessels, i.e. measuring vessel diameter, length or
aneurysm neck and dome size. Within the literature there are various kinds of
vessel detection and segmentation methods [1, 2] available, however, 2D vessel
segmentation techniques applied on 2D DSA images are hardly described [3].
Fig. 1 depicts three image examples our algorithm is working with. At first
glance, the segmentation of such kind of vessels seems to be easy but the local
inhomogeneous contrast agent distribution (compare the areas indicated by the
red and green circles on Fig. 1), patient movement as well as the smooth intensity
ramp between vessels and background make it a difficult task. Global threshold
segmentation will fail because it will not handle the heterogeneous intensities
distributions within the vessel regions. This paper introduces a semi-automatic
2D vessel segmentation technique based on local adaptive contrast enhancement
to equalize the intensity inhomogeneity. The algorithm is extensively evaluated
using a database of 45 different DSA images.



110 Schuldhaus et al.

2 Materials and Methods

2.1 Initialization and Preprocessing

The first step within our algorithm is indicated by the selection of the ves-
sel branches that will be segmented. This selection is done by the placement
of manual seed points along the vessel branches. The manual seed points are
connected using Dijkstra’s algorithm [4] together with an intensity-based cost
function. All centerline points ci ∈ R

2 are stored within set C defined as

C = {ci}N−1i=0 . (1)

where N denotes the total number of centerline points. If the corresponding 3D
vessel segmentation, the 3D centerline and the projection geometry are available,
the vessels of interest may be automatically defined by the forward projection
of the 3D centerline onto the 2D DSA image. Fig. 2a shows a 2D DSA frame
together with the centerline (red) defining the vessels of interest. After vessel
selection the noise within the 2D DSA images are reduced while preserving edges.
For that purpose, bilateral filtering [5] is applied.

2.2 Local Adaptive Contrast Enhancement

This section describes the core part of our algorithm, i.e. the local adaptive
contrast enhancement to properly handle the inhomogeneous distribution of the
contrast agent within the vessel region. The idea is to place small overlaying
boxes along the vessel centerlineC and perform an intensity mapping of the pixel
intensities within each box taking the lower pixel value for overlaying regions.
Fig. 3a illustrates schematically the box alignment around a vessel branch. The
hessian matrix [6] is computed at each centerline point (orange line) to get
the two eigenvectors and eigenvalues which define the orientation of the box
(blue arrows). The eigenvector pointing across the vessel is used to estimate

(a) S10 (b) S17 (c) S22

Fig. 1. Three different 2D DSA images. Green and red circles indicate the inho-
mogeneous contrast agent distribution. Si abbreviates the study number within our
evaluation database.
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the vessel diameter by a 1-D intensity profile. Hence, the box length across the
vessel is the vessel diameter plus a certain offset such that the box certainly
covers the underlying vessel branch. The length of the box in vessel direction is
kept constant. Each box is now associated with one sigmoid function f that is
applied to perform the contrast enhancement by intensity mapping. f is defined
as follows

f(I) =
1

1 + e−(
I−β
α

)
α, β ∈ R, (2)

where I is the intensity before the mapping, α denotes the slope and β the
translation of the sigmoid function. In our case, α is kept constant and β is
adapted according to the intensity mean of each box. Fig. 3b depicts three
different boxes before and after contrast enhancement. The result of the local
adaptive contrast enhancement is shown in Fig. 2b.

2.3 Binary Threshold and Skeleton-Based Noise Reduction

A binary threshold filter is applied on the contrast enhanced image Fig. 2b to
get a binary mask as illustrated in Fig. 2c. Since our contrast enhancement is
based on boxes, small isolated artifacts appear in the vicinity of the vessels. To
remove these artifacts the binary image is skeletonized by a medial axis based
skeletonization approach. Each skeleton part has to exhibit a minimum number

(a) (b) (c) (d) (e)

Fig. 2. Example steps of the image processing pipeline. (a) initialization via centerline,
(b) local adaptive contrast enhanced image [5 % of pixels black, 79 % white], (c) binary
thresholding including artifacts, (d) skeleton image and (e) final segmentation result.

(a) (b)

Fig. 3. (a) Illustration of box parameters; (b) the upper row depicts cutouts of a 2D
DSA frame and the lower row shows the result after local adaptive contrast enhance-
ment.
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of points which was defined heuristically. All skeleton parts below this number
(see red points in Fig. 2d) together with its artifacts are removed. The final
segmentation result is shown in Fig. 2e.

3 Results

The algorithm was extensively evaluated using a database of 45 studies ({Si}45i=1).
The dimension varied between 512×512 and 1440×1440. The pixel spacing in
x/y was 0.154/0.154mm for S1 to S18 and 0.308/0.308mm for S19 to S45. For
each study a gold standard segmentation was built by a neuroradiologist. The
algorithm achieved an average Hausdorff distance of 22 pixels with a standard
deviation of 6.0 and an average sensitivity of 89% with a standard deviation of
0.04. The Hausdorff distance was computed by the euclidean distance transform
on the segmentation result. Fig. 4 summarizes all quantitative measurements
and Fig. 5 shows three segmentation results. The left column depicts the 2D
DSA images, whereas the right column shows the corresponding gold standard
segmentations (red) and the segmentation results (gray) as an overlay.

4 Discussion

Our local adaptive contrast enhanced vessel segmentation algorithm has shown
that it properly handles the intensity variation within vessel regions to perform
a smooth segmentation using threshold image filtering. The extensive evaluation
demonstrates that our approach is clinical applicable and able to come up with
quantitative measurements during diagnosis and treatment planning. As an out-
look, the 2D vessel segmentation results may be used as ground truth to overlay
and validate 3D vessel segmentation results based on 3D rotational angiography
images.
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Fig. 4. Overview about the evaluation results, i.e. Hausdorff distance and sensitivity.
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Fig. 5. Segmentation results for study S7, S9 and S20. Left column depicts the original
2D DSA images. Right column shows the corresponding gold standard segmentations
(red) and our segmentation results (gray) as overlay. The red line represents the cen-
terline (set C) defining the vessels of interest.
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