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Abstract. As newly developed transactional memory technology has
received significant attention as a way to dramatically simplify shared-
memory concurrent programming, user-level transactional concurrent
programming models have become a very interesting topic in the pro-
gramming community. However, the fact is that, in existing transactional
concurrent programming models, user-level mechanisms have not been
well developed. The dilemma is how to make a balance between the
performance and correctness of a program. Explicit concurrency among
cooperative transactions can undoubtedly decrease the rate of conflicts
and improve the performance, but it is harmful to the correctness. In this
paper, a transactional concurrent programming approach, based on Petri
nets, is presented, which can easily specify concurrency among transac-
tions and do not aggravate programmers remarkably in writing correct
transactional concurrent programs. In this approach, a special Petri net
system with transition markings is developed. Although such a Petri
net system is not defined conventionally, it is shown that its behavior
can be simulated through a conventional net, so existing analysis and
verification approaches for usual Petri nets can be applied indirectly.
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1 Introduction

Transactional memory mechanism has recently received significant attention as a
way to dramatically simplify memory-sharing concurrent programming, in which
mutual exclusion and synchronization can be constructed without using any locks
[1]. For convenience,a concurrent programming model based on transactional
memory mechanism is called a transactional concurrent programming model in
this paper.

In existing user-level transactional concurrent programming models, there
are two major solutions. One of them is to use directly some API’s for transac-
tional memory mechanism, which may be implemented by hardware, software or
hybrid. For example, programmers can write transactional concurrent programs
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in Java together with the library DSTM2 [2], or in C together with the library
TL2-x86 [3]. The advantage of this solution is that one can use existing com-
mon languages without changing their compilers, but programmers have to use
non-structural library functions carefully.

Another solution is to extend conventional programming languages with some
transactional features, such as atomic statement-blocks, as in some new lan-
guages Fortress [4], X10 [5], Chapel [6], etc. In this solution, it is easier for
programmers to write correct transactional concurrent programs, however, an
appropriate compiler must be provided.

To develop a user-level transactional concurrent programming mechanisms,
one dilemma is how to make a balance between the performance and correctness
of a program. On the one hand, to write an efficient program in the transac-
tional programming paradigm, it still needs programmers’ wisdom to build the
explicit parallelism among cooperative transactions, in order to decrease the rate
of conflicts. On the other hand, however, explicit parallelism is harmful to the
correctness of a program, while one of the initial intents of the transactional
memory mechanism is to alleviate the burden for a programmer to write con-
current programs.

There have been some contributions in the literature to introduce transac-
tions into existing concurrent programming model. For example, a CCR-based
transactional concurrent programming model was proposed by T. Harris and
K. Fraser [7], and Baek et al extend the API’s of OpenMP [8] to OpenTM [9].
Unfortunately, these approaches still have the usual drawbacks of concurrent
programs, that is, not easy to write and not easy to verify.

As well known, Petri nets [10] are useful tools in the specification and verifi-
cation of concurrent applications. With true concurrency dynamical semantics,
a Petri net system has a good opportunity to become a realistic part of a con-
current program for multi-core or multi-thread architecture. In this paper, we
present informally a transactional concurrent programming mechanism based
on a Petri net, in order to specify concurrency among transactions explicitly
while not to aggravate programmers remarkably in writing correct concurrent
programs.

Fig.1 shows a simple example described in a typical transactional concurrent
program structure, where an atomic statement-block declares a transactional
region, and fork1, fork2, fork3 and cake_c are shared objects among cooperative
transactions.

In the Petri net system shown in Fig.2, to be explained in more details,
each of the transitions declares a transactional region, and fork1, fork2, fork3
and cake_c are shared objects among three cooperative transactions. Since the
accesses of fork1, fork2 , and fork3 will never conflict, the rate of access conflicts
among transactions is decreased, compared to the program in Fig.1.

Extremely, we can protect all shared objects by the Petri net system, cor-
responding to the so-called conservative concurrency control. However, if the
number of shared objects increases dramatically, the net system may get too big
in size. Fortunately, we can leave some shared objects to be protected by the
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int  fork1 = 0, fork2 = 0, fork3 = 0;
int  cake_c = 12;

thread ph1:   
    while ( true ) { 
        atomic {
            read fork1 ;
            read fork2 ;
            write fork1+1  to fork1 ;
            write fork2+1  to fork2 ;
        } 
    }

thread ph2:   
    while ( true ) { 
        atomic {
            read fork2 ;
            read fork3 ;
            write fork2+1  to fork2 ;
            write fork3+1  to fork3 ;
            if ( fork2 mod 10 == 0 ) {
                read cake_c ;
                write cake_c-1  to cake_c ;
            }
        } 
    }

thread ph3:   
    while ( true ) { 
        atomic {
            read fork3 ;
            read fork1 ;
            write fork3+1  to fork3 ;
            write fork1+1  to fork1 ;
            if ( fork1 mod 20 == 0 ) {
                read cake_c ;
                write cake_c-1  to cake_c ;
            }
        } 
    }

Fig. 1. A simple example of typical transactional concurrent program structure

transactional memory mechanism, if the probability of access conflicts for those
shared objects is not that big. For example, we have not made the accesses to
cake_c protected by the net system in Fig.2.

We call a shared object to be critical or non-critical according to its probabil-
ity of access conflicts. So in the transactional concurrent programming approach
suggested in this paper, programmers are encouraged to implement the pro-
tection of critical shared objects through Petri net systems, and to leave the
non-critical shared objects to be protected automatically by the transactional
memory system. In the example shown in Fig.1 and Fig.2, the shared object
cake_c is less frequently accessed than fork i’s, hence, it is assumed that fork i’s
be critical shared objects among phi’s, and cake_c be the non-critical shared
object among them.

The Petri net model we use is a special colored Petri net model [11], called
resource nets, which guarantee the access consistency for shared objects. The
semantics for a transactional memory mechanism is inspired by the implemen-
tation of DSTM2 [2].

The rest of the paper is organized as follows. In Section 2, we make some
informal interpretation to the Petri net model, resource nets. Further in Section
3, the behavior simulation of a resource net system is discussed. Then in Section
4, the program model is briefly presented. Section 5 shows a sample user-level
transactional concurrent programming tool, where the concept resource nets is
applied. Finally, Section 6 gives some remarks and the future work.

2 The Net Model

As stated above, a transactional concurrent program can access two classes of
shared objects, critical or non-critical ones. We use resource variables to access
critical shared objects, and global variables to access non-critical shared objects.
In the following, the set of resource variables is denoted by VR, and the set of
global variables is denoted by VT .

A resource net system is a special colored Petri net system N = (P,T,A,W,m0,MF ),
where
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�1:  read fork1 ;

       read fork2 ;

       write fork1+1  to fork1 ;

       write fork2+1  to fork2

fk1

�2:        read fork2 ;

            read fork3 ;

            write fork2+1  to fork2 ;

            write fork3+1  to fork3 ;

            if ( fork2 mod 10 == 0 ) {

                read cake_c ;

                write cake_c-1  to cake_c ;

            }

�3:        read fork3 ;
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Fig. 2. A resource net system for Dining Philosophers

– P ⊆ {ρk | k ∈ N}, and T ⊆ {(τk, Ik) | k ∈ N} are the set of places and the
set of transitions respectively.

– A = (P× T) ∪ (T× P) is the set of arcs.
– W : A → {S | S ⊆ VR} is the inscription function.
– m0 ∈ Marking is the initial marking, where Marking =

{m | m : (P ∪ T) → {S | S ⊆ VR}}.
– MF ⊆ Marking is the set of final markings.

A resource net system N = (P,T,A,W,m0,MF ) has the following features:

– For each transition (τk, Ik) ∈ T, a command sequence Ik is attached. When a
transition (τk, Ik) is fired, it starts a transaction for the command sequence
Ik. A command in Ik can access shared variables in VR∪VT , and the variables
local to τk.

– A transition can hold a token while its transaction is executing, and the
token does not return to the net system until the computation is committed
or aborted. So we extend the definition of marking with transition markings.
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– It is possible that MF is empty, which is the usual case in conventional Petri
net systems..

It is worth to noting that variables in VR should be disjoined in locations
with each other, which are usually implemented by the compiler.

2.1 An Example

Example 1 Fig.2 shows a transactional concurrent program with VR = { fork1,
fork2,fork3} and VT = { cake_c }. The resource net system N = (P,T,A,W,m0,MF ),
where

– P = {fk1, fk2, fk3}.
– T = {tr1, tr2, tr3}, where tr1 = (ph1, I1), tr2 = (ph2, I2), and tr3 =

(ph3, I3), where I1, I2 and I3 are command sequences attached to transi-
tions ph1, ph2, and ph3 respectively, as is illustrated in Fig.2.

– A = {(tr1,fk1), (tr1,fk2), (tr2,fk2), (tr2,fk3), (tr3,fk3), (tr3,fk1), (fk1,tr1),
(fk1, tr3), (fk2, tr2), (fk2, tr1), (fk3, tr3), (fk3, tr2)}.

– W is defined by:
W (fk1, tr1) = W (tr1, fk1) = W (fk1, tr3) = W (tr3, fk1) = {fork1},W (fk2, tr2) =
W (tr2, fk2) = W (fk2, tr1) = W (tr1, fk2) = {fork2},W (fk3, tr2) = W (tr2, fk3) =
W (fk3, tr3) = W (tr3, fk3) = {fork3}.

– m0 ∈ Marking is defined by:
m0(fk1) = {fork1}, m0(fk2) = {fork2}, m0(fk3) = {fork3}, and m0(τ) = ∅
for τ = tr1, tr2, tr3.

– MF = ∅.

2.2 Well-Formed Resource Net Systems

A resource net system N = (P,T,A,W,m0,MF ) is well-formed, if

– P ∩ T = ∅.
– ∀ρ ∈ P.∀v1, v2 ∈ m0(ρ).(v1 6= v2), that is, at the initial marking, all tokens

owned by a place are corresponding to different resource variables.
– ∀ρ1, ρ2 ∈ P.∀v1∀v2.(ρ1 6= ρ2∧v1 ∈ m0(ρ1)∧v2 ∈ m0(ρ2) → v1 6= v2), that is,

at the initial marking, tokens owned by different places have disjoint resource
variables.

– ∀τ ∈ T.(m0(τ) = ∅), that is, at the initial marking, every transition contains
no tokens.

– ∀m ∈ MF .∀τ ∈ T.(m(τ) = ∅), that is, at each of final markings, every
transition will not contain any tokens.

– ∀τ ∈ T.∀ρ1, ρ2 ∈ •τ.∀v1∀v2.(ρ1 6= ρ2 ∧ v1 ∈ W (τ, ρ1)∧ v2 ∈ W (τ, ρ2) → v1 6=
v2), that is, all sets of resource variables on the incoming arcs of the same
transition are disjoined with each other.
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– ∀τ ∈ T.∀ρ1, ρ2 ∈ τ • .∀v1∀v2.(ρ1 6= ρ2 ∧ v1 ∈ W (ρ1, τ) ∧ v2 ∈ W (ρ2, τ) →
v1 6= v2), that is, all sets of memory blocks on the outgoing arcs of the same
transition are disjoined with each other.

– ∀τ ∈ T.∀ρ ∈ τ • .(W (τ, ρ) ⊆ ⋃
ρ′∈•τ (W ((ρ′, τ))), that is, no extra shared

objects be produced within a transaction associated to each of transitions.
For simplification,in this paper, we don’t consider the dynamic memory al-
location for a shared object within a transaction.

In the above,the pre-set and post-set of a transition τ ∈ T or a place ρ ∈ P
are used, which are defined as usual: •τ = {ρ | (ρ, τ ) ∈ A}, τ• = {ρ | (τ, ρ) ∈ A},
•ρ = {τ | (τ, ρ) ∈ A}, and ρ• = {τ | (ρ, τ ) ∈ A}.

Example 2 It is easy to show that the resource net system in Example 1 is
well-formed.

2.3 Execution Semantics

To show the execution semantics of a resource net system, we define TranState =
{blocked, active, aborted, committed }, consisting of 4 transaction states of a transition.
At the initial marking, every transition has the state blocked.

Entering a Transition Whenever a transition τ in the resource net system is in
state blocked, and the firing condition for τ is satisfied under the current marking m,
that is, ∀ρ ∈ •τ.(m(ρ) ⊇ W (ρ, τ )), and in the same time, the current marking is not a
final state, that is, m /∈ MF , the system can enter the transition such that a
transaction is started and the transition gets to hold tokens. When it occurs, the
state of the τ will be active.

Execution of a Command Sequence Whenever a transition τ in the resource
net system is in state active, and the next command in its remained command
sequence is c, the transition can make a progress by executing the command c. We
need several separate rules respectively for several cases:

(1) If c reads or writes to a global variable which has been written most recently
by some other transition but τ , a read/write confliction occurs, and τ will be in the
state aborted.

(2) If the execution of c has no read/write confliction and c has no write operation
to any global variables, the transition will keep in state active.

(3) If the execution of c has no read/write confliction and c has a write operation
to some global variable x, the transition will keep in state active, while the system
will record τ to be the transition that most recently written to x.

Ready to Commit a Transaction Whenever a transition τ in the resource net
system is in state active, and there is no next command in its remained command
sequence, the system can make a progress to change the state of τ from active to
committed, meaning that the transaction associated to τ is ready to commit.

Committing a Transaction Whenever a transition τ in the resource net system is
in state committed, the system can make a progress to commit the transaction
associated to τ , changing the state of τ from committed to blocked.
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Aborting a Transaction Whenever a transition τ in the resource net system is in
state aborted, the system can make a progress to return tokens to places in the pre-set
of τ , changing the state of τ from aborted to blocked.

Let N = (P,T,A,W,m0,MF ) be a well-formed resource net system, it is easy to
show that for any reachable marking m from the initial marking m0, the following two
properties are satisfied

– ∀x ∈ P ∪ T.∀v1, v2 ∈ m(x).(v1 6= v2),that is, at the marking m, all tokens owned
by a place or a transition are corresponding to different resource variables.

– ∀x1, x2 ∈ P ∪ T.∀v1∀v2.(x1 6= x2 ∧ v1 ∈ m(x1) ∧ v2 ∈ m(x2) → v1 6= v2), that is,
at the marking m, all tokens owned by different places or transitions have disjoint
resource variables.

Example 3 Since the resource net system N = (P,T,A,W,m0,MF ) in Example 1
is well-formed. So the above two properties will keep in a well-formed program state
during its execution.

3 Behavior Simulation of a Resource Net System

In this section, it will be shown that a well-formed resource net system N can be
reduced to an usual colored Petri net system desugar(N ) so that the behavior of N
can be simulated by desugar(N ), which can be analyzed and verified by using existing
approaches in the Petri net community.

The transformation from N to desugar(N ) is called desugaring. Before and after
desugaring, the change of net structure can be illustrated by Fig.3.

……

……

(a)

……

……

(b)

enter

m m

m …… m

commit

rollback

Fig. 3. Net structure before and after desugaring

Example 4 Consider the well-formed resource net system N = (P,T,A,W,m0,MF )
in Example 1. desugar(N ) = (P′,T′,A′,W ′,m′

0,M
′
F ) can be depicted in Fig.4, where
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ph1
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ph2rollback

ph2commit ph3commit

ph3

ph3rollback

ph3enter

Fig. 4. Example of a desugaring net system

– P′ = {fk1, fk2, fk3, ρph1, ρph2, ρph3}.
– T′ = {ph1enter , ph2enter , ph3enter, ..., ph3commit}
– A′ = {(ph1enter , ρph1), (ph2enter , ρph2), (ph3enter , ρph3),

...,
(fk1, ph1enter), (fk1, ph3enter), ...,
(ph1rollback, fk1), (ph3rollback, fk1), ...,
(ph1commit, fk1), (ph3commit, fk1), ...,
..., (ph3commit, fk3)}.

– The definition of W ′ is illustrated in Table 1 (partly).
– m′

0 is defined by m′
0(ρph1) = m′

0(ρph2) = m′
0(ρph3) = ∅, m′

0(fk1) = {{fork1}},
m′

0(fk2) = {{fork2}}, and m′
0(fk3) = {{fork3}}.

– M ′
F = ∅.

It is not difficult to establish a behavior simulation relation between N and desugar(N ),
and show that many behavior properties, including deadlock-freeness, for N can be
verified indirectly by verifying those for desugar(N ). For example, it is easy to verify
that the usual Petri net system desugar(N ) in Example 4 is deadlock-free, so we can
conclude that the resource net system N is also deadlock-free.

It is worth to noting that the execution semantics can guarantee behaviour consis-
tence between N and desugar(N ). For every transition τ in N and ρτ in desugar(N )
as illustrated in Fig.3, we have

– If τ is in state blocked, there no token in ρτ , and τenter is enabled. If τenter fires, τ
will be in state active at the same time.

– If τ is in state active, nether τcommit or τrollback will fire though there exist tokens
in ρτ .

– If τ is in state committed, τcommit is enabled.
– If τ is in state aborted, τrollback is enabled.
– τ is in state active, committed, or aborted, iff there no token in ρτ .

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 143



Table 1. W ′ : A′ → {L | L ⊆ 2Label}

if a = then W ′(a) =
(ph1enter , ρph1) {{fork1}, {fork2}}
(ph2enter , ρph2) {{fork2}, {fork3}}
(ph3enter , ρph3) {{fork3}, {fork1}}
... ...
(fk1, ph1enter) {{fork1}}
(fk1, ph3enter) {{fork1}}
... ...
(ph1rollback, fk1) {{fork1}}
(ph3rollback, fk1) {{fork1}}
... ...
(ph1commit, fk1) {{fork1}}
(ph3commit, fk1) {{fork1}}
... ...
(ph3commit, fk3) {{fork3}}

For the sake of limited space, in this paper, we have not formally defined the
desugaring and the behavior simulation relation.

4 The Program Model

In the transactional concurrent programming approach of this paper, a program con-
sists of a set of Petri net systems, which are protected parts in the system, and a set of
unprotected threads which contains an initial thread identified root and other unpro-
tected threads. Resource variables can only be accessed within protected parts. At the
beginning, the thread root is initialized to execute at the level which we call top level.

A set of Petri net systems can spawn outside a Petri net system, initialized with
new allocated resource variables or their references. When a transition in a Petri net
system is fired, it becomes a (transactional) transition thread, which will eventually
commit, or rollback due to conflicts to access the shared memory.

An unprotected thread except for the thread root can be spawned outside a Petri
net system.

The program ends if all the Petri net systems achieve one of their final states, and
in the same time all the unprotected threads execute to the end.

5 A sample user-level transactional concurrent
programming tool

A sample user-level transactional concurrent programming tool has been developing in
our lab, based on available software sources, DSTM2 [2], PNK [13] and GJC [14]. In
the programming model of this sample programming tool, a program consists of a set
of Petri net systems, corresponding to resource net systems in this paper, and other
part written in Java Language.

A simple visual IDE for this programming model has been developing.
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Fig. 5. A basic editing view

Editors In the IDE, each of the elements of a program can be visually edited. Fig.5
shows a basic editing view. A editor for a Petri net system is similar to that provided
in PNK source, but some modifications to add code editing area, to make the code
editing to be the main input area, and to integrate with associate compilation
operations.

Fig. 6. A visual Petri net system

A visually edited Petri net system will be automatically translated to some code
to be fed to the compiler. It actually completes a class inherited from a class PetriNet
for the programmer, where PetriNet is the class encapsulated for a special Petri net
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virtual machine. For example, for the Petri net system in Fig.6, the result class will be
the one in Fig.7.

package base_directory.pnml.compile;

public class PNTest extends PetriNet{

    public PNTest(Object objectSource) {

        super(objectSource);

        this.AddTransition("t1","code", "f1");

        this.AddTransition("t2","code", "f2");

        this.AddTransition("t3","code", "f3");

        this.AddPlace("p1", "a,b", "marking");

        this.AddPlace("p2", "", "marking");

        this.AddArc("p1", "t1", "a", "inscription");

        this.AddArc("t1", "p2", "a", "inscription");

        this.AddArc("p1", "t2", "b", "inscription");

        this.AddArc("t2", "p2", "b", "inscription");

        this.AddArc("p2", "t3", "a,b", "inscription");

    }

}

Fig. 7. Class for a Petri net system

Associate Compilation The associate compilation makes the static check of a
Petri net system, then associates its code with all other parts of opened codes and
compiles them together with each other. At the early time of the compilation, the
Petri net system is translated into its internal form as the Petri net virtual machine
instructions, which then is added to its specific class.

Variables corresponding to transaction memory blocks and resource memory blocks
are declared with the modifiers global and resource respectively. Besides, the code for
each transition of a Petri net system is defined by a specific member function with the
modifier petrinet. In the associate compilation, the lexical, syntactical, and semantical
analysis associate to the modifiers global, resource and petrinet has been processed
carefully.

The compiler has been implemented based on GJC [14], a open Java compiler
released by Sun, and kept the original logic of GJC unchanged.

The statical semantic check for a Petri net system is corresponding to the definition
of a well-formed resource net system in Section 2.2.

STM Integration The transactional memory support is based on DSTM2 [2], with
each piece of transition code automatically trisected by invoking provided STM APIs.
Hence the variable with modifier Global can be protected by the transactional
memory system.

In order to integrate DSTM2’s API, we need to make some modification to GJC.
We need to change the type of every variable with modifier Global to a wrapper class
with a factory. Also we need to change every reference of those variables and every
left-value consisted of those variables to corresponding DSTM2’s APIs.
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Fig.8 illustrates how to transact a global variable in our implementation. Currently
we only support basic types or simple “copyable” types.

@atomic interface _T {
T getValue ();
void setValue (T value);

}
Factory<_T> factory_T =

Thread.makeFactory(_T.class);
global T a; _T _a = factory_T.create();
a = x; _a.setValue(x);
x = a; x = _a.getValue();

Fig. 8. Transactional global variables

Petri Net Virtual Machine As stated above, a Petri net system is finally
translated to some class inherited from a class PetriNet, which encapsulates interfaces
for a special Petri net virtual machine. The Petri net virtual machine is now simply
designed with the following instructions:

– AddTransition (name,code)
– AddPlace (name,resource)
– AddArc (Source, Target, Inscription)
– Start ()
– Join ()

where AddTransition, AddPlace, and AddArc are used to construct a Petri net
system, and Start and Join used for scheduling the execution of a Petri net system.

Fig.9 shows an example to start the Petri net system defined in Fig.6 or Fig.7. One
possible execution result will be "a=1 a=1 b=3", and another possible result is "a=0
a=1 b=3", as is illustrated in Fig.10.

Fig.11 and Fig.12 illustrate the integration of a simple Petri net transition simulator
and DSTM routine. The left routine in Fig.11 simulate a Petri net transition to do
something, and the right part is the DSTM routine to do the same task. Fig. 12
integrates the functions of two routines in Fig.11, getting a so-called PNTM routine.

The Petri net virtual machine can be implemented on any architecture you like,
especially, it will be helpful if the target architecture can efficiently support concurrent
programming, such as a CMP system. Until now, we have just implemented the Petri
net virtual machine based on JVM.

The latest stable version of source code, in which the invoking of STM API’s in
DSTM2 has not been packaged, can be downloaded at the URL:
http://soft.cs.tsinghua.edu.cn/~wang/projects/NSFC90818019/software/pntm.rar

We are making a research plan to extend the virtual machine and its implementation
based on some reconfigurable simulator for multi-core architectures such that some
basic performance analysis could be made.
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package base_directory.pnml.compile;

public class Test {

    private resource int a =0;

    private resource int b =0;

    public static void main(String[] args) {

        Test t= new Test();

        new PNTest(t).start();

    }

    public petrinet  void f1() {

        a=1;

    }

    public petrinet void f2() {

        System.out.print("a="+a);

        b=3;

    }

    public petrinet  void f3() {

        System.out.print("a="+a);

        System.out.print("b="+b);

        a=4;

        b=5;

    }

}

Fig. 9. Example for starting a Petri net system

Fig. 10. Two different executions on the simple virtual machine

6 Remarks and Future Work

The paper presents an approach to integrate a Petri net system with a transitional
memory mechanism, which has currently been applied to the implementation of a user-
level transactional concurrent programming tool in our lab. There is few formalism
to play such a role as we have known so far. There exist researches based on Petri
nets to model atomic or transactional threads, however the net system is not a part
of the program. For example, an approach to check causal atomicity is proposed by
modeling programs using Petri Nets [12]. At some extent, concurrent programming
models based on Petri nets, such as OPN [15], CLOWN [16], COO [17], CO-OPN/2
[18], and Elementary Object Nets [19] may be extended to support various transaction
semantics with the conservative concurrency control.

We observed that the integration of Petri nets with transactional memory can bring
benefits to both side, which is the motivation of the paper. On the one hand, with
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TestAndConsumeToken();
DoThings();
ProduceToken();

Thread.onCommit(new Runnable() {
public void run () {
Commit();

}
});
Thread.onAbort(new Runnable() {

public void run () {
Abort();

}
});
Thread.doIt(new Callable<Void>() {

public Void call ()
throws Exception {

DoThings();
}

});
PN-Transition routine DSTM routine

Fig. 11. Petri net transition and DSTM routines

Thread.onCommit(new Runnable() {
public void run () {
ProduceToken();

}
});
Thread.onAbort(new Runnable() {
public void run () {
ReturnToken();

}
});
TestAndConsumeToken();
Thread.doIt(new Callable<Void>() {
public Void call ()

throws Exception {
DoThings();

}
});

Fig. 12. PNTM routine

transactional memory, a finer granularity of concurrency can be achieved in a Petri
net system, and the scale of the net model can be controlled flexibly. On the other
hand, with a Petri net system, the concurrency among cooperative transactions can be
built explicitly, which can undoubtedly decrease the rate of conflicts and improve the
performance, while the analysis and verification capability of a Petri net model can be
inherited.

The main idea in a resource net system, the net system presented in the paper,
is to classify shared resources in two classes: (1) resources such that the access policy
is driven by the net structure, so that mutual exclusion is guaranteed; (2) resources
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whose access policy is driven by a transactional memory model, with possible conflicts,
resolved by a commit-rollback protocol.

That is, our approach advocates the methodology that critical objects shared among
concurrent transactions will be protected through a resource net system, while non-
critical shared objects be left protected automatically by the transactional memory
system. Thus the net system can be designed flexibly to keep a moderate size and in a
finer granularity than usual net system.

It is shown that the behavior of a well-formed resource net system can be simu-
lated by its desugar net system, which can be analyzed and verified by using existing
approaches in the Petri net community. Behavior properties for a well-formed resource
net system, such as deadlock-freeness, can be verified indirectly by verifying those for
its desugaring net system. For example, INA tool [20] can be directly integrated into
our programming tool being developed, as has been done in PNK.

A practical user-level transactional concurrent programming tool, based on DSTM2
[2], PNK [13] and GJC [14], has been developing in our lab. The version so far is not
suitable to make a performance analysis because the target virtual machine on which a
program with Petri net structures runs is implemented simply based on JVM. We are
making a plan to extend the virtual machine and its implementation such that some
basic performance analysis could be made.

Certainly, the approach could be extended to other formalisms as well. Furthermore,
how to decide critical or non-critical shared objects, we believe, would become an
interesting area in software design methodology.
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