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Abstract. 3D rotational coronary angiography plays an important role
in the field of diagnosis and treatment planning of coronary artery dis-
ease. Due to the cardiac motion, only limited number of projections
can be used to reconstruct coronary arteries for each heart phase, which
makes the reconstruction problem ill-posed. To reduce the under-samp-
ling artifacts, we apply an iterative method that makes use of total
variation regularization. Some different reconstruction algorithms are
compared and our method outperforms the others in the experiments.

1 Introduction

Coronary X-ray angiography is a very important imaging method in the field
of diagnosis and treatment planning of coronary artery disease. 3D image in-
formation offers great advantage for quantitative analysis of vessel properties.
Moreover, the successive 3D reconstructions can be used to determine the tem-
poral dynamics of the arteries [1].

The projection data for 3D reconstruction of the coronary arteries recon-
struction is acquired on an X-ray C-arm system. Simultaneously, the elec-
trocardiogram (ECG) is recorded. After the ECG gating only few number of
projections are available for each cardiac phase, which leads to severe angular
under-sampling and renders the reconstruction problem ill-posed. In addition,
several heart beats occur during the data acquisition which causes the data in-
consistency. As a result, the standard reconstruction methods like filtered back
projection yield unsatisfactory results with many artifacts. One way of tackling
this problem is to first estimate the motion of the arteries and then perform a
motion-compensated reconstruction. But it is still a challenging problem to get
an accurate motion model, especially for the non-periodic case [2].

According to the theory of compressed sensing [3, 4], one can solve the ill-
posed problem by first finding a sparse representation for the images and then
applying the L1 norm minimization method in the transformed domain. Pan’s
group [5] adopted total variation as the sparsifying transform for reconstruction
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of static objects. Their method can reduce the under-sampling artifacts but
they did not investigate the performance of the algorithm for moving objects,
e.g. coronary arteries. We apply the total variation regularization method for
3D rotational coronary angiography. The scheme appears to be robust against
both under-sampling artifacts and motion artifacts.

2 Materials and Methods

In tomography, the goal is to reconstruct an object from line-integral projection
data. A discrete version of the projection process can be represented as

Ax = b (1)

where
A = (aij)

is a real mn system matrix representing the projection operator, x = (x1, ..., xn)
is a real vector representing the object, and b = (b1, ..., bm) is the corresponding
projection data. Then the optimization problem can be described as

min
x

||x||TV s.t. ||Ax− b||22 < α (2)

The inequality constrain is used to describe the data inconsistency which can
come from many factors, including the heart motion, system noise, X-ray scat-
ting. Thus, it is impossible to always find an image that is perfectly consistency
with the data. As a result, we only require that the image yields the projection
data that are within the L2 distance of the actual projection data. || · ||TV is
the total variation norm, which is the L1 norm of the image gradient [6]. It is
well known that the constrained problem (2) can be transformed to an easier
unconstrained optimization problem

min
x

||x||TV + β||Ax− b||22 (3)

The unconstrained problem (3) is still hard to solve due to the high dimen-
sions. The size of the system matrix A is usually very large. Large memory
should be used to store the matrix and a lot of time is needed for computa-
tion. To overcome these problems, we apply the forward backward splitting
method [6]. The objective function of (3) consists of two convex functions. The
idea of the forward backward splitting method is to optimize the two parts of
the objective function individually. The algorithm can be described as

– Step 1: Do NART iteration steps of the standard ART.
– Step 2: Do NTV iteration steps of the gradient descent update for minimizing

min
x

µ||x||TV + ||x− v||22, (v is calculated from step 1)

– Step 3: Repeat step1 and step 2 until ||x(t) − x(t+1)||22 is less than a certain
value or the maximum iteration number is reached.
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In order to do a reproducible scientific research, we adopted a dataset with
periodic cardiac motion from CAVAREV [7] in our experiments. The dataset
can be downloaded for free. CAVAREV offers an evaluation method but does
not provide the ground truth. Thus classical evaluation schemes like MSE (mean
squared error) can not be used to evaluate the results. But since the main
goal of C-arm CT imaging of highly contrasted cardiac vasculature is to find
the size and location of vessels, the evaluation method offered by CAVAREV
seems to be more suitable. The method is based on the spatial overlap of the
vasculature reconstruction with the ground truth. The Dice similarity coefficient
(DSC) is calculated at each projection image with different parameter for the
quality assessment [7]. The measure for the reconstruction is the max value of
DSC at all projection images. The DSC value ranges from 0 to 1. The value
0 stands for no spatial overlap while the value 1 stands for a perfect match.
To further evaluate, we compared our method to some other reconstruction
algorithms: standard ART, ECG-gated FDK, PICCS [8] and L1 minimization
methods [9]. In the experiments, we set the gating window to 0.06 s that only
15 projection images were used to do the reconstruction. NART and NTV was 4
and 10 respectively. µ was chosen as 0.005 and the maximum iteration number
was 200. The parameters for the other methods were set as in the referenced
paper.

3 Results

The reconstructed transaxial slices from different methods are listed in Fig. 1.
The max DSC values of the reconstructions from different methods at different
heart phases are in Table 1. Due to the angular undersampling, the reconstruc-
tions from standard ART and ECG-gated FDK include many streak artifacts.
PICCS and L1 minimization method reduce the artifacts dramatically. The
streak artifacts are nearly invisible in the results of TVR. Table 1 shows that
TVR outperforms the other methods at all three different heart phases, since
the max DSC value of TVR is larger than the one of the others.

4 Discussion

The PICCS, L1 minimization and TVR are optimization based reconstruction
methods. The differences between those methods are the regularization terms.
From the view of compressed sensing, the regularization terms can be seen as a
sparsifying transform. The algorithms just apply the L1 minimization method
in different domains. A more sparse representation can reduce the number of un-
knowns (more coefficients are zero or very small.), making the ill-posed problem
easier to solve. For coronary arteries, the total variation norm can give a more
sparse representation than L1 norm. In the experiments, the reconstruction re-
sults from ECG-gated FDK are used as the prior image which contain many
streak artifacts. Thus PICCS may not offer a more sparse representation than
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total variation norm. As total variation norm gives the most sparse representa-
tion for coronary arteries in the experiments, our method outperforms the others.
Since a more sparse representation of the image can increase the reconstruction
quality. Some other representations (wavelet, DCT) will be investigated.

Fig. 1. Reconstructed transaxial slices from different methods. The streak artifacts
are nearly invisible in the slices from TVR.



438 Wu, Rohkohl & Hornegger

Table 1. Max DSC values of different reconstruction methods at different heart phases.
High DSC value indicates a high overlap between the ground truth and the reconstruc-
tion result.

Heart Phase 0% 40% 90%

TVR 0.721 0.772 0.785

PICCS 0.595 0.613 0.726

ART 0.510 0.545 0.554

L1 Minimization 0.684 0.723 0.730

ECG-gated FDK 0.484 0.534 0.555
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