
On Optimization Criteria for Task Assignment in Cluster

and Wide-Area Computing

Dmitriy Litvinov

V.N.Karazin Kharkov National University, Kharkov, Ukraine,
dimalit@yandex.ru

Abstract. Most of techniques proposed for task to processor mapping
in distributed computing minimize communication cost that is calculated
with model based on the quadratic assignment problem (QAP). I.e. to
each pair of tasks and each pair of processors is assigned a cost, and then
total cost of particular mapping is computed as the sum of products of
the corresponding costs. However, shortcoming of such approach is that
it cannot adequately address both bandwidth and contention considera-
tions. Therefore, we propose an alternative communication cost model.
It is based on the multicommodity flow (MCF) approach, and can di-
rectly compute communication time considering both link bandwidths
and contention in the network. We evaluate our model through simu-
lation using NPB Multi-Zone benchmarks on several irregular network
topologies. Evaluation results show that MCF-based cost function has
higher correlation with actual application run time than popular QAP-
based cost functions. Thus, the usage of proposed cost model can po-
tentially improve quality of solutions obtained with the task assignment
algorithms.

Keywords: task assignment, wide-area computing, Grid computing,
multicommodity flow, mapping problem

1 Introduction

One of the most widely used paradigm of programming multicomputers is ”sin-
gle process multiple data” (SPMD) programming. It assumes that application
consists of multiple interacting processes or tasks which are assigned to pro-
cessors and then executed. If the application is communication-limited rather
then computation-limited its runtime heavily depends on network performance.
In the case of distributed computing platform with irregular network topology,
such as cluster or Grid, this means that application run time also depends on
exact way how tasks are assigned (mapped) to the processors.

There exist a number of algorithms that optimize such mapping. Because of
NP-hard nature of the problem these algorithms are mainly based on heuristics.
In most of researches on this topic application is represented by a task interaction
graph (TIG), which we will denote as G(V,E). Nodes of this graph correspond
to tasks, and edges represent intertask communication. Both nodes and edges
can be weighted with node weight representing amount of computation done by



100 D. Litvinov

the task and edge weight representing amount of data transferred between dif-
ferent task pairs. To describe the platform, another graph G′ = (V ′, E′) is used.
Vertices V ′ of this graph are processors. The graph is complete. Its weighted
edges reflect cost of transferring a unit amount of data between every pair of
processors. Sometimes nodes of this graph are also assigned weight which repre-
sents cost of performing a unit of computation on that processor. The goal is to
find mapping from V to V ′ which minimizes some objective function π:

π : V → V ′|c(π) → min .

Consider cost function c(π). In general case it reflects both communication
and computation costs. In this paper we focus on communication, and there-
fore will ignore cost asccociated with computation which generally belongs to a
separate problem (load balancing). Usually communication cost is written as

c(π) =
∑

(u,v)∈E

w(u, v)d(π(u), π(v)) , (1)

where π is a mapping, w is (u, v) edge weight, and d is ”distance” (cost of com-
munication) between two processors (vertices of G′). This formulation represents
an instance of the quadratic assignment problem and therefore such models and
similar ones we will call QAP-based models.

Now consider distance function d mentioned in (1). It determines the ”ex-
pence” of communication between each pair of processors. Clearly, it should as-
sign larger costs to communications through slow links. In such a case it should
be roughly inversely proportional to the bandwidth that network can deliver
between a pair of processors (e.g. maximum flow value). But at the same time
it should minimize contention. To account this, d can be made proportional to
”hop count” distance between processors. Rationale behind this is that mini-
mizing hop count that a message must travel we also minimize the probability
of contention. An example of compromise between these two goals is ”RTT”
metric, which makes link cost proportional to round trip time (RTT) of a test
packet between nodes in question. Clearly, RTT is both inversely proportional to
the bandwidth between nodes and directly proportional to the number of links
that a message should travel.

However, in either case QAP approach can measure contention only indirectly

through its probability. But with applications where network is a system perfor-
mance bottleneck it is unwise to model contention in such a rough way. Thus,
in this paper we describe communication cost model which can directly account
contention. In our model we consider multicommodity flows generated by pairs
of processors and route them optimally, such as total communication time is
minimized. This time is determined by a ”bottleneck” links that have largest
traffic/bandwidth ratio. Afterwards, this time is used as a cost of particular
task-to-processor mapping. Such formulation is closely related to multicommod-
ity flow feasible problem [1] and similarly can be formulated and solved as a
linear program (LP).



On optimization criteria for task assignment in Cluster . . . 101

2 MCF-Based Cost Function

2.1 Basic Notations

Let G = (V,E) be a (directed) task interaction graph. Vertices of this graph V

correspond to tasks and edges E represent intertask communication. Every edge
is assigned weight wij which is amount of data transferred through it.

Let G′ = (V ′, E′) be (directed) platform graph. Here vertex set V ′ represents
platform nodes and edge set E′ represents links between them. A node can
contain zero or more processors. Such a way we uniformely model both compute
nodes and network nodes (a.k.a. routers). Every link has bandwidth bij .

Now suppose we are given some assignment of task to processors (and conse-
quently, to nodes). As the amount of communication between each pair of tasks
is known, from these we can derive the amount of communication between every
pair of nodes.

Let W be a set of (ordered) pairs of nodes having nonzero communication
between them. Amount of data sent between pair w ∈ W we denote rw. Let Pw

be a set of all possible (simple) paths between two nodes belonging to pair w

and let P =
⋃
Pw. A routing algorithm used in the network somehow distributes

data rw between these paths. Denote the amount of data sent over path p ∈ Pw

as xp. Obviously

∀w ∈ W :
∑

p∈Pw

xp = rw . (2)

Now consider an arbitrary edge of the platform graph (i, j) ∈ E′. Amount of
data that should be sent through it is as follows:

vij =
∑

p∈P |(i,j)∈p

xp ,

i.e. it equals to the total amount of data sent along all paths containing this
edge. Minimum amount of time needed to transfer all these data through edge
(i, j) is

tmin
ij =

vij

bij
. (3)

To finish all communication we need to finish the most long lasting one. There-
fore, the lower bound on total communication time can be estimated as follows:

T comm ≥ max
(i,j)∈E′

tmin
ij . (4)

It can be shown that this value always can be achieved — i.e. for all commu-
nicating node pairs w ∈ W their communication rw can be performed within
amount of time mentioned in (4). So

T comm = max
(i,j)∈E′

tmin
ij . (5)

The value of T comm obtained in such way can be then used as a cost of a
mapping. In contrast to QAP-cost it can directly measure contention. We call it



102 D. Litvinov

”MCF-cost” because all the flows xp ∈ Pw between different source-destination
pairs w ∈ W constitute a multicommodity flow (MCF) and T comm is determined
by a ”bottleneck” edge of this flow.

2.2 MCF-cost Estimation in General Case

Note that equation (5) for communication time T comm was derived based on the
knowledge of the routing algorithm used in the network. Obviously, the value of
T comm can be easily estimated if the routing algorithm is static such as in case
of tree-structured networks. However, if dynamic routing is utilized we cannot
a priori know values of xp which are needed for estimation of T comm. Now we
will derive the values xp for such case too. We will assume that a) network uses
dynamic multipath routing and b) that this routing works almost perfectly. In
the context of mapping problem we say that routing works perfectly if it can
deliver all the data in the shortest possible time.

Let x be a ”routing” vector consisting of traffic volumes for all paths in P :

x = {xp}, p ∈ P .

Given this vector, the values of tmin
ij (3) and consequently T comm (5) can be

determined in a streightforward way. So, our aim is to find such routing vector
x that gives

minT comm = Tmin .

Let D be a set of all possible routing vectors that satisfy to the equation (2).
It can be shown that D is a convex polyhendron. As such, any vector x ∈ D can
be represented as a convex combination of vertices of D:

x = a1x
1 + a2x

2 + . . .+ anx
n (6)

0 ≤ ak ≤ 1 ,

n∑

k=1

ak = 1 ,

where x1 . . .xn are vertices of the polyhedron D.
Suppose, we are given a routing vector x. Assign to every edge (i, j) of graph

G′ a flow value of
Fij =

vij

T comm
,

where T comm can be found from (5). It can be shown that these flows always
are feasible in the network G′ and flow on path p ∈ P fp =

xp

T comm .

As we did it for vector x, construct from the path flows fp vector f = {fp}
and similarly to (6) write:

f = c1x
1 + c2x

2 + . . .+ cnx
n ,

where ck = ak

T comm and consequently
∑n

k=1 ck = 1
T comm .

Thus, searching for such {ck}
n
k=1 that B =

∑n

k=1 ck is maximized we can
minimize T comm.



On optimization criteria for task assignment in Cluster . . . 103

Finally, recalling that flows {fp} must be feasible in G′, we can write problem
of minimizing T comm as a linear program with respect to {ck}:

Maximize
B =

∑n

k=1 ck
Subject to∑n

k=1

∑
p∈P |(i,j)∈p ckx

k
p ≤ bij , (i, j) ∈ E′

ck ≥ 0, k = 1, n ,

(7)

where xk
p denotes the volume of traffic that goes through path p in a routing

vector xk.

3 Preliminary Experiments

To compare proposed MCF-based cost model with the ”classical” QAP-based
ones we conducted a series of experiments. Using simple heuristic we generated
a number of ”good” task-to-processor mappings. For each of these mappings
we computed QAP-cost, MCF-cost and evaluated by simulation actual applica-
tion execution time. As our simulation environment didn’t support adaptive or
multipath routing, we were forced to use static routing only — which is nev-
ertheless common in modern platforms. Experiments showed that MCF-based
cost function had higher correlation with actual execution time then QAP-based
one.

3.1 Experimental Setup

We conducted our experiments for three different platforms:

1. Compute cluster with hierarchial communication topology and bottleneck at
higher levels of the hierarchy (”cluster” topology).

2. Wide-area computing system where nodes are connected via a tree-structured
network with homogeneous links (”tree” topology).

3. Wide-area computing system having cycles in the topology graph (”grid”
topology).

All three platforms consisted of 16 compute nodes, each having power of 16
GFlops. So, the only difference between them was in interconnect. Topologies of
platforms 2) and 3) were derived from the actual topology of wide-area comput-
ing system [2].

Using MSG framework of SimGrid [3] we implemented the model of NPB
Multi-Zone [4] benchmarks. These benchmarks use overset-grid approach to solve
discretized versions of the unsteady, compressible Navier-Stokes equations. With
this approach complex domain is covered by a set of partially overlapping meshes
or zones. Then the equations are solved independently in each zone, and after
each iteration the zones exchange boundary values with their immediate neigh-
bors with which they overlap.

With some number of zones assigned to it, each benchmark process repeatedly
executes the following steps.



104 D. Litvinov

1. Post asynchronous receive request for next step boundary values.

2. Compute current time step using current boundary values.

3. Post asynchronous send reqest with boundary values for neighbouring zones.

4. Finish asynchronous receive requests (1) (synchronize).

5. Go to step 1.

In this model asynchronous communication is used to tolerate network latency
and utilize computation/communication overlap.

NPB-MZ benchmarks are particularly suitable to run in a distributed envi-
ronment because they have relatively low communication-to-computation ratio.
At the same time, their communication pattern makes them sensitive to network
contention and consequently, particularly appopriate for studying the mapping
problem. There are three benchmarks in this suite: LU-MZ, SP-MZ, and BT-
MZ. They have very similar communication patterns but while SP-MZ is the
most simple and straightforward benchmark, LU-MZ has poor scalability and
BT-MZ has additional load-balancing issues.

To make emphasis on communication cost rather than computation cost or
other issues we present here results for SP-MZ banchmark only and force the
number of tasks equal to the number of compute nodes. So, in all experiments
we had one-to-one mapping of tasks to nodes and computation was perfectly
balanced. For different mappings only communication produced change in total
run time of the application.

For our experiments we used such configuration of the benchmark (class D, 16
tasks) that send relatively large messages which are relatively insensitive to link
latencies. Communication matrices for the banchmark were obtained through
measurements during test runs on a real cluster and computational complexity
of each task was evaluated analitically using formulas from the paper [4].

For generation of ”good” random mappings on which we evaluated our model
we used simple randomized local search heuristics described in [5]. It begins with
a random mapping. Then it choses a random pair of tasks, and if the exchange
of their places gives a decrease to target function, it is performed. The algorithm
stops when it cannot decrease target function in certain predefined number of
tries. Afterwards, the procedure can be repeated with another initial mapping.
For our purpuse, we ran the mapping heuristic 1000 times with the stop criterion
being 500 tries without improvement of the target function.

3.2 Experimental Results

Figure 1 shows scatter plots with MCF-cost on x-axis and QAP-cost on y-axis
for different mappings. To compute QAP-cost for ”tree” and ”grid” topologies
we used RTT-metric, and for ”cluster” topology we used ”bandwidth”-metric.

It is clear that in all three cases there exists correlation between these two
functions. This correlation is particularly high for ”cluster” topology: points on
the plot are arranged almost in a straight line. However, for two other topologies
for each value of QAP-cost there exists some spread of the MCF-cost values. This



On optimization criteria for task assignment in Cluster . . . 105

 2
 4
 6
 8

 10
 12
 14
 16

 0  1  2  3  4  5  6  7  8

Q
A

P
-c

os
t

MCF-cost

"cluster"

 5
 5.25
 5.5

 5.75
 6

 6.25

 0.1  0.2  0.3

Q
A

P
-c

os
t

MCF-cost

"tree"

 5.75
 6

 6.25
 6.5

 6.75
 7

 0.1  0.2  0.3

Q
A

P
-c

os
t

MCF-cost

"grid"

Fig. 1. Dependency of QAP-cost on MCF-cost for different topologies

means that even minimizing QAP-cost can often leave some space for improve-
ment of the MCF-cost and, potentially, the run time of the application. Based
on the above arguments, further experiments we conducted only for ”tree” and
”grid” topologies.

Fig. 2 depicts an example of how QAP-cost, MCF-cost and actual run time
may change on successive iterations of the mapping heuristic (figure shows 10
runs (214 iterations) of the heuristic for ”grid” topology).

1 2 3 4 5 6 7 8 9 10

co
st

 &
 r

un
tim

e

iterations of 10 consecutive runs

QAP run-time MCF

Fig. 2. Heuristic search iterations

While QAP-cost, being a target function of the optimization, constantly de-
creases, other two curves behave a bit differently. For example, at runs 4, 7, and
8 there are points where actual run time increases, and so does MCF-cost. Gen-
erally there are 44 points where QAP-cost goes ”wrong” (in opposite direction
from the run time). On the contrary, there exists only 15 points where MCF-cost
makes such mistake.

To estimate the difference between QAP and MCF costs quantitively, we
generated 1000 ”final” mappings (i.e. where local search stops) and computed
correlation coefficients between each cost function and actual run time of the



106 D. Litvinov

application. Additionaly, we separately computed correlation for those mappings
that had actual run time falling into best 10% of its full range. Scatter plots are
shown on Fig. 3 and numerical resulsts are summarized in Table 1. Clearly, in
terms of correlation, for both ”tree” and ”grid” topologies MCF-cost outperforms
QAP-cost. The gain is especially notable for ”top 10%” of the mappings which
are, obviously, the most important.

 32  34  36  38  40  42  44

co
st

run time

"tree"

QAP MCF

 32  33  34  35  36  37  38  39  40  41  42

co
st

run time

"grid"

QAP MCF

Fig. 3. Dependency between QAP-cost, MCF-cost, and actual run-time

Table 1. Summmary of correlation coefficients

”tree” topology ”grid” topology
100% top 10% 100% top 10%

QAP-cost 0.91 0.38 0.86 0.36
MCF-cost 0.97 0.66 0.96 0.55

4 Conclusions and Future Work

Although QAP approach to communication cost estimation is the most wide-
spread in the literature on the mapping problem, other approaches also can be
found there. Particularly, in the paper [6] communication cost is estimated as the
maximum occupacy over links of the platform graph. As the occupacy is defined
as the ratio of (traffic) load to communication capacity of the link, this approach
is exactly equivalent to formula (5). However, the paper [6]:

1. Doesn’t prove the choise of used flow-based model of communication cost.



On optimization criteria for task assignment in Cluster . . . 107

2. Considers only static routing and ignores possibility of adaptive and multi-
path routing.

In this paper we have shown experimentally the advantage of flow-based
(MCF) models over traditional distance-based (QAP) models. Certainly, this
advantage exists just as long as the messages that tasks send to each other
are relatively long, so network latency can be neglected. This condition holds
well for NPB-MZ benchmarks running on a medium-sized platform, which we
used in our experiments. Also we have shown that for tree-structuted clusters
having bottleneck at higher levels of the communication hierarchy MCF-based
communication cost model is likely to be equivalent to traditional QAP-based
ones and probably has no advantages over them.

Second, theoretical contribution of this paper is that it extends flow-based
approach to evaluation of communication cost onto networks with adaptive and
multipath routing — i.e. most of modern networks. Furthermore, expression for
T comm (7) derived here constitutes theoretical lower bound on the communica-
tion time and therefore can be used for evaluation of the efficiency of routing
algorithms used in distributed computing platforms. This also suggests that the
model presented here can be used for improvement of routing algorithms for use
in this field.

Based on the conclusions presented just before, we anticipate the following
directions of further research in the scope of this paper:

1. Experimental evaluation of proposed MCF-based model of communication
cost on platforms that utilize modern adaptive multipath routing algorithms.

2. Development of a mapping technique that uses MCF-based cost model.
3. Extending routing algorithms to utilize the knowledge of structure of the ap-

plication running on a computational platform with the goal of improvement
of routing efficiency.

References

1. Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley, Reading, MA
(1970)

2. Saito, H.: Design and Implementation of Scalable High-performance Communication
Libraries for Wide-area Computing Environments. Ph.D. thesis, University of Tokyo
(2008)

3. Casanova, H., Legrand, A., Quinson, M.: SimGrid: A Generic Framework for Large-
Scale Distributed Experiments. In: 10th International Conference on Computer
Modeling and Simulation, pp. 126-131 (2008)

4. Van Der Wijngaart, R.F., Jin, H.: NAS Parallel Benchmarks, Multi-Zone Versions.
NAS Technical Report NAS-03-010, NASA Ames Research Center, Moffett Field,
CA (2003)

5. Orduna, J.M., Silla, F., Duato, J.: On the development of a communication-aware
task mapping technique. Journal of Systems Architecture, Volume 50, Issue 4,
pp. 207–220 (2004)

6. Taura, K., Chien, A.: A Heuristic Algorithm for Mapping Communicating Tasks on
Heterogeneous Resources. In: 9th Heter. Computing Workshop, p. 102 (2000)


