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Abstract. The new class of recognisers is introduced and studied in the
paper. The models are based on the notion of partial action of a free finite
generated monoid. Authors called such models by preautomata. Some
properties of preautomata were established and proved in the paper.
These properties allow to consider the pre-automata as mathematical
models of recognizers of event flows in processes of the interaction of
software systems.

Introduction

The experience of software development demonstrates that we have no the means
for forecasting of progress of software projects (see [1]). So, in 2009, only 32% of
the software development projects were successful. At the same time, the percent-
age of projects that ended with a significant budget overruns and the disruption
of a schedule was 44%, and the projects that were interrupted in the form of loss
control costs or timelines - 24% of total software development projects. As we
can see, the implementation of different methods in software management, the
use of increasingly sophisticated technologies in software development, have not
led to significant improvement in the quality of software development processes.
The reason for the complexity of the development processes of large software
systems is the need to provide correct handling for all possible flows of system
events. One of the authors of this article in 1990 noted [12]: ”it is almost impossi-
ble to foresee the sequence of the information processing procedures for complex
computer systems, and therefore impossible to plan the flow of control”. Rejec-
tion of an identification of all possible control flows can provide scalability and
flexibility of software product in a process of system design. Breaking down of
monolithic architectures leads us to the concept of data-driven systems [11], in
particular - to event-driven architecture (EDA) [4].

Modern applications development tools for EDA are based on using standard
methodologies such as ”Event Dispatcher - Event Listener”. This methodology
assumes that, each generated event can be listened by a number of handlers
However, in case of an interaction of many systems the dispatchers have to
listen flows of events, not only single events. The flow of events forms sensible
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messages, and in this case, there are no standardized software components even
at the level of mathematical models, namely, events listeners are oriented on
a recognition of event flows. This work describes one mathematical model of a
machine for the event flows recognition. In this mathematical model each event
is modelled by the symbol of some alphabet, and messages are modelled by
certain words in this alphabet. The pre-automata notion has been introduced.
This notion provides a possibility to analyze the event flows to highlight from
them reasonable messages that are carried by these flows.

The aim of this paper is to study recognisers which are similar to automata-
based recognisers. But we will suggest that a reconiser responses to finite se-
quences of events. This modification leads to study of partial actions of finite
generated free monoids on a set as a recogniser’s model.

The notion of a partial action was introduced for groups in [3] and for monoids
in [10].

This paper is organised as follows.
In section 1, definitions of the terms are given and basic notation is intro-

duced. Then the key example is considered therein.
In section 2, the relationship between preautomata and automata is studied.

The Theorem about Universal Globalisation contains the main result of the sec-
tion. It substantiates using of pre-automata as models for behaviour of systems
in the case of restricted observability of system’s states.

In section 3, a class of a languages, which are recognised by a preautomaton,
is introduced. We call this class as a class of P-recognisable languages. Then
we specify such languages in the terms of right congruences on a free monoid
generated by a preautomaton’s alphabet.

In section 4, the Eilenberg’s Structural Theorem [2, see p. 83] is proved for
P-recognisable languages.

In section 5, a capability of preautomata as recognizers is clarified by com-
parison of the class of P-recognisable languages with other known classes of
languages.

In conclusion, the set of problems, which solution gives an answer to question
of adequacy using preautomata for modelling behaviour of systems, is formu-
lated.

1 Preliminaries

The notion of a partial action is adopted from [6] as follows.

Definition 1. Suppose X is an arbitrary set, M is a monoid with unit 1, and
X ×M 99K X : (x,m) 7→ x ·m is a partial map. The triple (X,M, ·) is called a
partial M -action on X iff the following conditions are held

x · 1 = x for all x ∈ X; (1)

if x ·m1 and (x ·m1) ·m2 are defined then x · (m1m2) is defined

and (x ·m1) ·m2 = x · (m1m2);
(2)
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if x ·m1 and x · (m1m2) are defined then (x ·m1) ·m2 is defined

and x · (m1m2) = (x ·m1) ·m2.
(3)

We write x ·m 6= ∅ if x ·m is defined, and x ·m = ∅ if x ·m is undefined.
The case of a finite generated free monoid M will be considered in the article

only. Therefore we need to reformulate Definition 1.

Definition 2. Let Q be a set of states, Σ be a finite alphabet, and suppose a
partial Σ∗-action on Q is defined then the triple (Q,Σ, ·) is called a preautoma-
ton.

As usial for free monoid Σ∗ we denote its unit by ε.

Example 1. Some class of examples of preautomata can be built in the following
way.
Let X be a set, Q be a subset of X, Σ be a finite alphabet, and suppose a
Σ∗-action on X is defined. We can build a partial Σ∗-action on Q with respect
to the next formula

x · w =

{
∅, iff x · w /∈ Q
x · w, iff x · w ∈ Q

when x ∈ Q and w ∈ Σ∗.
It is easy to prove that conditions 1, 2, and 3 of Definition 1 are held. Hence,
P = (Q,Σ, ·) is a preautomaton.
We can consider the preautomaton P as a restriction of a deterministic automa-
ton [5] A = (X,Σ, ·) on the set Q.

Example 1 describes a general case. It will be demonstrated in the next
section.

The following definition makes it possible to consider the class of all preau-
tomata as a category.

Definition 3. Suppose P1 = (Q1, Σ, ·) and P2 = (Q2, Σ, ·) are preautomata,
ψ : Q1 −→ Q2 is a map. The map ψ is called an equivariant map if for each
x ∈ Q1 and w ∈ Σ∗ such that x · w 6= ∅ the following condition is held:

ψ(x) · w 6= ∅ and ψ(x · w) = ψ(x) · w.

The class of all Σ-preautomata with equivariant maps as morphisms is a
category [9]. The proof is trivial. We denote this category by ΣPA, and by
ΣPA(P1,P2) we denote a set of morphisms from P1 to P2 when P1 and P2 are
preautomata.

As usual [9], we introduce notions of a monomorphism, an epimorphism, and
an isomorphism. Note, that an equivariant map is a monomorphism iff it is injec-
tive; in the category ΣPA there are bimorphisms which are not isomorphisms.

Definition 4. We shall say that a preautomaton (Q,Σ, ·) is a finite preautoma-
ton iff the set Q is finite.

The class of all finite Σ-preautomata with equivariant maps form a subcat-
egory of the category ΣPA. We denote this subcategory by ΣFPA.
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2 Universal Globalisation of Preautomata

The aim of this section is to prove that each preautomaton is a restriction of
some automaton with same alphabet.

Definition 5. An automaton A = (X,Σ, ·) is called a globalization of a preau-
tomaton P = (Q,Σ, ·) if there is a monomorphism ζ ∈ ΣPA(P,A).

At first, for each preautomaton P = (Q,Σ, ·) we build a set Qgl and an
injection ι : Q −→ Qgl.
Put Q = Q×Σ∗.
For any q1, q2 ∈ Q and w1, w2 ∈ Σ∗ we shall write (q1, w1) ` (q2, w2) iff for some
u ∈ Σ∗ is held the following condition: w1 = uw2 and ∅ 6= q1 · u = q2.
Denote by ' the least equivalence on Q such that the condition (q1, w1) `
(q2, w2)⇒ (q1, w1) ' (q2, w2) is satisfied.
Now, by definition put Qgl = Q/ ' .
Denote by [q, w] the '-class of the (q, w) ∈ Q.

Lemma 1. The triple Pgl = (Qgl, Σ, ·) is an automaton, where the action is
defined by the formula [q, w] · a = [q, wa], when q ∈ Q, w ∈ Σ∗, and a ∈ Σ.

Proof. One can establish this fact by direct checking of automaton’s definition.
ut

Then, express explicitly the condition (q1, w1) ' (q2, w2), where q1, q2 ∈ Q,
w1, w2 ∈ Σ∗.

Definition 6. Suppose q ∈ Q and w ∈ Σ∗, we shall say that they form a canon-
ical piar iff for each u, v ∈ Σ∗ such that uv = w the following condition is held
q · u 6= ∅ ⇒ u = ε.

We shall use the notation q × w if q and w form a canonical piar.

Lemma 2. Suppose q1, q2 ∈ Q and w1, w2 ∈ Σ∗ then (q1, w1) ' (q2, w2) iff
there exist u1, u2, and s in Σ∗ such that w1 = u1s, w2 = u2s, q1 · u1 6= ∅,
q2 · u2 6= ∅, q1 · u1 = q2 · u2, and for q′ = q1 · u1 = q2 · u2 the condition q′ × s is
held.

Proof. Evidently, the conclusion of the Lemma defines some equivalence, which
we denote by ∼. The assertion (q1, w1) ` (q2, w2) ⇒ (q1, w1) ∼ (q2, w2) follows
from the definition of ∼. Now, one can use the definition of ' and check that
the condition (q1, w1) ∼ (q2, w2) ⇒ (q1, w1) ' (q2, w2) is satisfied. From this
assertion and the definition of ' it follows that ∼ equals '. ut

Corollary 1. In each '-class there exists an unique canonical pair (q, w) ∈ Q.

By definition, put ι(q) = [q, ε]. Then from the Corallary 1 it follows that the
map ι : Q −→ Qgl is injective.
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Theorem 1 (about Universal Globalisation). The map ι : Q −→ Qgl de-
fines a globalisation ι : P −→ Pgl. It satisfies the following condition:
for any globalisation ζ : P −→ A there is a unique morphism ψ ∈ ΣPA(Pgl,A)
such that the diagram

P A

Pgl

-ζ

@
@Rι �

��
ψ

is commutative.

Proof. First let us prove that ι is an equivariant map. In fact, suppose q ·w 6= ∅
when q ∈ Q and w ∈ Σ∗. Using Lemma 2, we get

ι(q · w) = [q · w, ε] = [q, w] = [q, ε] · w = ι(q) · w.

Hence, ι is an injective morphism, i.e. a monomorphism, and ι : P −→ Pgl is a
globalisation.
Let [q, w] be an element of Qgl. Without loss of generality, we can assume that
q × w. By definition, put

ψ([q, w]) = ζ(q) · w.

By construction, if q and w as above and u ∈ Σ∗ then

ψ([q, w] · u) = ψ([q, wu]) = ψ([q · wu1, u2]) =

ζ(q · wu1) · u2 = ζ(q) · (wu1u2) = ((ζ(q) · w) · u) = ψ([q, w]) · u

when u = u1u2 and q × (wu1).
Thus, ψ ∈ ΣPA(Pgl,A).
Finally, let q be an element of Q then we have

(ψ ◦ ι)(q) = ψ(ι(q)) = ψ([q, ε]) = ζ(q) · ε = ζ(q)

Evidently, ψ is unique. This completes the proof. ut

Theorem 1 gives us the positive answer to the question ”Is any preautomaton
a restriction of some automaton?”.

Problem 1. Let P = (Q,Σ, ·) be a finte preatomaton. Determine the necessary
and sufficient existance conditions of a finite globalisation of P.

3 Preacceptors and P-Recognisable Languages

Parsing of texts is the important class of tasks in computer science. Methods
for solving these tasks aregrounded on the automata theory. The main concept
in the context is the concept of a recognisable set [2, 5]. In this section we shall
connect each preautomaton with some language. The class of such languges will
be called as the class of P-recognisable language.

We begin with some notation.
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Definition 7. Let P = (Q,Σ, ·) be a finite preautomaton. Suppose some element
qin ∈ Q (the initial state) and some subset T ⊂ Q (the terminal subset) is marked
out then a triple (P, qin, T ) is called a preacceptor.

We shall denote the preacceptor (P, qin, T ) by P(qin, T ).
By definition, put

L[P(qin, T )] = {w ∈ Σ∗ | ∅ 6= qin · w ∈ T}, (4)

where P(qin, T ) is a preacceptor.

Definition 8. Let P(qin, T ) be a preacceptor then we shall say that the language
L[P(qin, T )] is recognised by P(qin, T ).

Now we can define the class of P-recognisable languages.

Definition 9. Let L be a language over an alphabet Σ. We shall say that the
language L is P-recognisable if there exists some preacceptor such that L is recog-
nised by it.

Our immediate aim is to find necessary and sufficient conditions for a lan-
guage be a P-recognisable language. To achieve this aim, we need several defini-
tions.

Recall [8] that an equivalence ρ on Σ∗ is called a right congruence iff for any
u, v, w ∈ Σ∗ from u ρ v it follows uw ρ vw.

Theorem 2. Let L be a language over an alphabet Σ. It is P-recognisable iff
there exists a right congruence on the monoid Σ∗ such that L is equal to some
finite union of its classes.

Proof. Suppose, that P(qin, T ) is a preacceptor that it recognises the language
L. Denote by P = (Q,Σ, ·) the preautomaton such that P(qin, T ) = (P, qin, T ).
Let ι : P −→ Pgl be the universal globalisation of P, Qgl be a set such that
Pgl = (Qgl, Σ, ·). By definition, put Tgl = {[q, ε] ∈ Qgl | q ∈ T} and denote, by
Pgl([qin, ε], Tgl) the acceptor (Pgl, [qin, ε], Tgl).
Put u ρ v iff [qin, u] = [qin, v].
The binary relation ρ on Σ∗ is a right congruence. It follows from Lemma 1.
From Corollary 1 it follows that the acceptor Pgl([qin, ε], Tgl) recognises the same
language as the preacceptor P(qin, T ). Moreover,

[w]ρ = {w ∈ Σ∗ | w = us, ∅ 6= qin · u× s, (qin, w) ∈ [qin · u, s]}.

Hence, ∅ 6= qin · w ∈ T iff (qin, w) ∈ [q, ε] for some q ∈ T .
Summing the reasoning, we get L =

⋃
q∈T
{w ∈ Σ∗ | (qin, w) ∈ [q, ε]}, i.e. L is

equal to a finite union of ρ-classes.

Conversely, suppose L =
n⋃
i=1

[wi]ρ, where ρ is some right congruence on Σ∗,

w1, . . . , wn ∈ Σ∗.
By definition, put Q = Σ∗/ρ, [u]ρ · w = [uw]ρ.



Pre-automata as Mathematical Models of Event Flows Recognisers 47

Evidently, A = (Σ∗, Σ, ·) is an automaton. Therefore, we can define a preau-
tomaton P = (Q,Σ, ·) as the restriction A on the set Q.
Now, consider the preacceptor P([ε]ρ, T ), where T = {[w1]ρ, . . . , [wn]ρ}.
If w ∈ L then w ρwi for some 1 ≤ i ≤ n by assumption, therefore ∅ 6= [ε]ρ · w =
[wi]ρ ∈ T and w is recognised by P([ε]ρ, T ).
If w is recognised by P([ε]ρ, T ) then ∅ 6= [ε]ρ · w ∈ T , i.e. [w]ρ = [wi]ρ for some
1 ≤ i ≤ n. Hence, w ∈ L.
This completes the proof. ut

Corollary 2. Let L1 and L2 be P-recognasible languages over the same alphabet
then L1

⋂
L2 is a P-recognisable language too.

Corollary 3. The class of P-recognisable languges over a single-letter alphabet
equals to the class of recognisable languages over the same alphabet.

4 Structure of P-Recognisable Languages

In this section we shall prove that the structure of P-recognisable languages is
similar to the structure of recognisable languages [2].

Lemma 3. Let L be a P-languages then L =
n⋃
i=1

Li, where

Li
⋂
Lj = ∅ for 1 ≤ i 6= j ≤ n; (5)

each Li is recognised by a preacceptor that its terminal subset (6)

is an unit set.

Proof. Let P(qin, T ) be a preacceptor that recognises the language L. Suppose
T = {q1, . . . , qn} then denote by Li the language recognised by P(qin, {qi}),
where 1 ≤ i 6= j ≤ n. By construction, properties (5) and (6) are satisfied. ut

Let us remember [2, 8]

1. let L be a subset of Σ∗, and u be a word over Σ∗ then u−1L = {w ∈ Σ∗ |
uw ∈ L};

2. a language L ⊂ Σ∗ is unitary if for any u1, u2 ∈ L it is held u−11 L = u−12 L;
3. a language L ⊂ Σ∗ is a prefix code iff for any u, v ∈ Σ∗ such that u, uv ∈ L

it follows v = ε.

Note, if L is a prefix code then from ε ∈ L it follows L = {ε}.

Lemma 4. Let L be a language over an alphabet Σ then L is unitary iff L is
recognised by a preacceptor such that its terminal subset is a unit set.

Proof. Let L be a unitary language then there exists an acceptorA(qin, {qaccept})
which recognises the language L [2]. Denote by P(qin, {qaccept}) the restriction
of A(qin, {qaccept}) on the set {qin, qaccept} then the preacceptor P(qin, {qaccept})
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recognises the language L.
Conversely, suppose L is recognised by some preacceptor P(qin, {qaccept}), and
Pgl([qin, ε], {[qaccept, ε]}) is its universal globalisation.
The acceptor Pgl([qin, ε], {[qaccept, ε]}) recognises the language L. Using results
of [2, Prop. 1.1], one can get that L is an unitary language. ut

Theorem 3 (about Structure of P-recognisable Languages). Let L be

a P-recognisable language then L =
n⋃
i=1

EiB
∗
i , where Ei, Bi are prefix codes for

i = 1, . . . n, and EiB
∗
i

⋂
EjB

∗
j = ∅ for 1 ≤ i 6= j ≤ n.

Proof. Indeed, from Lemma 3 and Lemma 4 follows that L =
n⋃
i=1

Li, where each

Li is a unitary language, and Li
⋂
Lj = ∅ if i 6= j. In [2, Prop. 3.4] it has been

proved that any unitary language has the representation EB∗, when E,B are
prefix codes. This completes the proof. ut

Problem 2. Describe the class of languages with structure as in Theorem 3 which
are P-recognisable.

5 Preautomata Recognition Capability

In this section we compare the class of P-recognisable language with other classes
of languages [7]: the class of recognisable languages, the class of context free
languages, the classes of recursive and recursively enumerable languages.

At first, compare the class of P-recognisable language with the class of recog-
nisable languages.

Proposition 1. Any recognisable language is P-recognisable.

Proof. It is trivial. ut

Others cases of a comparison are more complicated.

Example 2. As known [7], E1 = {anbn | n > 0} ⊂ {a, b}∗ is a context free
language. It is evident that E1 is a prefix code. From Lemma 4 it follows that
E1 is P-recognisable.

We need to improve Theorem 2.

Definition 10. Let L be a language over an alphabet Σ, u, v be words over Σ.
We shall use notation u ρL v iff for any w ∈ Σ∗ it is satisfied uw ∈ L⇔ vw ∈ L.
In this case, we shall call ρL a right syntactic congruence induced by L.

It is evident that ρL is a right congruence on Σ∗.

Proposition 2. Let L be a language over an alphabet Σ. It is P-recognisable iff
L is a finite union of ρL-classes.
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Proof. It follows from Theorem 2 and properties of right syntactic congruences
[8, p. 27]. ut
Example 3. Let L1 be a language that is formed by all palindromes over the
alphabet {a, b}. Note, that L1 is a context free language [7]. But it is easy to
see, that it is not held am ρL1 a

n for 0 < m < n. Therefore, L1 ⊃
⋃
n>0

[an]ρL1
and

L1 is not P-recognisable.

Example 4. Let E2 be a language over the alphabet {a, b, c}. Suppose E2 =
{anbncn | n > 0}. It is evident, that E2 is a prefix code, therefore it is P-
recognisable. But well known [7], E2 is not a context free language.

Example 5. Let L2 be a language over the alphabet {a}. Suppose L2 = {an2 |
n > 0}. Evidently, L2 is a recursive language. It is easy to see, that L2 is not
P-recognisable.

In contrast to recognisable languages, there exist a P-recognisable language
which is not a recursively enumerable language. Unfortunally, our proof is not
constructive.

Proposition 3. There exists a P-recognisable language which is not recursively
enumerable.

Proof. The class of a recursively enumerable languages over some finite alphabet
is countable. The cardinality of the class of all prefix codes over some finite
alphabet equals to the cardinality of continuum. This completes the proof. ut

Next proposition establishes that the class of P-recognisable languages is not
closed under operations of a Kleene algebra.

Proposition 4. Let Σ be a finite alphabet such that its power greater than 1,
and ΣPR be the class of P-recognisable languages over Σ then

there exist L1, L2 ∈ ΣPR such that L1 ∪ L2 /∈ ΣPR (7)

there exist L1, L2 ∈ ΣPR such that L1 · L2 /∈ ΣPR (8)

there exists L ∈ ΣPR such that L∗ /∈ ΣPR (9)

Proof. To prove (7) put L1 = {an | n > 0}, L2 = {anbn | n > 0}, and L =
L1 ∪ L2. Evidently, L1, L2 ∈ ΣPR and for any n > 0 it is satisfied [an]ρL ⊂ L.
But it is not satisfied am ρL a

n for m 6= n. From Proposition 2 it follows that
L /∈ ΣPR.
To prove (8) put L = L1 · L2. Suppose that 1 < m < n then it is not satisfied
am+1b ρL a

n+1b.
Indeed,

(am+1b) · bm = am+1bm+1 /∈ L
(an+1b) · bm = an+1bm+1 = an−mam+1bm+1 ∈ L

As above, it is easy to see L /∈ ΣPR.
To prove (9) put L = {anbn | n > 0} ∪ {a}. It is easy to see [ab]ρL = {anbn |
n > 0} and [a]ρL = {a}, hence L ∈ ΣPR. As above, it is not satisfied am ρL∗ an

for m 6= n. But an ∈ L∗, therefore L∗ /∈ ΣPR. ut
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Conclusion

We have introduced the new class of algebraic objects for systems behaviour
modelling. Objects of this class are similar to deterministic finite automata. But
presented models permit to describe hidden from observer behaviour of a system.

A model of this class can be obtained by a restriction some automaton on
a finite subset of its states. An abstract concept to describe such models have
been introduced. We call corresponding abstract objects by preautomata.

Theorem about universal globalisation for preautomata has been proved in
the article. The theorem states that any preautomaton can be represented by a
restriction of some automaton on a finite subset of its states.

Then we studied recognisers which based on preautomata and the corre-
sponding class of languages.

Languages of this class have been called P-recognisable languages. The the-
orem about structure of P-recognisable languages have been proved.

Finally, the place of P-recognisable languages was determined among other
classes of languages.
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