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Abstract. Now it is generally recognized that informatics is to be based on its 
own solid foundations which should state its self-dependence and provide its 
self-development. In the paper we propose to use a gnoseology-based approach 
for developing methodological, conceptual, and formal levels of foundations. 
At the methodological level we describe a number of general gnoseological 
principles and a system of philosophical categories specifying the main features 
of the approach. On the conceptual level we propose to elucidate basic notions 
of informatics in integrity of their intensional and extensional aspects. Then we 
use developed notion models to construct their mathematical counterparts at the 
formal level.  Such constructions start with formalization of the notion of data 
as intensionalized data. The main kinds of such data are presets, sets, and 
nominats (nominative data). Then we define the notion of abstract 
computability applicable to the described types of intensionalized data. At last, 
we construct hierarchy of predicate logics over introduced intensionalized data.  

Keywords: foundations of informatics, methodology, intension, extension, 
intensionalized data, abstract computability, predicate logics. 

1 Introduction 

Informatics is a relatively young discipline. As such, it borrows its foundations from 
disciplines it is based on, primarily from mathematics, linguistics, logic, and 
philosophy. But coming into mature age, informatics is searching for its own 
foundations, which should state its self-dependence and provide its self-development.   

 Constructing of foundations is a highly challenging problem. This is caused by the 
diversity of topics studied in informatics, by variety of approaches to such topics, by 
vagueness of notions specified for such topics, etc.  

In the first approximation we treat foundations of informatics as the systematic 
study of basic notions (concepts) of informatics taking in the integrity of their 
essential aspects; as scientific inquiry into the nature of information-related theories, 
their scopes, properties, and limitations. 

Speaking about foundations we cannot avoid discussions about methodological 
(philosophical) principles of developing such foundations. It means that a certain 
philosophical position should help to specify methodological principles for 
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constructing foundations of informatics. We will try to demonstrate that many 
principles of gnoseology confirm their usefulness for elucidating of basic notions of 
informatics. Thus, we will advocate that a gnoseology-based approach can help in 
constructing foundations of informatics.   

The aim of this paper is to describe the main principles of gnoseology-based 
approach and show how it can be used to explicate the basic notion of informatics – 
the notion of data – in integrity of its intensional and extensional aspects; and to 
develop fragments of mathematical formalisms, namely, computability theory and 
mathematical logic, oriented on such conception of data. This aim determines the 
structure of the paper: first, we describe methodological principles of our approach for 
developing foundations of informatics; then we specify the notion of intensionalized 
data and define basic computability theory over such data; and, at last, we describe 
logics of partial predicates oriented on such data. 

2 Methodological Principles of the Approach 

We propose to identify three levels of foundations specified by the following 
principle.    

Principle of three-level foundations of informatics: foundations of informatics 
should be constructed in integrity of methodological (philosophical), conceptual 
(scientific), and formal (mathematical) levels. 

What methodological theory should be used at the first level? There can be several 
ways to answer this question. The first is ad hoc one which specifies methodological 
principles only when it is required by some special topics.  The second is specialized 
one. It introduces only methodological principles specific for informatics and uses 
them as a basis for theory development. And the third tries to integrate general 
(philosophical) methodological principles with special ones and present them in an 
explicit form. 

Our approach [1] is the third one. We base it on a philosophical system developed 
by Hegel [2]. Strictly speaking, we use only a gnoseological component of his system. 
Gnoseology (epistemology) is a theory of cognition, which aims to examine the 
nature of knowledge, its limits, how it is derived, and how it is to be validated and 
tested. Thus, our approach is a gnoseology-based approach. This is to be supported 
by the principle of gnoseology-based theory: a theory should be developed according 
to the main principles, laws, and methods of gnoseology.   This principle is a weak 
form of a Hegel’s idea of a theory as applied logic. The central part of gnoseology is a 
system of philosophical categories. These categories can be considered as the most 
general features, characteristic of things. Examples are: subject and object; abstract 
and concrete; internal and external; quality, quantity, and measure; essence and 
phenomenon; individual, general, and particular; whole and part; content and form; 
cause and effect; goal and tool; etc. [2].  

Thus, the principle of three-level foundations identifies three types of notions – 
categories, scientific notions (concepts), and formal notions – that constitute the basis 
of each level respectively.  
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Other general methodological principles can be briefly explained by the following 
considerations. Any object of study has numerous connections (relations, aspects) 
with other objects, thus, it can be considered as the totality of all its aspects. But we 
cannot immediately investigate this totality, therefore we start with some aspects 
(chosen due to abstraction); then we study some other aspects with their relations to 
the first aspects (thus making concretization). These aspects are considered as 
essential ones and are chosen according to practical and theoretical criteria. Despite 
the simplicity and coarseness of the above considerations they lead to the following 
principles of gnoseology. 

Principle of development from abstract to concrete: development is definitely 
oriented change of the object (notion) from abstract to concrete (from simple to 
complex, from a lower level to a higher one, from the old to the new).  

Triadic principle of development: one of the main schemes of development is 
specified as a development triad: thesis – antithesis – synthesis. 

Principle of unity of theory and practice: theory and practice should be considered 
as influencing each other. This principle substantiates development of informatics 
notions in praxeological perspective, i.e. this development should be based on 
analysis of human action in information domain. The praxeological aspect is one of 
the main philosophical aspects relating categories of subject and object. It lies in one 
line with ontological, gnoseological, and axiological aspects.   

Let us note that the importance of philosophical foundations for information-
related disciplines (such as information science) is widely recognized. Different 
philosophical systems were proposed to use for this purpose, for example, K. 
Popper’s ontology in [3], philosophy of Kuhn and Peirce in [4]. There are also 
proposals to develop a specific epistemology for information science [5]. A short 
description of philosophical approaches can be found in [6, 7]. We also advocate the 
necessity of philosophical studies oriented on informatics. Actually it means that an 
interdisciplinary approach should be used for developing foundations of informatics.   

At the second, conceptual level of foundations, methodological principles are used 
to develop the basic scientific notions and their interrelations. Such system of basic 
notions (ontology) presents structure and properties of a domain under investigation. 
Developing scientific notions (concepts) of informatics, we chose the “closest” 
categories and “project” them on such concepts. Such projections transfer properties 
of categories and their relationships from philosophical onto conceptual level.  

Mathematical base of informatics is formed by set theory, universal algebra, 
mathematical logic, and computability theory. Many important and useful results for 
informatics were obtained on this base. Still, some discrepancies between above 
mentioned disciplines and problems of informatics can be also admitted. They 
concern questions of defining data structures on various levels of abstraction, 
computability of functions over such data, processing of data with incomplete or 
fuzzy information, construction of logics oriented on information processing, etc.  
Such discrepancies require additional efforts in modeling problems of information 
domain with existing mathematical formalisms. Therefore it is reasonable to 
formulate a problem of developing own, more adequate mathematical foundations for 
informatics. But what should be the starting point of such development?  

Analysis of existing mathematical formalisms shows that they are constructed on a 
set-theoretic platform. But its main notion – the notion of set – is explicated in 
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extensional style. This style is supported by the very first axiom of set theory – the 
extensionality axiom: two sets are equal if they consist of the same elements [8]. 
N. Bourbaki in his numerous treatises aimed to write a thorough unified account of all 
mathematics based on extensional set theory. At that period the extensional approach 
played a positive role permitting to specify formally many properties of mathematical 
objects. But we can see now more and more facts when a pure extensional orientation 
becomes restrictive for further development of informatics.  

Thus, we propose to add explicit intensional component to notions and construct 
them in integrity of intensional and extensional aspects. Here the intension of a notion 
(of a concept) means properties which specify that notion, and the extension means 
objects which fall under the notion, i.e. have the properties specified by the notion 
intension. Intension and extension of a notion we consider as projections of categories 
general and individual respectively.     

We should admit that this proposal is not new. The distinction between intensional 
and extensional aspects of a notion was known from ancient times. Aristotle in his 
Posterior Analytics already specified this distinction though he did not use explicitly 
the above terms. Many logicians since that time examined the questions of 
intension/extension dichotomy. A second wind to these investigations was given by 
G. Frege with his famous meaning triangle and R. Carnap with his 
intensional/extensional investigations.  Though the dichotomy under discussion was 
studied primarily in logic, semiotics, and linguistics, last years it was also investigated 
in informatics. In its branches related to artificial intelligence, data and knowledge 
bases, semantic web, etc., the intensional aspects now play an important role. But in 
formalized (mathematical) theories intensional aspects are still used very restrictively.  

The above presented considerations advocate the following principle:  a notion 
should be presented by the triad notion intension – notion extension – integrity of 
intension and extension; the intension in this integrity play a leading role (the 
principle of triadic model of a notion). This principle may be considered as an 
enhancement of Frege’s meaning triangle.  

At the formal level of foundations, the notions, constructed at the previous level, 
are specialized in order to get their reasonable formalization. This formalization 
should take into account intensional and extensional notion aspects. This level is 
important for informatics because formal notions provide a basis for automatization of 
various phases of information processing.   

Having specified a three-level structure of foundations and main principles of 
theory development, we can now consider basic notions of informatics at the 
conceptual level. As the name shows, the main notion of informatics is the notion of 
information. It can be formalized in various aspects [9, 10], but the most important 
ones are aspects represented by the philosophical categories of form and content. This 
understanding is supported by the etymology of ‘information’, derived from Latin 
‘informare’: “to give form to”. Forms of information which are relatively independent 
of its content we call data.  

Thus, we get the initial part of the well-known “data – information – knowledge – 
wisdom” hierarchy (DIKW-hierarchy) [11]. These concepts are the building blocks of 
informatics; and explications should be developed for all these notions. This is a 
difficult challenge, therefore it is reasonable to start with the notion of data which lies 
in the base of DIKW-like hierarchies, is relatively simple, and is an appropriate 
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subject for further formalization.  The word ‘data’ is used in this paper as a plural and 
as a singular noun. 

Among many characteristics of data (see [9] for a detailed discussion) we choose 
“data as manipulable objects” [12]. This treatment is a projection on conceptual level 
of the category of object taken in the praxeological aspect.  

So, our abstract understanding of the notion of data includes three moments only: 
1) data are regarded as a form of information content; 2) data are (relatively) 
independent from information content; 3) data are manipulable objects. These 
moments demonstrate that we treat data in a very broad sense. The principle of 
development from abstract to concrete suggests that other data characteristics should 
be introduced on the later stages of development. 

According to the principle of triadic model, we treat data as integrity of their 
intension and extension, thus we enrich traditional understanding of data with 
intensional component [13].  Obtained data are called intensionalized data. Let us 
admit that there is an analogy with the notion of typed data, but the latter is usually 
understood in the extensional sense while we aim to emphasize intensional features of 
our approach.    

3 Intensionalized Data 

To simplify formalization of the notion of intensionalized data, we start with the most 
abstract understanding of data as some objects (keeping in memory that on later 
stages data should be considered as manipulable objects representing information 
content). The first step in objects explication is classification of intensions which can 
be prescribed to objects. Such classification can be made with respect to various 
criteria. Our gnoseology-based approach suggests to develop a classification induced 
by some categories. As such we choose categories whole and part which are among 
the first categories revealing the category of essence [2]. Thus, we introduce two 
different intensions IW and IP: object as a whole (unstructured object) and object with 
parts (structured object) respectively.  

Further development of IW is done in accordance with categories of abstract and 
concrete. One of projections (restrictions) of these categories on the conceptual level 
describes abstract as less informative than concrete. In extreme cases, an object can be 
regarded as a “black box” (intuitively it means that nothing is “visible”, and therefore 
nothing is known about object) or as a “white box” (everything is “visible” and 
recognizable). Thus, we articulated new intensions IWB and IWW respectively. An 
intermediate intension is denoted by IWBW (“black or white box”). The introduced 
intensions describe the main possibilities to treat object as a whole.  

To come to richer intensions we should treat objects as structured (with intension 
IP). In this case we get a triad: whole – part – structure, where structure is the 
synthesis of categories whole and part. Now we will invent properties (intensions) of 
object structures. The development principle stimulates us to start with simple 
structures. Simplicity means that all parts of an object are recognized and fixed. In 
this case each part can be regarded as a whole. Relations within the object are also 
recognized and fixed. The next question is: what intensions can be prescribed to the 
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parts and relations? Being the wholes, parts can have intensions of black and/or white 
boxes. Should it be allowed for relations to have the same three intensions? It is not 
reasonable to do this at the first stages of data development; therefore we prescribe to 
relations intensions of white boxes only. The above specification of object structure 
permits to call it hard structure. Thus, we divide the intension IP into two sub-
intensions IPH and IPS specifying objects with hard and soft structures respectively. In 
this paper we restrict ourselves by studying objects with prescribed intension IPH only 
which is simpler than IPS.  

We continue with IPH classification that is caused by possible relations between 
object parts. Such relations are classified along the line tight–loose. Loose relations 
mean that parts are not connected with each other (in Hegel’s words, are indifferent to 
each other); tight relations mean that parts are connected. Thus, new intensions IPHL 

and IPHT are articulated.  
Parts of objects with intension IPHL and IPHT are usually called elements and 

components respectively. Considering elements as wholes, we can treat them with 
intensions of black and/or white boxes. Three new intensions which are sub-
intensions of IPHL stem from this: IPHLB, IPHLW, and IPHLBW .  

It is worth to discuss objects (data) with these intensions in more detail. Objects 
with intension IPHLB should be regarded as collections of black boxes because they 
consist of clearly separated elements with unknown interior (content) that have no 
relations with each other. Such objects we call presets. For example, buying several 
tickets of an instant lottery someone gets a preset because surfaces of the tickets are 
covered by opaque material making them black boxes. Collections of elements which 
are white boxes (intension IPHLW) are called explicit sets. Collections with intension 
IPHLBW contain “black” and “white” elements (mixed presets). For example, when 
someone comes at a party he first classifies people as known to him (white elements) 
or unknown (black elements). Here we should note that richer intensions than IPHLB 

and IPHLBW can allow extracting additional information from “black” elements (and in 
this case they become “white” or “gray” elements).      

Thus, we have articulate three kinds of objects: presets, sets, and mixed presets. 
Now just sets serve as a basis for formalization of informatics notions, but it seems 
reasonable to use also the notions of preset and mixed preset for this purpose. Their 
importance can be substantiated by the necessity of defining data at various 
abstraction levels that cannot be adequately captured by the extensional notion of set. 
Therefore in is not strange that numerous attempts were made for constructing set 
theory without extensionality (see, for example, [14]). We stop further classifications 
of objects with intension IPHL (IPHL-objects) and start classifying IPHT-objects.  

Components of IPHT-objects are in some way related to each other, so, contrary to 
the elements of IPHL-objects, the components are not allowed to permute freely with 
each other within IPHT-objects. Examples are: lists, trees, graphs, arrays, etc. It seems 
(and it is true) that a lot of useful kinds of IPHT-objects can be considered. This fact 
poses a question what sub-intension of IPHT should be introduced first? And again we 
appeal to the principle of development which advises to start with the simplest 
relation between components. Such a relation connects only two components. In this 
case these components look as opponents, and the relation should link them, thus 
making their synthesis. From this follows that it is reasonable to treat the first 
component as a black box, the second as a white box, and their synthesis as a “dipole” 
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consisting of the black and white boxes. To make these abstract considerations more 
concrete we should involve practical observations of activities in the information 
domain which prompts us that the white box is a name of the black box; and their 
relation is a naming (nominative) relation. Thus, described objects are presets whose 
elements are named values. We propose to call such objects nominats and denote 
corresponding intension as IND. In Slavic languages the term ‘nominat’ has two 
different meanings: a naming expression or a value of such expression. Our proposal 
unites these meanings, because nominat is a unity of names and values. Nominats are 
also called flat nominative data.  

Traditionally, notations of functional style are chosen to represent nominats. For 
example, a nominat with names v1, …, vn and values a1, …, an respectively, is denoted 
by [v1 a1, …, vn an]. If values themselves are nominats, then we get the notion 
of hierarchic nominats (hierarchic nominative data); for example [v1 [u1 b1, …, 
uk  bk], …, vn  [t1 c1, …, tm cm]] is a 2-level nominat. 

It is important to admit that nominats can model the majority of data structures 
used in informatics [1]. For example, a set {e1, …, em} can be represented as [1 e1, 
…, 1  em], where 1 is a standard name which have different values e1, …, em; a 
tuple (e1, …, em) can be represented as [1 e1, …, m em] with 1,…, m as standard 
names; a sequence <e1, …, em> can be represented as [1 e1, 2 [ …, 
2 [1 em, 2 n]…]], where 1, 2 are standard names and n is the empty 
nominat.  

Summing up, we can conclude that the developed notion of intensionalized data 
can represent data structures used in informatics, and besides, this representation 
looks richer and more adequate than traditional set-theoretic representation. 

In this section we have concentrated only on classification of object intensions 
ignoring operations with objects. To come back to the initial treatment of data as 
manipulable objects, we should describe operations allowed for data with different 
intensions. Actually it means that we should try to construct basic computability 
theory for intensionalized data. This will be done in the next section.   

4 Computability over Intensionalized Data 

We begin with general considerations about traditional computability. Such 
computability is usually understood as computability of n-ary functions defined on 
integers or strings. It may be called Turing computability. In the light of our 
investigations traditional computability does not pay much attention to variety of data 
intensions, because it concentrates on computability over integers (or strings) which 
have fixed intensions. But in informatics other data structures with different 
intensions are also used; therefore for these structures a new notion of computability 
is required [15].  

The computability problem is not the only aim of our investigations. Now it is 
generally recognized that information systems should be developed successively from 
abstract specifications via more concrete representations up to detailed 
implementations in chosen programming languages. And it is important to connect 
computability with stages of system development. We intend to introduce such a 



34                                                                       M. Nikitchenko 

 

unified notion of computability that can be applied to every stage of system 
development and can be easily transformed when moving from stage to stage. Such a 
kind of computability should be applicable to data structures of different abstraction 
levels and is called abstract computability. A partial case of this computability, 
oriented on intensionalized data, is called intensionalized computability. The idea 
behind it is the following: for data processing it is allowed to use only those 
operations that conform to their intensions. Thus, intensionalized computability is 
intensionally restricted computability. In fact, such computability is a relative 
computability – relative to data intensions. Usually it is required that data have finite 
structures; a corresponding data intension we denote by IPHF.  

There is a difficulty in defining intensionalized computability that is caused by the 
fact that for finite structured data with intension IPHF we do not have precise 
definitions of their components and relations between components; thus, precise 
definition of computability is not possible. Of cause, we can introduce data with 
precisely described sub-intensions of IPHF (like intensions for tuples, list, trees, etc.) 
and then define computability for such specific intensionalized data. But in this case 
we will not get a unified computability theory for intensionalized data. To overcome 
this difficulty we propose to apply the method of reduction of intensionalized 
computability to traditional Turing computability. To do this we will first define a 
special form of finite structured data with a fixed intension, and then reduce data with 
other intensions to this special form. 

Let D be a class of data with intension ID. Such class is also denoted as [ID, D], 
data from this class are called ID-intensionalized data or simply ID-data. Assume that 
we treat data from D as finite structured data. Our intuitive understanding of a such 
data is the following: any such data d consists of several basic (atomic) components 
b1, ..., bm, organised (connected) in a certain way. If there are enumerably many 
different forms of organisation, each of these data can be represented in the (possibly 
non-unique) form (k,<b1, ..., bm>), where k is the data code and the sequence <b1, ..., 
bm> is the data base. Data of this form are called natural data [1]. More precisely, if 
B is any class and Nat is the set of natural numbers, then the class of natural data over 
B is the class Nat(B) = Nat  B *. We use the term ‘class’ for collections of 
intensionalized data; term ‘set’ is used for collections which intensions are sub-
intensions of sets. As finite structured data can have different representations, we 
should introduce multi-valued functions for constructing such representations. 
Function f is multi-valued (non-deterministic) if being applied to the same input data d 
it can yield different results during different applications to d (i.e., function’s graph is 
not a functional relation). To avoid complex notations with subscripts, to will denoted 
a class of partial multi-valued functions over D as DD. A multi-valued function 
is injective, if it yields different values on different arguments.  

Now we are ready to give the formal definition of a class of intensionalized data 
with some intension ID which is a sub-intension of IPHF. A class D is called a class of 
finite structured data, if a class B and a total multi-valued injective mapping nat: 
DNat(B) are given. This mapping nat is called the naturalization mapping. 
Naturalization mapping is actually an analysing mapping: it finds in a data d its 
components and their interrelations according to the properties of data prescribed by 
its intension. Dually to nat we introduce denaturalization mapping denat which 
reconstructs (synthesizes) data of class D from natural data. For simplicity’s sake we 
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assume that denat=nat –1. Denaturalization mapping is a partial single-valued 
mapping. Naturalization and denaturalization mapping are also called concretization 
and abstraction mappings respectively. 

Introduction of naturalization mapping is a crucial moment for defining 
intensionalized computability. This mapping can be regarded as a formalization of 
data intension; and this enables us to reduce an intuitive notion of intensionalized 
computability over D with intension ID to formally defined natural computability over 
D. The latter is then reduce to a new special computability over Nat(B) that is called 
code computability. To define this type of computability we should recall that in a 
natural data the code collects all known information about data components. Thus, 
code computability should be independent of any specific manipulation (processing) 
operations of the elements of B and can use only information that is explicitly 
exposed in the natural data. The only explicit information is the data code and the 
length of the data base. Therefore in code computability the data code plays a major 
role, while the elements of the data base are treated as black boxes which virtually do 
not affect the computations. These elements may be only used to form the base of the 
resulting data. To describe the code of the resulting data and the order in which 
elements of the initial base are put into the base of resulting data, a special function of 
type Nat(B)Nat(B) should be defined. Such a function is called index-
computable. These considerations lead to the following definition. 

A function g: Nat(B)Nat(B) is called  code-computable if there exists an 
index-computable multi-valued function h: Nat2Nat  Nat* such that for any k, 

mNat, b1,..., bmB, m 0, we have g(k,<b1,...,bm>) = (k ',<b
1i

, ..., b
li

>) if and only if 

h(k,m) = (k',<і1,...,il>), 1 i1 m,..., 1 il  m, l 0. If one of the indexes і1,...,il lies 
outside the interval [1, m], or h(k,m) is undefined, then g(k,<b1,...,bm>) is also 
undefined. 

In other words, in order to compute g on (k,<b1,...,bm>), we have to compute h on 
(k,m), generate a certain value (k',<і1,...,il>), and then try to form the value of the 
function g by selecting the components of the sequence <b1,...,bm> pointed to by the 
indexes і1,...,il.  

It is clear, that index computability of h: Nat2Nat  Nat* may be reduced by 
traditional methods of recursion theory to computability of a certain partial recursive 
function r:NatNat. 

We are ready now to give the main definition of this section. A function f: DD 
is called naturally computable (with respect to given B and nat) if there is a code-
computable function g: Nat(B)Nat(B) such that f = denat g nat . 

The class of all naturally computable functions is denoted by NatComp(D, B, nat). 
Thus, intensionalized computability is defined via a sequence of the following 

reductions: intensionalized computability – natural computability – code 
computability – index computability – partial recursive computability. Analysing the 
definitions, we can also conclude, that natural computability as a generalization 
(relativization) of enumeration computability. In fact, for B =  code computability is 
reduced to partial recursive computability on Nat, and natural computability is 
reduced to enumeration computability (with respect to nat). Therefore, the notions of 
code and natural computability defined above are quite rich.  
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Having defined the notion of natural computability, we can now construct 
algebraic representations of complete classes of naturally computable partial multi-
valued functions for various kinds of intensionalized data. In this short paper we give 
without details only few examples. We start with the simplest case. 

Let D be a preset with prescribed intension IPS (=IPHLB). It means that nothing is 
known about its elements. This treatment can be formalized by the naturalization 
mapping nat[IPS]: DNat(D) such that nat[IPS](d)=(0,<d>) for every  dD. To 
define the complete class of naturally computable functions over [IPS, D], we have to 
describe all index-computable function of the type h: Nat2Nat  Nat*. It is easy 
to understand that under the naturalization mapping nat[IPS] we need to know the 
results of index-computable function only on the element (0,1). On this input data an 
index-computable function 1) can be undefined, 2) can yield (0, 1), or 3) can make 
non-deterministic choice between being undefined and yielding (0, 1). 

These three cases induce the following functions of type DD: 1) the 
everywhere undefined function und, 2) the identity function id, and 3) the non-
deterministic function und-id such that und-id(d) is undefined or is equal to d. 

It means that the following result was proved: the complete class of naturally 
computable partial multi-valued functions over IPS-intensionalized preset D consists 
of functions und, id, and und-id. 

In other words, the three functions defined above are the only computable function 
over “black box” intensionalized data. 

The next example describes computability over subclass of hierarchic nominats. 
This subclass NAD(V,W) is called the class of named data and is defined inductively 
on the basis of a finite set of names  V ={v1, …, vm} and a preset of basic values W: 

1) If wW, then  w NAD(V,W),  
2) If v1,...,vn are pairwise distinct names from V,  d1, ..., dn   are from NAD(V,W), 

then [v1 d1, …, vn  dn] belongs to NAD(V,W).  
The intension of such data is denoted by INAD.  This understanding of NAD(V,W) 

can be represented by the naturalization mapping nat[INAD]: NAD(V,W)Nat(W) 
which is defined inductively as follows: 

1) if dW, then nat[INAD](d)=(c(0,0),<d>); 

2) if d = [v
1i
d1,..., v

ni
dn],  i1<...<in, n0,  

nat[INAD](dj)=(kj,<b j1 , ..., b
jjl

>), 1j n, then  

 nat[INAD](d) = (c(1, c(n,c(k'1,...c(k'n ,0)...))),<b11 ,...,b
11l

, ...,b 1n , ..., b
nnl

>),  

where c: NatNat  Nat is the Cantor's pairing function; k'j = c(ij,c(kj, lj)), 1j n. 
Having defined the naturalization mapping for [INAD, NAD(V,W)], we obtain the 

class NatComp(D, B, nat[INAD]) of all naturally computable functions over the class 
NAD(V,W). As the basic functions from this class we choose operations [15] of 
naming v, denaming v, and checking v! with name vV as a parameter; we also 
use non-deterministic choice  which on d yields d or n. The main operations over 
this class of functions (we call them compositions) are multiplication   (functional 
composition), conditional iteration * (while–do), and overriding .  

The following theorem which gives an algebraic description of the class 
NatComp(D, B, nat[INAD]) can be proved: the complete class of naturally computable 
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partial multi-valued functions over the INAD-intensionalized class  of named data 
NAD(V,W) coincides with the class of functions obtained by closure of functions v, 
v, v!, and  under compositions  ,, and  (vV). 

The last example will describe computability over the ISEQ-intensionalized class 
Seq(B) of sequences constructed hierarchically over a preset B. The structure Seq(B) 
has been investigated in different works. We shall use the notations of [16]. The 
following functions are introduced: first, tail, apndl, and is-atom. Also, we need a 
composition, called construction: [f,g](d) =  <f(d), g(d)> (d belongs to Seq(B), f and g 
are functions over Seq(B)). The following theorem can be proved: the complete class 
of naturally computable partial multi-valued functions over the ISEQ-intensionalized 
class Seq(B) coincides with the class of functions obtained by closure of functions  
first, tail, apndl, is-atom, and  under compositions  ,, and []. 

Having introduced in this section the notion of intensionalized computability, we 
actually defined those operations which are allowed to apply to such data. Thus, 
combining definitions of intensionalized data with definitions of computable 
functions over such data, we made explication of data as manipulable objects. To 
reason about intensionalized data, we should develop special logics oriented on such 
data. This will be done in the next section. 

5 Predicate Logics over Intensionalized Data 

The main idea of developing logics over intensionalized data consists in defining such 
logical constructs (connectives, quantifiers, etc.) that conform to the data intensions. It 
means that these logical constructs (to be semantically explicated as compositions of 
predicates) should use only such data information that is specified by data intensions.   

To make these intuitive considerations more strict, we start with constructing a 
semantic base for intensionalized logics.  

Let [ID, D] be a class of intensionalized data. A class of partial functions 
P = DBool is called a class of partial predicates over D (Bool = {T, F}). Operations 
over P are called predicate compositions. Let us admit that we do not restrict 
predicates by data intensions. This is necessary in order to have a wider class of 
models for logics. But data intensions should restrict the class of predicate 
compositions; from this stems the main problem of logic development: how to define 
compositions which are intensionally restricted by ID?  

We will define such compositions according to the principle of development from 
abstract to concrete. Therefore we should start with the most abstract intension IB 
(“black box” data). The basic compositions defined in this case are compositions of 
predicate disjunction  and negation . We define these compositions in the style of 
strong Kleene’s connectives.  

Let p and q be predicates, d be from D. Then (p  q)(d) is defined and equal to T if 
p(d) or q(d) is defined and equal to T; is defined and equal to F,  if both p(d) or q(d) 
are defined and equal to F; and is undefined in all other cases. The value p(d) is a 
dual to the value of p(d). Other propositional compositions can be defined 
analogously.  
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From these definitions we see that logics over [IB, D] are just different variants of 
propositional logics (partiality should be also taken into account). A semantics base of 
such logics are predicate algebras of the form <DBool, ,  >. Properties of such 
algebras will specify calculi for our logics.   

We will not describe logics over classes of data with intensions IW and IBW, because 
the intension IW specifies only one concrete class of data, and its logic is only a logic 
of this class (singular logic); logics over IBW-intensionalized data are combinations of 
propositional and singular logics.  

The next data intension we consider here is the intension of (infinite) flat nominats 
IND which is a sub-intension of IB. Data, intensionalized with IND, have a form 
[v1 a1, v2  a2, …]. In traditional logic names v1, v2, … are called individual 
variables, and data from D are called variable assignments, variable valuations, etc. In 
this case D=VA, where V is a set of individual variables, A is a class of individual 
values, and VA can be considered as a class of partial function from V to A. Predicates 
from VABool are called quasi-ary predicates. At the level of IND-data, additionally 
to propositional compositions, we can define a new composition of renomination 

1

1

,...,
,...,

n

n

v v
x xR . Given a predicate p and data d the value of 1

1

,...,
,...,

n

n

v v
x xR (p)(d) is equal to the 

value of p(d'), where d' is obtained from d by assigning to variables v1, …, vn values 
of variables x1, …, xn respectively. Note, that renomination composition (primarily in 
syntactical aspects) is widely used in classical logic, lambda-calculus, and specification 
languages like Z-notation, B, TLA, etc.  The obtained logics are called renomination 
logics (quantifier-free logics). Their semantics base are predicate algebras of the form 

<VABool, , , 1

1

,...,
,...,

n

n

v v
x xR  >. Properties of such algebras will specify calculi for 

renomination logics.   
To introduce first-order logics we should specify a new data intension INDQ. This 

intension allows an exhaustive search within the class A. It permits to introduce 
quantification compositions x and x (x is a variable). The value of xp(d) is defined 
and equal to T, if there is d', differing from d only in the value of x, such that  p(d') is 
defined and equal to T; is defined and equal to F,  if for all such d' the value p(d') is 
defined and equal to F; and is undefined in all other cases. The composition of 
universal quantification is defined in a similar way. The semantics base of first-order 

logics are predicate algebras of the form <VABool, , , 1

1

,...,
,...,

n

n

v v
x xR , x>.       

To preserve properties of classical first-order logic we should restrict the class 
VABool of quasi-ary predicates. This restriction stems from the fact that predicates 
of first-order logic, being defined on some data, are also defined with the same value 
on all extensions of this data. Such quasi-ary predicates are called equitone. We also 
introduce different variations of equitone predicates such as maxitotal (necessarily 
defined on maximal data), local-equitone (equitone for finite extensions only), and 
equicompatible (extensible to equitone predicates). Logics based on equitone and 
maxitotal equitone predicates are the “closest” generalizations of classical first-order 
logic that preserve its main properties. These logics are called neoclassical logics. For 
all these logics corresponding calculi were constructed; their soundness and 
completeness were proved. All necessary mathematical details can be found in [17].      
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The last class of logics considered here are logics over hierarchic nominats with 
intension INDH. Corresponding logics will use composite names of the form x1.x2. … 
.xn as parameters of renomination and quantification compositions. For this case their 
definitions should be redefined to take into account hierarchic structure of data.  

Summing up, we can conclude that the notion of intensionalized data 1) permits to 
construct new kinds of semantically-based predicate logics oriented on such data 
(intensionalized logics), and 2) gives possibility to explain origination of classical 
logics as logics oriented on “black box” data (propositional logics) or on flat nominats 
(first-order logics).   

6 Conclusion  

In the paper we tried to advocate an idea that foundations of informatics can be 
developed using a gnoseology-based approach. This approach specifies 
methodological, conceptual, and formal levels of foundations. For the methodological 
level we have described a number of general gnoseological principles and a system of 
philosophical categories specifying the main features of the approach. For the 
conceptual level we have proposed to elucidate basic notions of informatics in 
integrity of their intensional and extensional aspects. To support this idea we have 
defined the notion of intensionalized data, and have presented its formalization at the 
mathematical level. Then for such intensionalized data we have constructed basic 
intensionalized computability theory and several intensionalized logics of partial 
predicates. Still, these investigations are at the beginning phase, and we plan to 
continue them in the direction of developing mathematical formalisms for 
specification of information systems.    
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