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Abstract. Direct application of conventional models for sub-voxel edge
detection to modalities with intricate image formation like MRI results in
systematic edge dislocations on a sub-voxel scale (edge aberration). By
quantitative experimental analysis of this effect, a simple correction term
can be calibrated, which is demonstrated to improve edge localization
precision by a factor of 2.5 to surpass voxel size by 2 orders of magnitude.

1 Introduction

In raster image formation, a continuous so-called underlying function ρ is dis-
cretized into an image function f which maps voxels to (for example) gray scale
values. Following a widely-used formulation, f is determined by

f(x) = [A ∗ ρ] (x) at x being a voxel center (1)

where, via the convolution ∗, A(x), called voxel aperture (VA), plays the role of
a weighting and averaging function for ρ, thus substantially determining (small
scale) image semantics-besides the nature of ρ and imaging geometry.

Due to the convolution with A, an underlying function ρ exhibiting an edge
separating two regions within one voxel generally results in some intermediate
gray value for this voxel. This so-called partial volume effect can be exploited
to locate the edge in ρ more accurately than the grid resolution of f , which is
referred to as sub-pixel or sub-voxel edge detection (Fig. 1).

However, such techniques assume an ideal case where A is a box function and
its carrier is the voxel itself. Their application to differently formed images (non-
box A) such as MRI datasets therefore is in principle erroneous, but common
practice. In this paper, we shall assess the systematic sub-voxel edge dislocations
thereby introduced (edge aberration) and present a simple heuristic correction.

1.1 State of the Art

Initially, sub-pixel edge detection has been developed regardless of a specific
application [1]. It proofed to be very useful and accurate in optic, notably
aerial, imaging [2], where image formation is close to the ideal case.
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In MRI, sub-voxel edge detection techniques are typically employed for seg-
mentation of small structures like knee cartilage [3, 4] and the brain [5]. Also,
edge enhancing filters may implicitly perform sub-voxel edge detection [6].

In these contributions, an MRI-specific VA is taken into account only in [5],
albeit in the form of simple filtering of a super-sampled putative segmentation
in a discrete domain. The authors of [6] explicitly assume a box-shaped VA.

Implicitly or explicitly, sub-voxel edge detectors first estimate a continuous
approximation of ρ [1] or ∇ρ [3, 4], often consisting of a polynomial [1, 4]. The
approximation is then analyzed and (up to) one edge point for each voxel is
computed [1, 2, 4], or contours are optimized based on the approximation [3, 5].

All cited edge-point and contour techniques for volume data use a slice-by-
slice approach, in which edges are located in 2D slices and assembly of surfaces
in the volume constitutes a post-processing step.

2 Materials and Methods

Applying our previously-reported edge detector [4] to MRI slices of an edge phan-
tom, we evaluate the difference in measured edge locations when the phantom
is moved by fractions of a voxel along one of the image axes. This leads us to a
correction term for (1D) locations of single edge points, extrapolatable to 2D.

In what follows, we shall w.l.o.g. assume x = 0 at the center of the voxel
under consideration and unit voxel width, denoted 1 vx.

2.1 Edge Detection Algorithm

The employed 2D edge detector [4] first computes the gradient image g(x) =
|∇f(x)| via the Sobel operator. Next, g is locally approximated in every voxel’s
3×3 neighborhood by a second-order bivariate polynomial ĝ(x). Let ĝ(t) denote
ĝ evaluated along the straight line given by the local image gradient, parameter-
ized in t. Then if ĝ(t) has a local maximum inside the voxel under consideration,
the location of the maximum is accepted as an edge point. Thus up to one edge
point per voxel is obtained (Fig. 1).

Fig. 1. Sub-pixel edge points extracted from 2D images. Left: synthetic 2D straight
step edge sampled using box voxel aperture; right: MRI slice of edge phantom (planar
bottom of water-filled container; voxel dimensions 0.27× 0.27× 3mm3, magnetic field
strength 1.5T, 3D FLASH sequence, Siemens Sonata scanner) exhibiting slight wave-
like systematic edge dislocation.
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2.2 Quantification of Systematic Errors and Error Correction

Practical considerations led us to an experimental setup in which the phantom
is fixed in the scanner and the scanner’s field of view (FOV) is moved by small
offsets∆x. While this facilitates relative positioning of the phantom with respect
to the FOV, the true position of the edge, x, remains unknown.

However, we can extract edge positions xm1 and xm2 from the image before
and after the translation of the FOV. We define ∆xm = xm2 − xm1 and xm =
(xm1 + xm2)/2. As the error in ∆xm is small and has a component systematic
in xm, we can view the ratio β = ∆x/∆xm as a “function” of xm. We observe

β(xm) =
∆x

∆xm
≈ dx

dxm
=⇒ x(xm) ≈

∫ xm

−0.5 vx

β(xm)dxm (2)

which gives us a correction function for measured edge positions xm. We call
α(xm) = x(xm)− xm the additive correction term to xm.

Using the normalized local image gradient (nx, ny) = ∇f(x, y)/ ∥∇f(x, y)∥,
a measured 2D edge point (xm, ym) can be corrected via

(x, y) = (xm + nxα((nx)xm), ym + nyα((ny)ym)) (3)

2.3 Measurements

A test tube filled with Gd-based contrast agent served as edge phantom, pro-
ducing a disk in MR slices. 6 volume datasets of 8 slices each were acquired
with a T2-weighted fat-saturation spoiled spin-echo 2D sequence in a Siemens
“TrioTim” 3T whole-body scanner. In successive acquisitions, the FOV was
translated by about 0.1mm in-plane along x (row direction, phase encoded),
while the phantom remained fixed. Voxel size was 0.625 × 0.625 × 3mm3 at

Fig. 2. Edges extracted from one slice at the
left side of the phantom in 6 different positions
(detail). The slice from which the rightmost
edge was extracted is shown in the background.
Edge points used for calibration and evaluation
marked on bottom left. Left: Edge points as re-
turned by the edge detector. Right: Heuristic
2D edge point correction according to ( (3)) is
applied. Smoother edges when corrected demon-
strate improved precision after correction.
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3mm slice thickness, TE = 11ms, TR = 3.5 s, and SNR = 141. Ground truth
data for ∆x was obtained from the center-of-mass shift of the noise-corrected
slices.

First, 3 slices of each volume were analyzed. From each slice, 3 voxel rows
perpendicular to the border of the tube were selected, where x-coordinates of
the edge points from the left and right border of the tube were taken for each of
the 6 FOV positions (Fig. 2). For each of the 3 voxel rows in each of the 3 slices,
5 edge offsets for ∆x ≈ 0.1mm, 4 offsets for ∆x ≈ 0.2mm, and so on down to 1
offset for ∆x ≈ 0.5mm were thus measured, for left and right edges respectively.

Next, the measured offsets for ∆x ≈ 0.1mm were used to approximate a
correction function according to ((2)). Applying this, the remaining 5 slices
were analyzed in a similar fashion to evaluate the correction technique.

3 Results

Plotting the ratio β against the measured intra-voxel position xm clearly reveals
a systematic component that can be fitted by a polynomial. For this study,
we find an additive correction term α(xm) = 21.3xm

7 + 1.46xm
6 − 10.9xm

5 −
0.301xm

4 + 1.13xm
3 − 0.0830xm

2 + 0.0677xm + 0.0168, with α and xm in vx.
(Fig. 2.3.)

Edges to which the correction has been applied are shown in Fig. 2. The
smoothing effect visible in the Fig. indicates that precision has been increased.

In numbers, we find an RMS absolute error in edge offset measurement for
arbitrary displacements of 0.039 vx before and 0.016 vx after correction. The
overall average signed offset error is 0.0022 vx and −0.0024 vx before and after
correction, respectively. Fig. 4 shows the error distribution for different offsets.

4 Discussion

Although [5] addresses the MRI-specific VA in simulation of MR images, both
MR physicists and the computer vision community seem to be unaware of the

Fig. 3. Calibration of edge correction term. Plots against measured intra-voxel posi-
tion xm, oriented along image gradient. Left: true over measured offsets β = ∆x/∆xm

for left and right edge and fitted polynomial β(xm). Data points stand for sin-
gle edge point offsets, bars indicate ∆xm. Fit of β(xm) constrained such that∫ 0.5 vx

−0.5 vx
β(xm) dxm = 1vx. Bottom: additive correction term α(xm).
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Fig. 4. Distribution (quartiles)
of absolute errors in edge off-
set measurement before and af-
ter correction, binned by true
edge offset ∆x. Bias for larger
∆x possibly due to small sample
sizes.

effective VA in MRI and the assumed VA in edge detection not coinciding-clearly
a semantic mismatch of image formation and image analysis.

We have shown the resulting errors to be systematic and in principle amen-
able to correction by means of a simple additive term to the edge detector,
calibrated by measurement of an edge phantom. Our focus was not on building
a robust edge detector, and neither did we devise a generally-valid formula.
Also, noise as well as the heuristic extrapolation from 1D to 2D demand further
attention.

The proposed correction technique does not significantly change overally ac-
curacy of about 1/500 vx because it is unaffected by edge aberration due to quite
balanced over- and underestimation (Fig. 2.3). Promisingly however, precision
of offset measurement is improved by a factor of 2.5, resulting in an estimated
single edge localization precision of 0.016 vx/

√
2 = 0.011 vx =̂ 6.9µm which is 2

orders of magnitude better than the image grid and much closer to ground-truth
precision than before correction (Fig. 4). This is most relevant for applications
relying on single edge points, e. g. for detection of subtle changes in local thick-
ness.
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