
Practice in Software Engineering course:
”what and how to study”

Yuriy Solyanik, Maryna Vladymyrova,
Iryna Zarets’ka, and Grygoriy Zholtkevych,

V.N. Karazin Kharkiv National University,
4, Svobody Sqr., Kharkiv, 61077, Ukraine

u.solyanik@gmail.com, vladymyrova@gmail.com,

zar@univer.kharkov.ua, zholtkevych@univer.kharkov.ua

Abstract. The goal of this paper is to share the experience of V. N.
Karazin Kharkiv National University in Software Engineering training,
especially in organizing students’ practical work so that they gain compe-
tences required by modern software industry based on world standards.

As software development became now comprehensive industry there is strong
demand for highly qualified specialists all over the world. As any industry it
is based on standards for products as well as for processes. So any university
graduate planning to work in this industry should know these standards and
be able to work with them including tailoring to the concrete situation. It is
especially true for the graduates majoring in Computer Science (CS). Usually
these knowledge and skills are taught in the course of Software Engineering (SE)
which is adjourned to the senior years when all the fundamental concepts of CS
and technological skills have been already gained. Unfortunately all manuals on
SE studies including Computing Curricula present only core topics to discuss and
learn but no hints on how to organize practice with visible results of students’
growing as specialists just ready for industrial work. It is up to the University
to decide the ways to develop such competences in graduates. Our university
developed its own approach to provide necessary competencies so the goal of
this paper is to share our views and experience with other universities as well as
to have feedback as to advantages and disadvantages of our approach.

There are several definitions of SE. Let us take this one: ”Software engineering
is an engineering discipline that is concerned with all aspects of software pro-
duction from the early stages of system specification to maintaining the system
after it has gone into use” [1]. Another one tells that SE encompasses knowledge,
methods and tools for defining software requirements and performing software
design, software construction, software testing and maintenance tasks. Anyway
as any engineering discipline SE is regulated by number of normative documents
and standards. Among world leading standardization organizations in this field
are ISO, IEC, IEEE, ESA. Their standards concerning SE cover all the parts of
this discipline. It is just natural to build the subject of SE on the foundation
of the normative documents and standards. Studying the majority of standards



128 Yu. Solyanik, M. Vladymyrova, I. Zarets’ka, G. Zholtkevych

in the course of SE we base our practice mostly on the ESA standards [2] as
they usually include all the information from similar standards of other organi-
zations but are more verified as they deal with critical software. According to
these standards we divide Software Life Cycle (SLC) onto six phases which are
User Requirements phase (UR), Software Requirements phase (SR), Architec-
tural Design phase (AD), Detailed Design phase (DD), Transfer phase (TR) and
Operation and Maintenance phase (OM). It is essential to teach SE in such a
way that students could go through each phase of SLC performing its tasks and
preparing corresponding artifacts and documents strictly in compliance with the
standards. Knowing as many standards as time allows and being able to apply
them practically will make it possible for students to perform agile tailoring of
them depending on company policy and concrete type of project when working
in industry.

The whole process of studying looks like this. According to SWEBOK [3] SE
discipline consists of two big areas which are Software product engineering and
Software management. In fact we have these parts in two different courses but
they go in parallel with common ideas and projects to work on. Both courses
are taught to the graduate students (fifth year) so the main goal of both of
them is to systemize and generalize all the knowledge and skills gained by stu-
dents before via series of conceptual lectures made by students themselves in
form of presentation and practical work of real industrial level. So we organize
semester long business game on SE (both parts) with students working in teams
on real projects and playing different roles during the process of development. In
fact they all go through being business analysts, system analysts, system archi-
tects, quality assurance personnel, team leaders, project managers and technical
writers. Moreover they usually work on projects that are needed by Univer-
sity subdivisions or have real customers and timescales with several students of
younger ages (usually fourth and third years of study) to their subordination
making exploratory and experimental prototyping, coding, unit and integration
testing, etc., which can be estimated for them as course work or even bachelor
project. This heightens the responsibility of graduate students not only for the
projects to be done in time but for undergraduates to have good marks under
their leadership not to mention their own marks on the SE subjects. All graduate
students are divided into teams consisting usually of 3 to 4 graduate students
(depending on the project scope) plus 2 to 3 undergraduates. Each team works
on a separate project but reviews the project of its peer team. The process of
peer reviewing is not less important than working on their own project as it
allows students to see mistakes and blunders as well as successful features more
clearly. All the steps, activities and solutions are thoroughly documented and
reviewed which at the end gives the full picture of students’ progress and results.

The topics of conceptual lectures in SE are presented in the table. In fact
all the key areas and units are well presented in SWEBOK [3], PMBOK [4] and
Computing Curricula [5, 6] so we only packed them into topics and added some
modern technological aspects [7]. In fact we use a lot of standards and literature
in this course, it will take several pages to present all of them, so we put only



Practice in Software Engineering course: ”what and how to study” 129

those we directly refer to in this paper into the list of literature below.

Software Product Engineering Software Management
Topic Hours Topic Hours

Taxonomy of standards in SE 1 State of the art in SE and
Software Management. Soft-
ware Project Management,
Software Quality Manage-
ment, Software Configura-
tion Management. Four Ps:
Project, Product, Process,
Personnel

2

SLC concepts and models (in-
cluding classical and mod-
ern ones like Agile, SCRUM,
KANBAN, etc.)

2 Project goals. Project
processes scheme. Six
management processes.
Business-planning of the
project

1

User requirements elicitation
methods, tools and artifacts

2 Organizational management. 2

Software requirements spec-
ification methods, tools and
artifacts

2 Personnel and project envi-
ronment management. Gen-
eral information about sup-
porting processes. Communi-
cation management

2

System models, types and
classification

2 Planning. Standards of plan-
ning. Different representa-
tions of the plan (Gant di-
agrams, network planning,
etc.). Creating the plan. Dia-
grams analysis. Critical path,
critical chain. Survey of tools
SPMP

4

UML 2.x, history, develop-
ment, usage

3 Infrastructure of planning:
database of processes, base
line of process stability, pro-
cesses’ assets. Methods of
possibilities evaluation (PSP,
TSP, CMM)

1

Formal methods of require-
ments specification

2 Software Management. Con-
figuration. Standards, basic
concepts, methods, tools
SCMP

4

Quality of software, metrics
of quality

2 Software size metrics. Meth-
ods of data collection. Soft-
ware size evaluation

4



130 Yu. Solyanik, M. Vladymyrova, I. Zarets’ka, G. Zholtkevych

Software Product Engineering Software Management
Topic Hours Topic Hours

Software architecture, archi-
tectural styles and patterns,
POSA, MDA, SOA

4 Software cost evaluation.
Standards, models (CO-
COMO,COCOMO2, SLIM,
etc), tools

4

Architectural design pro-
cesses, methods, tools and
artifacts

2 Risks. Uncertainties. Stan-
dards. Risk management
and control. Quantitative
and qualitative risk analysis.
Models, methods, tools.
Risks planning

4

Verification and validation of
software, methods, tools and
artifacts

4 Quality Management. Gen-
eral principles. Product
quality. Quality Assurance
(QA) organization: orga-
nizational structure of the
project. SQMP

4

Detailed design processes,
methods, tools and artifacts

2 Software reliability evalua-
tion

3

Transfer, operation and
maintenance processes,
methods, tools and artifacts

2 Project closing, analysis and
summaries

1

Now about the practical work. We prepare a number of real projects with real
customers and timescales (usually semester long to develop and further to con-
tinue coding, testing and maintaining by undergraduates from the corresponding
team). After teams were formed and projects selected by teams they prepare vi-
sion documents in standard form while several first lectures acquaint them with
the main concepts and activities to follow. Then they proceed with the projects
going iteratively through each phase of SLC.

The first phase - UR one - takes usually 3 to 4 weeks which is longer than
needed because at this time students are not yet well immersed into subject.
They work directly with customers and domain experts, prepare questionnaires
and make surveys to define project scope and boundaries, assess operational
environment, determine users’ roles, and elicit user requirements at most thor-
oughness and completeness. Sometimes exploratory prototyping is needed (usu-
ally made by undergraduate members of a team). Then it takes time to learn
standards and prepare the draft version of the first full document in standard
form which is URD (User Requirements Document) with all requirements iden-
tified and attributed and status sheet attached. This version is reviewed by peer
team and all the discrepancies found are documented and discussed during the
review meeting. Then several iterations with corrected URDs and updated sta-
tus sheets follow until the final version is approved and signed by both parts. At
the same time the acceptance test plan is being worked out and documented.



Practice in Software Engineering course: ”what and how to study” 131

As to the management activities students define their projects goals from
the management point of view and elicit main processes, find the appropriate
structure of their team organization, distribute roles and write down the respon-
sibilities of each role. They also get acquainted with the MS Project tool.

The second phase overlaps first one and usually begins when first URD draft
is submitted for the review. Second phase usually takes the same time as first
or a little longer as it supposes analysis of the requirements and logical model
construction as well as system requirements specification. At this time students
have already studied different system models and software quality metrics, which
facilitates the process of a logical model construction and working with both
functional and non-functional requirements in quantitative form to be properly
verified. They use various CASE tools for model construction and specification.
At the end of this phase the Software Requirements Document (SRD) is pre-
pared with obligatory traceability matrix attached. Again iterative process of
documented peer reviewing and making changes takes place, which ends with
the approval and signing of SRD.

As to the management activities this phase is dedicated to planning. Students
plan their work on the project using MS Project tool, identify tasks, define
their sequence and duration of each of them, and determine types of relations
between tasks. Then they assign real terms and resources for each task, e. g.
form the project’s schedule and construct the critical path using MS Project
tool and developing their own program to build a critical path just to compare
the results. It allows them to evaluate the real duration of the project. Students
also consider different solutions to the problem of resource overloading. At this
phase the SPMP in standard form is being prepared and submitted for the
review.

The third phase is the most hard for students because it requires all their pre-
vious knowledge and skills, sometimes they are compelled to learn new technolo-
gies and make exploratory prototyping to solve architectural problems usually
rising from non-functional requirements and to apply appropriate architectural
styles and patterns. They have to construct a physical model with detailed de-
scription of each system component, process, software module and physical node
of software deployment which is not only difficult to perform but time consuming
as well even using advanced CASE tools (not to mention regular returns to the
previous documents). At the end of this phase the standard ADD (Architectural
Design Document) is submitted for the review which also takes several iterations
before final approval.

As to the management activities this phase is dedicated to the Configuration
Management. Within the frame of their project students create repository to
store all the artifacts of the project, make checkouts, updates and commitments,
add files and folders, assign tags and create alternative branches of development
process using TortoiseCVS and TortoiseSVN tools. They also prepare Software
Configuration Management Plan (SCMP) in standard form and submit it for the
review. Another students’ activity at this phase concerns with software cost esti-
mation. They use Costar and USC-COCOMOII 1999.0 with CostXpert tools to



132 Yu. Solyanik, M. Vladymyrova, I. Zarets’ka, G. Zholtkevych

estimate the cost of software for the early design model and for post-architecture.
For their projects students assign the values of Scale Drivers, Cost Drivers, Func-
tion Points or SLOC, Resource Costs and make necessary calculations and re-
ports. The SPMP draft made at the first phase is now being improved with
reference to the risk plan developed further.

The fourth phase heavily overlaps the third one as it is usually done by
undergraduate members of the team and starts just as the critical architectural
solutions have been made. It consists of coding, unit and integration testing with
all documentation required by standards. At this time graduates begin writing
PHD (Project History Document) as time goes to the end of semester. The main
output document of this phase - DDD (Detailed Design Document) - takes too
much time to prepare so graduates usually only supervise its preparation and as
our experience shows never have time to verify it thoroughly. This is mainly the
responsibility of undergraduates to finish coding and testing as well as transfer
releases to customers and maintain them during the operation before provisional
acceptance and after it. At this moment we try to have new younger students
to learn this software to be able to maintain it.

As to the management activities this phase is dedicated to risk control and
management. Students make the risk plan for their projects which includes all
steps of working with risks e. g. risk identification, risk estimation, methods of
responding to risk events and control of these responses. They use PertMas-
ter Project Risk v7.6.0006 tool for this work. At this phase they also prepare
Software Quality Management Plan (SQMP), specify and improve SCMP made
at the previous phase and consider problems of management according to the
plans. At the end of this phase the process of project closing is being considered,
analyzed and the whole project is summarized.

Certainly the time limits and kinds of projects students develop do not al-
low them to go practically through all the management activities and artifacts
considered in theoretical study, but even what is done gives students some man-
agement skills to be developed in their further work as no industry newcomer
begins his or her career as a software project manager.

As a result our graduate students learn to work with requirements and specify
them, make sound and grounded architectural solutions, carry out management
activities and present all information in compliance with world standards. All
that is being done in a team work with peer verification and audits made by
teaching staff. As to the benefits for undergraduates they learn a lot from their
senior mates which is good in itself, plus get ready for analytical work next
year. Sure a lot of work is done by each member of a team with all those paper
artifacts being meticulously prepared according to standard forms. A lot of them
might seem excessive for real middle size industrial software company using agile
methods and techniques. But what we think is: it is better to master the whole
process and use only parts of it than to know only some parts when it is necessary
to use the whole process.



Practice in Software Engineering course: ”what and how to study” 133

References

1. Sommervile, Ian: Software Engineering. Pearson Education, New York and London
(2001)

2. ESA Software Engineering Standards. ESA Board for Software Standardization and
Control (1991)

3. Software Engineering Base of Knowledge (SWEBOK). Revision of IEEE (2010)
4. A Guide to the Project Management Body of Knowledge, 4th ed. PMBOK Guide
(2008)

5. Computing Curricula 2001. Computer Science. Final Report. The Joint Task Force
on Computing Curricula. IEEE & ACM (2001)

6. Computing Curricula 2005. The Overview Report. The Joint Task Force on Com-
puting Curricula IEEE & ACM (2005)

7. Futrell, R. T., Shafer, D. F., Shafer, L. I.: Quality software Project Management.
Addison - Wesley Publishing Company, New York (2002)


