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Abstract. In this paper the well-established minimal path framework
is applied to the problem of computing blood flow trajectories in phase
contrast magnetic resonance imaging (PC-MRI). The velocity vectors
measured by PC-MRI and an uncertainty measure are combined to a
metric tensor and minimal paths are calculated with anisotropic fast
marching method (FMM). Exemplary results of the computation of the
blood particle trajectories are given. This work contributes a novel ap-
plication of anisotropic FMM to flow computations.

1 Introduction

Phase constrast magnetic resonance imaging (PC-MRI) is a noninvasive tech-
nique capable of accurately measuring 3D+t flow velocities. It has a variety of
established applications in quantifying cardiovascular function and hemodynam-
ics [1]. Traditional visualization techniques, such as vector glyphs, streamlines,
pathlines and particle traces are frequently employed for visualizing blood flow
based on the velocity data [2]. Clinical applications that benefit from such
flow pattern information include the assessment of stenoses, aneurysms, and
heart valve function, the development of vessel plaque and surgical planning and
follow-up in congenital heart disease [2]. Whereas the traditional method for
computing flow trajectories is a deterministic streamlining approach, working
solely on the given velocity vectors, the authors of [2] derive the statistical prop-
erties of the PC-MR images and incorporate these properties into the tracking of
particle trajectories. Using a sequential Monte Carlo method, a blood flow map-
ping is computed giving information on the likelihood of the trajectory taking a
certain path through the velocity vector field.

In this work, an alternative approach to the computation of particle trajec-
tories is explored in the framework of minimal paths in anisotropic media.

2 Materials and Methods

2.1 Minimal Paths in Anisotropic Media

A minimal path in a medium is a path which minimizes a certain metric along
the path, e.g. a ray of light takes the min-time path through an optical medium.
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In the case of an isotropic local metric, which does not depend on the direction
of motion, one can compute minimal paths with the standard FMM. In case of
anisotropic local metric, i.e. the metric depends on the direction of motion, the
traditional FMM cannot be applied directly. We here focus on anisotropic media
with locally ellipsoidal shape. Formally, let Γx,∂Ω be the set of all possible paths
γ : R0,+ → Ω connecting a point x ∈ Ω to a given point of interest y ∈ ∂Ω.
Further let

F (s, γ, γ′) =
√

γ′(s)TD−1
γ(s)γ

′(s) (1)

measure an infinitesimal distance along a path γ relative to the inverse of a
symmetric positive definite metric tensor D. In an isotropic setting, D = f(x)I
and this equation reduces to the Eikonal equation known from standard FMM.
Then a minimal path is a path γ minimizing the functional

J(γ) =

∫
γ

F (s, γ, γ′)ds (2)

Following the dynamic programming approach, minimal paths from all points
x ∈ Ω to the target are computed simultaneously. To this end, the so-called value
function is defined

U(x) = minγ∈Γx,∂Ω
J(γ) = minγ∈Γx,∂Ω

∫
γ
F (s, γ, γ′)ds, ∀x ∈ Ω

U(x) = q (x) , ∀x ∈ ∂Ω
(3)

The value function U satisfies the static Hamilton-Jacobi equation

∀x ∈ Ω, ∇U(x)TDx∇U(x) = 1 (4)

and the tangents of the minimal paths satisfy γ′ ∝ D∇U , see [3] for proofs
of both properties. Thus, we are able to solve the problem of computing the
minimal paths by first solving the boundary problem starting from a given value
q(x) on the start point x ∈ ∂Ω (the particle of interest) and reconstruct the
minimal paths afterwards by solving the ordinary differential equation γ′ (s) ∝
−Dγ(s)∇U (γ (s)) , with γ (0) = x using standard numerical methods like Heun’s
or Runge-Kutta’s.

2.2 Anisotropic Fast Marching Method

To compute the solution of the PDE in ((4)) anisotropic FMM is used. A
detailed description of the numerical details is unfortunately not possible due
to space limitations. The main propositions in literature for anisotropic FMM
are the ordered-upwind methods [4], a derivation of these [3], a control-theoretic
approach [5] and a recursive correction FMM [6]. Based on numerical tests we
find a combination of [3] and [6] to be most suitable for the anisotropies we are
faced with. We use 26-neighbors in the local update computation, which gives
accurate results up to relatively high anisotropies, as shown in [3] and as we have
confirmed with our implementation. Contrary to [3], we only use direct neighbors
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for the propagation, which greatly speeds up computation. Furthermore, in
contrast to the standard FMM, we also utilize TRIAL points, for which only
an approximation to the correct value of U exists, in the computation of U
resulting in a higher accuracy of the standard FMM solver. We combine this
scheme with the method of [6] which provides a recursive correction for the errors
introduced by the FMM solver in anisotropic media. Locally, we have to solve
a constrained optimization problem, which in case of the elliptical speed profile
has an analytical solution as shown in [3].

2.3 Connectivity Measure

The FMM connects every point of the domain to the source point by a minimal
path. In this section the focus is on how to differentiate more likely paths from

less likely paths. Let C (x) =

√
γ′ (x)

T
Dxγ′ (x) be a local measure describing

the alignment of the minimal path starting at x with the major eigenvector of
the metric tensor D. This metric gives a high value if γ′ (x) and the major
eigenvector are aligned, whereas it gives a low value if γ′ (x) and the smallest
eigenvector are aligned. The mean value of C along the path is high for more
likely paths. This kind of connectivity measure was proposed in [5] in the context
of fiber tracking based on Diffusion Tensor Imaging.

2.4 Modeling Blood Particle Trajectories as Minimal Path

The PC-MRI velocity vectors represents the flow at a position in m/s. This
measure is subject to measurement errors for which the authors of [2] derive
the statistical properties. We incorporate the uncertainty of the measure into
a metric tensor and then solve the minimal path problem in this metric space.
This allows the tangents of the paths to differ from the velocity vectors to a
certain amount, controlled by the uncertainty. Let vx be the local blood flow
velocity vector measured at position x ∈ Ω and σ be the uncertainty of the
measurement of the velocity vector. A metric tensor is then constructed as

Dx = vxv
T
x + σI (5)

(Fig. 1). In the following, we take the 3D vector field to be constant over time,
future work will include working on the full 3D-temporal PC-MR image sequence.
We restrict the FM to only propagate along the range of direction of the velocity
vector ± 90 degrees.

3 Results

Evaluation was done on two PC-MRI data sets. One dataset is from a healthy
subject (P1), one from a patient with an aneurysm (P2) disturbing blood flow.
Both datasets are 3D+t with 14 time steps reconstructed for one cardiac cycle.
The ROI for P1 is of size 50 × 160 × 24 and voxelsize is 1.67 × 1.67 × 3.5mm3.
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The ROI for P2 is 68 × 190 × 28 with voxelsize 1.77 × 1.77 × 2.6mm3 and we
compute the trajectories on one timepoint. In both dataset maximal velocity is
1500mm/s and we set the uncertainty to σ = 50/1500 = 0.033, where 50mm/s
is the variance of measurement derived in [2]. A user-given particle of interest,
the direction of propagation (forward or backwards in time) and the maximal
Euclidean length of the paths are required as input. Fig. 2 shows results of the
computation of the particle trajectories for P1. Each row is giving the results for
a different input. The trajectories are smooth with only small disturbances. Fig.
3 shows results of the computation of the particle trajectories for P2. Trajectories
are computed for three different ranges of connectivity measure. Computation
times vary from 5 to 20 seconds in the presented cases.

4 Discussion

In this paper we propose a modeling of blood particle trajectories as minimal
paths through an anisotropic medium. Future work includes extension to 3D-

Fig. 1. Construction of the tensor from the given PC-MRI velocity vector.

(a) (b) (c) (d)

(e) (f)

Fig. 2. Blood flow trajectories computed on data of a healthy subject. Each row
shows a different particle of interest. Left: Aorta with superimposed PC-MRI velocity
vectors, connectivity and trajectories. Middle: Close-up with geodesic distance map
iso-volume rendering. Right: Close-up with PC-MRI-vectors, connectivity and paths.
The paths are computed from the points with highest 10% of mean connectivity value.
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Fig. 3. Results for a patient with an aortic aneurysm. The trajectories are computed
for different intervals of connectivity: (a) 90-100%, (b) 60-61%, (c) 50-51%. Notice
that the trajectories in (c) may transport plaque particles from the right wall of the
aorta up to the left subclavian artery. This information is useful to rate the severity of
plaque in different areas.

(a) (b) (c)

temporal image sequences (4D images) to allow for computation of swirls in the
blood flow, where a trajectory may visit a 3D point several times. Furthermore
we plan on working on physical evaluation and further evaluations on different
data sets.
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