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Abstract. Accurate aortic arch quantification is important for diagnosis
and treatment of cardiovascular diseases. We introduce a new approach
for the quantification of the aortic arch morphology with improved com-
putational efficiency which combines 3D model-based segmentation with
intensity-based image registration. The performance of the approach has
been evaluated based on 3D synthetic images and clinically relevant 3D
CTA images including pathologies. We also performed a quantitative
comparison with a previous approach.

1 Introduction

Accurate segmentation of the aortic arch is crucial for diagnosis and treatment
of cardiovascular diseases. Pathologies of the aortic arch may be treated by
minimally-invasive placement using an endovascular graft, which should be cho-
sen based on the anatomy of each patient. Therefore, individual morphological
parameters such as the centerline position and the vessel diameters have to be
quantified. The geometry of the aortic arch can be automatically determined
from radiological images by segmentation approaches such as, for example, re-
gion growing, differential approaches, or deformable models.

Recently, increased attention has been paid to combined approaches that
integrate segmentation and registration. These approaches can be classified as
model-to-image registration (e.g., [1, 2, 3]) or as joint segmentation and registra-
tion approaches (e.g., [4, 5, 6]). While in model-to-image registration, segmen-
tation is performed by image registration of a model, joint approaches combine
segmentation and registration in a single functional. Joint approaches for the
segmentation of human vessels have only recently been suggested [6].

In this contribution, we introduce a novel joint segmentation and registra-
tion approach for the quantification of the aortic arch morphology from 3D
tomographic images.

2 Materials and Methods

Our approach for the segmentation of vessels in 3D tomographic images combines
model-based segmentation with elastic image registration. The approach is based
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on an energy-minimizing functional Jk corresponding to a vessel segment k

Jk(pk, uk) = JM (gM , groiI,k, pk) + JR(g
roi
I,k, g

roi
M,k, uk) (1)

The first term JM denotes an intensity similarity measure between a 3D cylin-
drical intensity model gM with parameters pk and the intensities groiI,k within a
region-of-interest (ROI) of a 3D tomographic image gI . The second term JR
denotes an energy-minimizing functional for elastic registration of groiI,k with an

image groiM,k generated from the 3D intensity model gM .
The 3D parametric intensity model used in JM represents an ideal sharp

3D cylinder convolved with a 3D Gaussian [7]. The model includes parameters
for the width R of the tubular structure and the image blur σ, and is well-suited
to describe the plateau-like intensity structure of thick vessels. The complete 3D
parametric intensity model gM also incorporates intensity levels a0 (surrounding
tissue) and a1 (vessel) as well as a 3D rigid transform R with rotation α =
(α, β, γ)T and translation x0 = (x0, y0, z0)

T , which yields gM (x, p) = a0 + (a1 −
a0) gCyl(R(x,α, x0), R, σ) with parameters p = (R, a0, a1, σ, α, β, γ, x0, y0, z0)

T .
The cylindrical model gM can accurately represent a vessel segment if the

vessel has circular cross-sections. However, the model may be inaccurate in
the case of non-circular cross-sections (e.g., Fig. 1a). To improve the accuracy
between the model and the true vessel shape in this case, we suggest using elastic
registration of an image groiM,k generated from the 3D intensity model gM with

the original image groiI,k. The result of elastic registration is a deformation field
uk which is used to compute a refined vessel contour and centerline position.

The functional in (1) is optimized by an iterative scheme which alternat-
ingly minimizes JM and JR for each vessel segment k to obtain estimates for
the model parameters pk and the deformation field uk. For a vessel segment
k, we estimate pk by least-squares model fitting of gM to the image intensi-
ties groiI,k. To compute uk, we generate an image groiM,k using the fitted inten-

sity model gM and perform intensity-based registration with groiI,k by minimizing

JR(uk) = JData,I(g
roi
I,k, g

roi
M,k, u

I
k)+λIJI(uk, u

I
k)+λEJElastic(uk), where λI and λE

are scalar weights. The first term JData,I describes the intensity-based similar-
ity measure between groiI,k and groiM,k (sum-of-squared intensity differences). With

the second term JI , the intensity-based deformation field uI
k is coupled with the

final deformation field uk using a weighted Euclidean distance. The third term
JElastic represents the regularization of the deformation field according to the
Navier equation of linear elasticity

The result of elastic registration is used to improve the result of model fitting
by re-estimating the model parameters pk including the radius R, the orientation
α, as well as the translation x0. Based on the updated parameter vector pk
and the deformation field uk, we again perform model-based segmentation with
subsequent elastic registration for minimizing J . This alternating optimization
is repeated until the results of model fitting and elastic registration converge for
a vessel segment k. After convergence and having estimated the parameters for
the current vessel segment, a new parameter vector pk+1 is predicted based on
a Kalman filter and used as initialization for the next vessel segment.
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We have developed two different variants of our approach to exploit the
intensity information. The first variant performs model fitting within a 3D ROI
and uses 3D image registration within the 3D ROI. The second variant uses
3D model fitting only for estimating the initial 3D orientation α, while Jk is
minimized based on model fitting and image registration of 2D image cross-
sections orthogonal to the vessel centerline.

To reduce the computational complexity of our approach, we introduce an
automatic adaptive masking scheme. The idea is to perform intensity-based
registration not for the whole ROI but only for those regions which contain
relevant information. In our application, most information is contained in edge
regions of a vessel. Hence, in each iteration k of the segmentation we generate a
binary mask

mroi
k (x) =

{
1, if ∥∇groiM,k(x)∥ > ct · max

x∈ROI
(∥∇groiM,k(x)∥)

0, otherwise
(2)

where ∥ · ∥ denotes the Euclidean norm, and max
x∈ROI

(∥∇groiM,k(x)∥) denotes the

maximum magnitude of the gradient of groiM,k within the ROI (we used ct =
0.1). Note that the gradient is computed based on the model, i.e., noise and
neighboring structures in the original image do not disturb the result.

3 Results

We have applied our approach to 120 3D synthetic images and 15 clinically
relevant 3D CTA images of the human thorax. To quantify the segmentation
accuracy, we have computed mean errors for clinically relevant measures com-
prising the minimum, mean, and maximum vessel diameters, eD,min, eD,mean,
and eD,max, respectively, and the mean error for the centerline position ex0 .

In a first experiment, we have generated 120 images of twisted tori with ellip-
tical cross-sections that differ in radii and the level of Gaussian image noise (see

(a) (b) (c) (d)

Fig. 1. (a) Cross-section of a 3D CTA image of an aorta and overlaid result of the
model-based (black) and 3D joint approach (white). (b) Segmentation result of the 2D
joint approach for a 3D synthetic image of a twisted cylinder. (c) Segmentation result
of the 3D joint approach for a 3D CTA image. (d) Computed vessel contours using the
model-based (black) and 3D joint approach (white) for a section of a 3D CTA image.
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Fig. 1b). We have evaluated the segmentation accuracy of the new joint approach
(2D and 3D variant) in comparison to a previous model-based approach [7].
The previous approach yields eD,min = 3.12 voxels, eD,mean = 0.11 voxels, and
eD,max = 3.85 voxels. For the 2D joint approach we obtain eD,min = 1.05 voxels,
eD,mean = 0.09 voxels, and eD,max = 1.52 voxels, which is a significant improve-
ment for the minimum and maximum diameters, while for eD,mean we obtain
a similar result. For the 3D joint approach, we obtain eD,min = 0.53 voxels,
eD,mean = 0.16 voxels, and eD,max = 0.47 voxels, which is the best result for
the minimum and maximum diameters. For ex0 , the previous approach yields
ex0

= 0.16 voxels, while we obtain improved results for the new 2D and 3D
approaches with ex0 = 0.11 voxels and ex0 = 0.09 voxels, respectively. It also
turned out that the adaptive masking scheme reduces the computation time by
32% for the 3D approach and by 13% for the 2D approach.

In a second experiment, we applied our approach to two different sets of 3D
CTA images of the thorax. The first set of images contains ten 3D CTA images
of patients with only slight pathologies (see Fig. 1c,d). The second set of images
contains five 3D CTA images of patients with severe pathologies (see Fig. 2). It
turned out that for eD,min and eD,max the new 2D and 3D approaches yield more
accurate results than the previous approach. For ex0 , the 2D approach yields
the best result, while for eD,mean, the 3D approach yields the best result.

In addition, we applied our approach to pathological vessels in five different
3D CTA images. It turned out that the new approach significantly decreases the
computation time by 41 % for the 3D variant and by 28% for the 2D variant (see
Table 1). For eD,min and eD,max, the segmentation accuracy of the 2D approach
is slightly reduced, while for the 3D approach, similar results are obtained. For
eD,mean and ex0 both the new 2D and 3D approaches improve the segmentation
accuracy in comparison to the unmasked approach. Moreover, for the clinically
most relevant diameter measures the new approach consistently yields significant
improvements compared to the previous pure model-based approach.

(a) (b) (c) (d)

Fig. 2. (a), (c) Segmentation results of the 3D joint approach for two 3D CTA images
showing a pathology. (b), (d) Vessel contours using the model-based approach (black)
and the 3D joint approach (white) for a section of the 3D CTA images.
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Table 1. Mean errors for the diameters eD,min, eD,mean, and eD,max, and the centerline
position ex0 for different approaches as well as the mean computation time t/seg for
the unmasked (U) and adaptive masking (M) approach.

eD,min eD,mean eD,max ex0 t/seg (sec)

Approach U M U M U M U M U M

Model-based approach 5.11 1.56 3.14 0.80 0.33

2D joint approach 2.60 2.94 1.40 1.26 1.54 1.85 0.63 0.60 1.37 0.98

3D joint approach 2.19 2.13 1.23 1.12 1.40 1.43 1.13 0.92 32.80 19.20

4 Discussion

We have introduced a new joint approach for the quantification of the aortic arch
from 3D CTA images that combines fitting of a parametric intensity model with
intensity-based elastic image registration. We have demonstrated the applica-
bility of our approach using 3D synthetic images and clinically relevant 3D CTA
images. From the experiments it turned out that the new approach consistently
yields more accurate segmentation results than a previous pure model-based ap-
proach for the minimum and maximum diameters. It also turned out that for
the new approach significant improvements are obtained for difficult segmenta-
tion tasks, in particular, for pathologies. Furthermore, the new joint approach
with the adaptive masking scheme leads to a significant reduction in computa-
tion time while the segmentation accuracy remains similar for the minimum and
maximum diameters and the accuracy is even increased for the mean diameter.
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