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Abstract. Transition priorities can be a useful mechanism when mod-
eling using Petri nets. For example, high-priority transitions can be used
to model exception handling and low-priority transitions can be used to
model background tasks that should only be executed when no other
transition is enabled. Transition priorities can be simulated in Petri nets
using, e. g., inhibitor arcs, but such constructs tend to unnecessarily clut-
ter models, making it useful to support priorities directly.
Computing the enabling of transitions in high-level Petri nets is an expen-
sive operation and should be avoided. As transition priorities introduce
a nonlocal enabling condition, at first sight this forces us to compute en-
abling for all transitions in a highest-priority-first order, but it is possible
to do better. Here we describe our implementation of transition priorities
in CPN Tools 3.0, where we minimize the number of enabling computa-
tions. We describe algorithms for executing transitions at random, useful
for automatic simulation without user interactions, and for maintaining a
set of known enabled transitions, useful for interactive user-guided simu-
lation. Experiments show that using our algorithms we can execute 4−7
million transitions a minute for real-life models and more than 20 million
transitions a minute for other models, a significant improvement over the
1− 5 million transitions a minute possible for simpler algorithms.

1 Introduction

Prioritized transitions can be of use when modeling using Petri nets. For ex-
ample, one can give a transition high priority to force it occur before other
transitions if it is enabled, which is useful for handling exceptions, by letting
the exception handler have higher priority than transitions handling usual cases.
One can assign a transition a lower priority to prevent it from occurring unless
no other transitions are enabled, which is useful for implementing a scheduler
that should only be executed when all interesting tasks are unable to proceed.

In this paper we are concerned with efficient implementation of simulation of
high-level Petri net models with transitions with priorities as well as efficient en-
abling updates. The described algorithms are implemented in CPN Tools 3.0 [4].
⋆ This research is supported by the Technology Foundation STW, applied science
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Affairs.



Priorities can be implemented using inhibitor arcs or any construction which
serves the same purpose (by adding inhibitor arcs from places which have arcs
to transitions with higher priority), but it is beneficial to support them directly
in an implementation to reduce clutter in models. Furthermore, a direct imple-
mentation makes it possible to make enabling computation more efficient than
implementations relying on general constructs.

Enabling computation of high-level Petri nets, such as coloured Petri nets
(CPNs) supported by CPN Tools, is computationally expensive. To alleviate
this, tools can implement algorithms to avoid having to compute the enabling
of transitions too often. For example, if the goal is just to randomly execute
transitions, there is no need to compute the enabling for all transitions – as
soon as an enabled transition is found, it can be executed. By using caching of
enabling status and structural properties of the model, the number of enabling
computations can be reduced even further. We extend such an algorithm to
handle prioritized transitions by modifying the step where transitions are picked
at random to instead pick transitions at random in a highest-priority-first order,
so enabled transitions with higher priority are executed before transitions with
lower priority. We present an algorithm and data structures supporting this.

When a tool shows a model during simulation in a graphical user interface,
the enabling status of transitions is typically shown to allow users to pick between
enabled transitions for guided simulation. To do this, the enabling state of all
transitions must be computed. It is not necessary to recompute the enabling
status of all transitions after each execution of a transition, though. We only need
to recompute the enabling of transitions for which it has potentially changed,
and we can give a static over-approximation of this which roughly says that if
a transition is connected to a place also connected to the executed transition,
its enabling may have changed. We present an even better approximation in
Sect. 2. This approximation is not good enough if allowing priorities, as the
execution of a transition may enable or disable a transition with the highest
priority, thereby causing unconnected transitions to be disabled or enabled. We
present an algorithm for over-approximating the set of transitions influenced by
this.

The remainder of this paper is structured as follows: in the next section, we
present background material and in Sect. 3 we present algorithms for efficiently
finding a random enabled transition taking priorities into account, and for effi-
ciently updating the enabling status of all transitions. In Sect. 4, we conclude
and provide directions for future work.

2 Background

In this section we briefly introduce coloured Petri nets using an example and
describe an efficient algorithm for enabling computations. The algorithm is de-
scribed in further detail in [6, 11].

A Petri net is a bipartite graph, where the nodes are partitioned into places
and transitions . Places are usually drawn as circles or ellipses and transitions
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Fig. 1: A simple coloured Petri net.

are typically drawn as rectangles or lines. In Fig. 1, we see a Petri net with 3
places (A–C) and 5 transitions (a–e). Places can contain tokens and represent
the state of the system. In coloured Petri nets tokens are distinguishable and
can have a value from the type of the place they reside on. In Fig. 1, all places
have type INT (integer) and the only token is a single one with the value 1
residing on place A. Places and transitions are connected using directed arcs.
Arcs describe preconditions and postconditions for transitions and are inscribed
with expressions which may contain typed variables . For example, the arc from
the place A to the transition a has inscription n, which is a variable of type INT.
We allow double arcs as an abbreviation of an arc in both directions with the
same expression. In the example, we have a double arc between C and d.

A transition of a CPN model is enabled if there exists a binding of values to
all variables on arcs surrounding it so all input places (places with arcs to the
transition) contain all tokens dictated by evaluation of the corresponding arc
expressions. A transition with a binding is called a binding element . In Fig. 1,
the transition a is enabled in the binding n = 1 as A contains a single token
with value 1. An enabled binding element can be executed , consuming tokens
on input places, and producing new tokens on output places (places with an arc
from the transition). When a is executed in the binding n = 1, it consumes the
single token 1 from A and produces a new token on the place B.

Tokens can have an attached time stamp, and are only available when a
global clock reaches a value larger than or equal to their associated time stamp.
Transitions can have execution times, shown as @+ annotations. In Fig. 1 only
transition a has an execution time, namely 5. If a transition with an execution
time is executed, all produced tokens shall have a time stamp that is the current
global time plus the execution time of the transition. For example, if a is executed
at time 2 in the binding n = 1, the token on A is consumed and a new token
with value 1 and a time stamp of 7 (2 + 5) is produced on B. Transitions b and
c are not enabled before the global time reaches 7.

We can at any time partition transitions into enabled and disabled (i. e., not
enabled) transitions. Computing enabling is a complex task, so CPN Tools im-
plements an algorithm which uses heuristics to find bindings in a way that is fast
in practice (see [6, 11] for details), but even using this technique, computation
takes considerable time. If we just want to execute a random transition, there
is no need to compute the enabled state of all transitions; we randomly pick a
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transition, check whether it is enabled, and if it is we execute it in a random
binding. If the transition is not enabled, we cannot execute it and just continue
with the next transition. This strategy, although better than computing the en-
abled state of all transitions, throws away information, namely that a transition
is known to be disabled. As we execute transitions, transitions may move from
disabled to enabled and vice versa, but only some transitions can move when
certain other transitions are executed. For example, executing transition a in
Fig. 1 can never alter the enabled state of e as the places they are connected do
not intersect. We can exploit this to do a more efficient enabling computation.
For example, during an execution of the model in Fig. 1, we first try executing
transition e, and find it is disabled. We then try executing a and succeed. Now,
there is no need to recompute the enabling of transition e as the enabling of
this transition cannot be altered by the execution of a. The dependency set of
a transition t captures this and is the set of all transitions that may be enabled
by executing t. This can be computed as all transitions for which an output
place of t is an input place (not counting places connected with double arcs to
t). Similarly, the disable set is the set of transitions that can become disabled
by executing a transition. We have summarized the dependency sets and disable
sets of transitions of Fig. 1 in the table in the right side of the figure.

When we deal with timed models, we can have an additional state for each
transition: it is not enabled right now, but may become enabled at a later stage
when time has increased. This leads us to partitioning transitions into three sets:
the Disabled, the Unknown, and the MaybeReady. The first are transitions known
to be disabled, the second are transitions for which the enabled state is not yet
known, and the last is for transitions that are not enabled but may become so
at a later point in time. We note, we do not have a set for enabled transitions,
as we immediately execute a transition if it is found to be enabled.

An algorithm for random execution of transitions is shown as Algorithm 1.
The algorithm works in time epochs, where Unknown contains all transitions that
are possibly enabled in the current epoch and MaybeReady transitions that may
become enabled in a later epoch. We start with all transitions in the MaybeReady
set. We start an epoch by increasing the time of the epoch to the least time stamp
any transition of MaybeReady can be enabled (l. 5) and move all transitions that
can be enabled at that time to Unknown (l. 6). As long as transitions can be
enabled at the current epoch (l. 7), we pick one randomly (l. 8). We assume
the existence of a function Enabled which returns one of three values: enabled,
disabled, and maybe_ready_at(n), where the last value not only indicates that
the transition is not enabled now, but also provides an estimate (n) of when the
transition may be enabled. If a transition is not enabled it is moved to either
Disabled or MaybeReady. If the picked transition is enabled (l. 9), we execute it,
add its dependency set to Unknown and remove its dependency set from Disabled
and MaybeReady (ll. 10–13). If a transition is disabled or maybe_ready_at(n), we
move it from Unknown to either Disabled or MaybeReady. The inner while loop
(ll. 7–19) executes all transitions enabled in a single epoch, and the outer loop
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Algorithm 1 Algorithm for enabling computation for timed models.
1: Unknown← ∅
2: Disabled← ∅
3: MaybeReady← {0} × Transitions.all
4: while MaybeReady 6= ∅ do
5: IncreaseT ime(MaybeReady)
6: Unknown← RemoveLeast(MaybeReady)
7: while Unknown 6= ∅ do
8: Pick any t ∈ Unknown
9: if Enabled(t) = enabled then

10: Execute(t)
11: Unknown← Unknown ∪DependencySet(t)
12: Disabled← Disabled \DependencySet(t)
13: MaybeReady← MaybeReady \DependencySet(t)
14: else if Enabled(t) = disabled then
15: Unknown← Unknown \ {t}
16: Disabled← Disabled ∪ {t}
17: else if Enabled(t) = maybe_ready_at(n) then
18: Unknown← Unknown \ {t}
19: MaybeReady← MaybeReady ∪ {(n, t)}

(ll. 4–19) executes all epochs. The algorithm terminates when (if) there are no
more transitions in MaybeReady and Unknown, so all transitions are in Disabled.

The operations needed for Unknown are to add all transitions, pick a random
element, add a set of elements not already contained, and remove a particular
element. This can be efficiently implemented by enumerating all transitions from
0, 1, . . . , |Transitions| − 1, storing them in an array A of size |Transitions| and
adding a pointer last pointing to the position after the last element of Unknown.
Add all transitions can be performed by setting all entries of the array to their
index (A[i] := i) and setting the last pointer to |Transitions|, picking a random
element corresponds to drawing a random number r ∈ {0, 1, . . . , last − 1} and
returning the value A[r]. Adding a set of not already contained elements con-
sists of adding the elements to positions last, last+1, . . . and incrementing last
accordingly. Removal of an element consists of swapping the element with the
last one and decrementing the last counter. By combining the get random ele-
ment and remove operations (this is possible by moving lines 15 and 18 up after
line 8 in algorithm 1 and adding any transition to its own dependency set) we
can perform picking in constant time and insertion in time linear in the number
of elements we insert. We call this data-structure a RandomSet and use it to
implement Unknown. For MaybeReady we insert each transition with a weight,
namely the time at which it is earliest enabled, and only remove elements with
the least weight, which naturally makes us implement MaybeReady as a priority
queue, allowing us to add and remove elements in time log |Transitions| for each
element. Storing the position of elements in the priority queue also allows us to
remove internal elements (needed to remove the dependency set of a transition)
in the same time. We never read from the Disabled set, and hence do not need
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to explicitly represent it. It is only shown to make the algorithm clearer (and
can be computed as the complement of Unknown and MaybeReady anyway).

3 Algorithm

In this section we develop an algorithm for fast random execution of transitions
for timed coloured Petri net models using priorities. We also develop algorithms
for operations useful for graphical tool support for simulation and modification
of such models. We also present experimental performance data of the algorithms
on both toy examples and several real-life models [5, 10, 12] developed in other
contexts.

When we talk about coloured Petri nets with priorities, we assign to each
transition an expression evaluating to a nonnegative integer indicating the pri-
ority of the transition. Priorities considered here are global and cannot depend
on the binding of the transition; we later discuss other priority concepts. We
can think of the priority as a function assigning to each transition t a numeric
priority, Priority(t)1. At any point in time, a transition is preenabled if all to-
kens required for executing the transition are available (also taking time into
account). Only the transitions with the highest priority among the preenabled
transitions are actually enabled. In the model in Fig. 1, we have assigned pri-
orities to a, d, and e, namely P_LOW, P_HIGH, and P_HIGH respectively. We
assume we have defined constants such that P_LOW < P_NORMAL < P_HIGH
and that transitions without a priority inscription have priority P_NORMAL.
Here we just use three levels of priorities, but our algorithm handles an arbitrary
number, p.

3.1 Random Execution

Our goal is to randomly execute transitions quickly, adhering to the priorities.
We use algorithm 1 as a basis. Extending this algorithm to handle priorities
is simple: instead of picking transitions completely randomly in line 8, we pick
them randomly among the transitions with the highest priority.

A way to implement this efficiently is to use a priority queue of RandomSets
for Unknown. That is, for each priority, we have a RandomSet like earlier. We can
get nearly the same time guarantees for this implementation as for the simple
RandomSet. We can get and remove an element with the lowest priority in time
log p where p is the number of different priorities used (3 in the example). This
extra cost (compared with constant time previously) is incurred as we may have
to rebalance the priority queue. The time required to add elements to Unknown
depends on the implementation. If we use no auxiliary data structure, we may
need to search the priority queue for the correct RandomSet to insert into, i. e.,
insertion takes time p for each element. We can keep a search tree mapping pri-
orities to RandomSets, lowering the insertion time to log b for each element. We
1 In our implementation we actually use a low number as high priority, but our expla-

nation shall not reflect that for improved readability.
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can also maintain an array mapping priorities to RandomSets, bringing down
insertion time for each element to constant time. This, however, comes at the
cost of using memory linear in the highest numeric value of a priority. Finally,
we could store the RandomSets in a hash-map mapping priorities to the corre-
sponding RandomSet, which allows constant time look-up and using space linear
in p but using a larger constant than using the array. Unless p is large, which
one we use in practice has little influence on the speed of the algorithm. We do
not expect p to be larger than 10 in practice. We call any such implementation a
PriorityRandomSet and obtain an algorithm for random execution of transitions
adhering to priorities by using algorithm 1 with a PriorityRandomSet implemen-
tation for Unknown. In CPN Tools we use the implementation using an array as
index into the priority queue to impose as little overhead in execution time as
possible (as we do not have to traverse a pointer-based data-structure, but just
look up a value in an array). We notice that if p = 1 all representations collapse
to the same as the implementation not taking priorities into account, as we never
have to rebalance the priority queue and search in the auxiliary data-structure
pointing into the priority queue.

3.2 Random Enabling Computation

If we want to compute enabling for all transitions, this is easily done: sort the
transitions according to priority and compute enabling highest-priority first.
When an enabled transition is found, we stop computing enabling for transi-
tions with lower priority.

Sometimes this may not be desired, however. For example, if a user is only
looking at part of a model, the tool may only need to compute enabling for parts
of the transitions (the visible ones) to show enough information to the user. Fur-
thermore, we wish our algorithm to also efficiently handle maintenance of a set
of enabled transitions, which can be done without recomputing enabling for all
transitions. Hence, we seek an algorithm for computing the enabling of a random
transition as efficiently as possible but still adhering to priorities. Furthermore,
we want the algorithm to efficiently compute enabling of subsequent transitions,
i.e., the main focus is on amortized running time.

When we want to compute enabling for a transition, we need to know whether
any transition with higher priority is enabled. If we are computing enabling for
more than one transition, part of this work may be reusable. For example, in
Fig. 1, if we want to compute the enabling for a, b and c, we first need to establish
the enabling of d and e as their priorities are higher. Naturally, this computation
only needs to be done once, even if we first compute enabling for a and b and in
a subsequent call (without executing any transition) for c.

The idea of our enabling computation algorithm is to use the data-structures
Unknown, Disabled, and MaybeReady from algorithm 1. Ignoring priorities for the
time being, we update the data-structures as in the inner loop in lines 8–19 of
algorithm 1, except we do not execute transitions, and hence do not do operations
based on dependency sets (ll. 11–13). The adapted algorithm is algorithm 2. The
algorithm only checks if transitions are enabled at the current time, and needs
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Algorithm 2 Algorithm for checking enabling without priority.
1: proc CheckEnabling(t) is
2: if t /∈ Unknown then
3: return false
4: else
5: if Enabled(t) = enabled then
6: return true
7: else if Enabled(t) = disabled then
8: Unknown← Unknown \ {t}
9: Disabled← Disabled ∪ {t}

10: return false
11: else if Enabled(t) = maybe_ready_at(n) then
12: Unknown← Unknown \ {t}
13: MaybeReady← MaybeReady ∪ {(n, t)}
14: return false

Algorithm 3 Simple algorithm for checking enabling with priority.
1: SortedTransitions← PrioritySort(Transitions.all)
2: proc CheckEnablingPriority(t) is
3: for all t′ ∈ SortedTransitions do
4: if Priority(t′) > Priority(t) then
5: if CheckEnabling(t′) then
6: return false
7: else
8: return CheckEnabling(t)
9: return CheckEnabling(t)

somebody external to increase time and move elements from MaybeReady to
Unknown when Unknown becomes empty. We note that we could use a bit-array
of entries in Unknown to retain constant time look-up in line 2 and maintain the
performance of all other operations.

To also handle priorities, we can use algorithm 2 as a subprocedure to com-
pute preenabledness, i. e., whether a transition is enabled when ignoring prior-
ities. A simple way to do this is shown as algorithm 3; we sort all transitions
according to priority and process them highest-priority-first until we reach t. If
we find a preenabled transitions with higher priority than t, we return false. If
we do not find a preenabled transition with higher priority than t we return the
preenabledness of t. We assume that we traverse the transitions in a highest-
priority-first order in line 3, and have introduced early termination as soon as
the condition in the if statement in line 4 no longer holds. This is acceptable,
as enabling of a transition with the same or lower priority cannot affect the en-
abling of t. If a transition is in Disabled it does not only mean it is disabled, but
the stronger condition that it is not even preenabled.

We choose to compute SortedTransitions based on all transitions instead of
based on Unknown (which would also work), as we then can precompute this for
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a given model, making the execution CheckEnablingPriority independent of
this computation.

When this algorithm is called repeatedly, it only calls Enabled for each tran-
sition with higher priority than the first preenabled transition or the transition
with the lowest priority (whichever is higher) plus once for each call (as soon
as a transition is marked as disabled, it is no longer in Unknown). The number
of calls to CheckEnabling is the sum of the numbers of transitions with higher
priority than each of the transitions, which can be quadratic in the number of
transitions (if each transition has a unique priority and only the one with the
highest priority is enabled). A call to CheckEnabling is cheap as long as it does
not result in a call to Enabled, but if we want to limit the number of calls here,
we could introduce an approximation of the priority of the first enabled transi-
tion in SortedTransitions. As long as we have not found an enabled transition,
this estimate is −∞, and it is set to the priority of the first enabled transition
as soon as one is found. We also maintain an index of the last transition checked
for enabling, so we do not check transitions already verified to be disabled again,
thus skipping calls to CheckEnabling. The resulting algorithm allows the same
bound on the number of calls to CheckEnabling, namely one for each call plus
one for each transition with priority higher than or equal to the first preenabled
transition or the transition with the lowest priority (whichever is higher).

In CPN Tools we have implemented the version of the algorithm shown in
algorithm 3, i. e., without estimation of the priority of the first enabled transition.
This is done because CPN models rarely have more than a few transitions (50-
100), so traversing SortedTransitions imposes a very small overhead.

3.3 Enabling Set Maintenance

Often we wish to run a random simulation and show intermediate results to
users. We therefore wish to merge algorithm 1 (augmented to handle priority as
described earlier) and 3 into a single algorithm sharing Unknown, Disabled, and
MaybeReady in a way that makes it possible to do random simulation as well as
to check enabling of selected transitions with as few calls to Enabled as possible.

We can get by with few changes, as we do not have to change algorithm 3
as long as we faithfully maintain Unknown, Disabled, and MaybeReady. The best
place to call CheckEnablingPriority is between lines 9 and 10 in algorithm 1,
as this is the only place we know we have increased the time sufficiently that a
transition is enabled.

We can call CheckEnablingPriority for all the transitions we are interested
in, but that is not necessary. The reason we wish to avoid that in CPN Tools
is that this incurs a communication overhead, as the GUI and the simulator are
separate processes. This can be relevant for any tool if the number of transitions
is high, as enabling checks no longer depend directly on the total number of
transitions in the model.

If we disregard priority, the enabling status can only have changed for tran-
sitions in the dependency set of the last transition executed, but when taking
priority into account, things are not as simple, as the enabling of a transition
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Algorithm 4 Algorithm for random simulation using priority while maintaining
the set of all enabled transitions.
1: SortedTransitions← PrioritySort(Transitions.all)
2: Unknown← ∅
3: Disabled← ∅
4: MaybeReady← {0} × Transitions.all
5: Enabled← ∅
6: while MaybeReady 6= ∅ do
7: IncreaseT ime(MaybeReady)
8: Unknown← RemoveLeast(MaybeReady)
9: while Unknown 6= ∅ do

10: Enabled← {t′ ∈ Unknown | CheckEnablingPriority(t′)}
11: while Enabled 6= ∅ do
12: Pick any t ∈ Enabled
13: Execute(t)
14: Unknown← Unknown ∪DependencySet(t)
15: Disabled← Disabled \DependencySet(t)
16: MaybeReady← MaybeReady \DependencySet(t)
17: Enabled← Enabled \DisableSet(t)
18: New←

{t′ ∈ DependencySet(t)∪DisableSet(t) | CheckEnablingPriority(t′)}
19: if New 6= ∅ then
20: if ∃t1 ∈ New, t2 ∈ Enabled.P riority(t1) > Priority(t2) then
21: Enabled← New
22: else
23: Enabled← Enabled ∪ New

with higher priority than all currently enabled transitions will disable them. We
know that all transitions that have remained in the Disabled set since last time
are still there (i. e., if a transition was not preenabled before and not in the
dependency set of the transition executed last, it is still not preenabled). We
also know that only if new transitions become enabled do we have to disable
other transitions. If we disable all enabled transitions and do not enable any
with the same or higher priority, we need to consider the preenabled transitions
or increase the model time. We can thus compute the enabled transitions using
algorithm 4. Here, we maintain a set Enabled in addition to the ones we already
maintain. This set contains all enabled transitions and aside from initialization
(l. 10), which takes place initially and whenever we need to increment time be-
cause no more transitions are enabled, we only ever update it according to the
dependency set and the disable set of executed transitions (ll. 17, 20, 23, 25, and
27). This algorithm can be made interactive by pausing and asking the user for
a transition to execute in line 12.

3.4 Extension to Other Priority Concepts

While the priority concept detailed until now, assigning to each transition a fixed
numeric priority, is in line with standard statically prioritized Petri nets [3], it is
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not very high-level. For example, we cannot assign higher priority to a specific
task in a folded net (such as assigning d priority depending on n in Fig. 1). In [2]
a dynamic priority concept is adopted. This allows priorities to depend on the
entire marking of the model. In our opinion, this is way too centralized to easily
comprehend and specify.

With CPNs the natural way to assign dynamic priorities to transitions is
using general expressions just like guards or arc expressions. Although this is a
natural priority concept for coloured Petri nets, we have chosen not to adopt it.
The problem is that when the priority depends on the binding of transitions,
we have to compute every preenabled binding of every transition, subsequently
compute the priorities for each preenabled binding element, and finally pick one
with highest priority. Although this is conceptually nice and consistent with the
other inscriptions, it leads to dramatically decreased performance. The remain-
der of this section is dedicated to extending the static notion of priority presented
hitherto while compromising performance as little as possible.

Using a Subset of Variables in Priorities CPN Tools, in addition to re-
stricting the number of times enabling of a transition is called, also partitions
all variables surrounding a transition into binding groups. A binding group is a
subset of the variables surrounding a transition that can be assigned values inde-
pendently of all other variables (i. e., if two bindings of a transition are enabled,
the binding obtained by replacing the value of all variables in a binding group in
the first binding by the binding of the same variables from the second binding
is also enabled). Variables that occur in the same arc expression or the guard
must be within the same group. By requiring that all variables occurring in the
priority expression come from the same binding group, we can just compute all
possible bindings of variables in that binding group instead of for all variables
of the transition.

It is always correct to combine two binding groups into one, so in the worst
case transitions only have one binding group, forcing us to compute all enabled
bindings of all transitions anyway. We believe, though, that only a small sub-
set of variables will be used in the priority, typically just a process ID or an
independent priority on a place. In those cases, we can compute the priority for
all possibilities of the binding group, schedule the transition with all resulting
priorities, and execute it like before. This approach requires that we dynamically
add/remove transitions to SortedTransitions and compute all partial bindings for
the binding group comprising variables of the priority inscription for all transi-
tions in DependencySet(t)∪DisableSet(t) whenever we execute t. We have not
implemented this, as we believe that users may inadvertently build nets that
take prohibitively long to simulate, and many interesting cases can be solved by
splitting a transition into several, one for each desired priority. For example, if
we want d in Fig. 1 to execute with low priority if n > 5, we can just make
two copies of d, one with high and one with low priority, and give the highly
prioritized one a guard n<=5 and the one with low priority a guard n>5.
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Scoped Priorities It is often useful to be able to use scoped priorities. For
coloured Petri nets with hierarchy [7], this means that we would like to say that
a given transition has higher or lower priority than all other transitions on the
same page (module), but it should not necessarily be considered less important
than enabled transitions on other pages. This is useful for implementing multiple
schedulers (e. g., for two separate but connected systems) and for handling errors
in multiple places without preempting unconnected operations (e. g., handle stale
messages on different communication channels). Furthermore, making priorities
local makes it much easier to use modular analysis techniques.

We can implement scoped priorities by running any of the algorithms for
each page in isolation (using algorithm 1 with a PriorityRandomSet for random
simulation, algorithm 3 if we want to compute enabling, and using algorithm 4
to maintain a set of enabled transitions). We introduce a new top loop which
randomly selects a page to execute a step on. We have not implemented this in
CPN Tools as we have not found an elegant way of having both scoped and global
priorities coexist in an easy-to-understand manner. An added advantage is that
flattening of a hierarchical CPN model remains a purely syntactical operation,
where we would otherwise have to consider interplay of local priorities.

3.5 Experimental Validation

We have compared the algorithm for random non-interactive simulation (algo-
rithm 3) developed in this section with a naive algorithm just evaluating enabling
in a highest-priority-first order and an algorithm computing all enabled bindings
for all transitions before selecting a transition to execute. Our findings are sum-
marized in Table 1. We have executed the algorithms with three toy examples
shipping with CPN Tools: the dining philosophers, a distributed database, and a
simple stop-and-wait protocol. We have also tested with three industrial exam-
ples: a protocol for routing in mobile ad-hoc networks (ERDP) [10], the DYMO
protocol for route discovery in mobile ad-hoc networks [5], and a protocol for
operational support for workflow execution (OS) [12]. All models have been de-
veloped independently of the implementation of priorities and hence represent
natural examples and not pathological examples designed to put our algorithms
in a good light. We also show extended versions of the operational support pro-
tocol, modeling more details of the system, and a version with all extensions
disabled in the model which is behaviorally equivalent to the original model, but
has more transitions to consider. We have made large and small versions of the
OS model; the small model (OS) only has a few participants, making the size
of the model suitable for state-space analysis, and the large version (OS’) has
many more participants and can only be analyzed using simulation. The three
versions of OS use priorities while the other models do not (as the others were
developed before CPN Tools supported priorities). For each model, we show the
complexity as reflected by the number of modules, the number of transition in-
stances, and the number of place instances. We also show the number of place
instances after merging all places in a port/socket assignment relationship as
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Table 1: Experimental results.
Model Instances Transitions/minute

Pages Transitions Places All Bindings Priority Sorted Algorithm 3

Philosophers 1 3 3 (3) 3.21 · 106 12.39 · 106 22.19 · 106
Database 1 5 9 (9) 5.01 · 106 12.20 · 106 17.26 · 106
Protocol 1 5 10 (10) 2.81 · 106 7.42 · 106 21.18 · 106

ERDP 14 16 65 (11) 0.50 · 106 1.20 · 106 3.97 · 106
DYMO 15 25 55 (18) 0.75 · 106 2.53 · 106 4.14 · 106
OS 25 42 134 (25) 2.44 · 106 4.01 · 106 6.64 · 106
Extended OS 1 31 50 164 (36) 1.68 · 106 2.70 · 106 6.26 · 106
Extended OS 2 31 50 164 (36) 2.06 · 106 3.29 · 106 6.05 · 106
OS’ 25 42 134 (25) 0.43 · 106 1.24 · 106 4.21 · 106
Extended OS 1’ 31 50 164 (36) 0.37 · 106 0.94 · 106 4.11 · 106
Extended OS 2’ 31 50 164 (36) 0.44 · 106 1.21 · 106 4.32 · 106

well as places in a fusion group in parentheses. We show the number of transi-
tions we can execute for each model and algorithm. These tests are performed by
running CPN Tools 3.0.3 on a computer with a 2.7 GHz Core i7 Sandy Bridge
dual core CPU (using one core only). All tests were run for 5 minutes and the
average has been reported. The tests repeatedly execute a model and resets the
scheduler structures Unknown and MaybeReady as well as the state of the model
when no more transitions are enabled. We have not evaluated the performance of
algorithm 4 as it incurs a large communication overhead due to the architecture
of CPN Tools. We have not compared with a baseline simulator without priority
for two reasons: First, we only have an implementation with an old version of
the simulator, which for independent reasons is much slower, and second, the
performance when a model does not use priorities is exactly the same whereas
the performance of a model using priorities is incomparable, as the lack of sup-
port for priorities may cause the model to be able to reach states not reachable
when using priorities, thus comparing different behavior.

We see that using our optimized algorithm, the toy examples can execute
around 20 million transitions a minute. The largest gain is from not computing
all bindings (though we may compute enabling for all transitions). The reason
is that toy examples often have few transitions but a lot of enabled bindings
for each. Thus, computing enabling of all transitions is not very expensive (as
this terminates early in our implementation) but computing all bindings is. For
real-life models, we see that performance of the simple algorithms significantly
decreases as the number of transitions grow. The performance of our improved
algorithm is roughly constant at 4− 7 million transitions a minute. When look-
ing at the results for the large and small versions of OS, we see the improved
algorithm handles the large model almost without any penalty whereas the sim-
ple algorithms are orders of magnitude slower. This is again because we have
more enabled bindings of each transition. The penalty of the optimized algo-
rithm for real-life models stems from the fact that each transition is much more
complex (calls functions and does more advanced matching on the input tokens
consumed) and therefore takes longer to execute.
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4 Conclusion and Future Work

We have presented algorithms for performing fast simulation of coloured Petri
nets with priorities. We have given details on performing fast random simula-
tion of CPN models with statically prioritized transitions. We have given an
algorithm for performing fast amortized enabling check of statically prioritized
transitions without assuming that enabling is tested in a specific order. Addi-
tionally, we have given an algorithm which can be used for maintaining a set
of enabled transitions during simulation, providing fast user-guided simulation
with interactive feedback. We have implemented all these features in CPN Tools
3.0 [4], and our experiments show we are able to execute 4 − 7 million transi-
tions a minute for real-life models and more than 20 million transitions for other
models. This is an improvement over the 1 − 5 million transitions a minute for
simple algorithms.

We have considered and sketched algorithms for extending our algorithms
to handle dynamically prioritized transitions and for scoped priorities. We have
chosen not to implement these, first, because dynamic priorities are prone to
introducing performance bottlenecks, and, second, because we have not been
able to introduce scoped priorities in a way that nicely coexists with global
priorities. As scoped priorities can be useful, it would be nice to consider this in
more detail.

We have not been able to find any published work concerning efficient simu-
lation of models with priorities. We think this is because the problem only really
becomes important with high-level Petri nets, where enabling computation is
several orders of magnitude more computationally expensive than for low-level
net classes. We have experimented with using the scheduling algorithm 1 for
Place-Transition Petri nets, but have not been able to make it outperform a
simple algorithm trying transitions at random without the extra book-keeping.
The complexity of enabling computation for high-level nets stems from the fact
that the high-level nature makes modelers more prone to generating many to-
kens, and that these tokens are not equal, so in the worst case we have to try
all combinations of tokens. Papers treating simulation of low-level nets with pri-
orities often translate nets with priorities to nets without, e. g., [3]. Work exists
on translating high-level nets with priorities to nets without [8] or for doing
distributed simulation with priorities present [9]. Here, we instead focus on ef-
ficient algorithms for direct simulation of high-level nets, which allows us to do
optimizations not possible in a parallel or distributed setting.

Our algorithms can also be used for analysis by means of state-space ex-
ploration. As for simulation, analysis can be done by translating to equivalent
models without priority [3, 8] and for low-level nets additionally by means of
static analysis or restriction [1, 2]. This is probably because a strong feature of
low-level nets is that this kind of analysis is possible. For high-level nets, anal-
ysis is usually only possible by means of state-space exploration or simulation,
making fast simulation algorithms more important. Our current state-space tool
implementation in CPN Tools is tuned toward breadth-first traversal, so unless
we store the Disabled and MaybeReady sets for each state, we cannot make use
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of this information without recomputing it from scratch each time. As the state-
space tool of CPN Tools comprises a lot of legacy code, we decided that instead
of doing this directly, we would use the algorithm for computing enabling (algo-
rithm 3) instead. It would be interesting to look into algorithms for improving
state space analysis by computing transitions according to their priority and also
to investigate ways of using the Disabled and MaybeReady sets during state-space
generation.
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