
Specialisation and Generalisation of Processes

Christine Choppy1, Jörg Desel2?, and Laure Petrucci1

1 LIPN, CNRS UMR 7030, Université Paris 13, 93430 Villetaneuse, France
2 FernUniversität in Hagen, 58084 Hagen, Germany

Abstract. In data modelling, one of the most important abstraction
concepts is specialisation, with generalisation being the converse. Al-
though there are already some approaches to define generalisation for
process modelling as well, there is no generally accepted notion of gen-
eralisation for processes.
In this paper, we introduce a general definition of process specialisation
and generalisation. Instead of concentrating on a specific process de-
scription language, we refer to labelled partial orders. For most process
description languages, behaviour (if defined at all) can be expressed by
means of this formalism. We distinguish generalisation from aggrega-
tion, and specialisation from instantiation. For Petri nets, we provide
examples and suggest associated notations.
Our generalisation notion captures various previous approaches to gen-
eralisation, for example ignoring tasks, allowing alternative tasks and
deferring choices between alternative tasks. A general guideline is that a
more general process contains less features and/or less information than
a more specific one.
In the conclusion, we also consider the question of common generali-
sation of a set of processes. Finally, we suggest a generalisation concept
that goes beyond labelled partial orders, including additional behavioural
constraints and process data generalisation.

Keywords: Process generalisation; process specialisation

1 Introduction

Specialisation, and its counterpart generalisation, is an important concept of
data modelling which has been known for many years in database research [9].
The core idea of generalisation is to combine object types which share common
attributes to a more general supertype which only has the common attributes
whereas each more specific type inherits these attributes from the supertype and
has its own, private attributes. We can also adopt a top-down view instead of a
bottom-up one: starting with an object type, we might identify subtypes such
that the objects in each of the subtypes share common additional attributes
which might be meaningless for other objects. We can specialise the initial type
to these subtypes and distinguish common attributes and additional attributes
? This work was achieved while the second author was visiting University Paris 13.

of the subtypes. Such a specialisation can cover the supertype (every object
belongs to at least one subtype) or not, and it can divide the supertype into
disjoint subtypes (no object belongs to more than one subtype) or not.

Instead of attributes of objects, generalisation and specialisation also apply to
classes and their methods in object-oriented modelling, and in an even broader
scope, to arbitrary features that are inherited from the more general to the
more specific component. Generalisation and specialisation are very important
abstraction concepts in models that clarify mutual dependencies. They are the
prerequisite for reuse of system components and they allow to avoid redundancy.
For the maintenance of systems and of models, only these concepts support that
common features of different system or model components can be handled at a
single place, instead of considering various copies.

Whereas generalisation and specialisation are abstraction techniques that
have their own graphical representation in data modeling, there are only few
suggestions how to apply comparable concepts to process models. On the other
hand, the same arguments as above would apply to a generalisation and special-
isation concept in behavioural modelling as well. At several places, this demand
was explicitly expressed, see e.g. [3]. Actually, Ulrich Frank pointed us to this
question and provided more (unpublished) examples and papers that identify
the problem of process generalisation and specialisation.

We also considered other papers on specialisation for particular process mod-
els, such as Petri nets. In [14] a particular extensions of Petri nets is suggested,
based on [7]. Unfortunately, it remains unclear how this approach can be trans-
ferred to other modelling languages. Another relevant approach is given in [11],
however, this paper also restricts to a particular language. Moreover, it em-
phasises inheritance and change instead of specialisation and generalisation. In
particular, the inheritance is based on blocking and hiding of transitions whereas
in our notion blocking a transition will turn out to be a specialisation and hiding
a transition will turn out to be a generalisation.

Another important difference to previous papers is that we consider partial
order behaviour of process models instead of strings and sequential automata.
This choice is justified by the observation, that many process languages empha-
sise concurrency between activities which is most appropriately represented by
means of partial orders.

Our approach should be applicable to as many process modelling languages
as possible. Therefore, we do not start with any particular syntactical description
but rather concentrate on the behaviour of models. The behavioural notion used
in this paper is given by partially ordered sets of activities representing runs,
labelled by respective tasks that are expected to appear in a process model. Al-
though this formalism is quite easy to understand, it needs some more involved
technical notations that will be carefully introduced in Section 2. In our exam-
ples, we use Petri nets as a modelling language, but this does not restrict our
approach to this particular language. We use only elementary Petri nets and
expect the reader to understand them without any formal definition.

110 PNSE’11 – Petri Nets and Software Engineering

Our core criteria for a specialisation definition are that specialisation means
to add something (features, tasks, information) to a process model and that
everything valid for a more general process model should also hold for its spe-
cialisation. For example, adding a task to a process model results in the addition
of respective activities in the runs, where the remaining structure of the runs
is not changed. If, according to a process model, two tasks can be executed in-
dependently (in any order or concurrently), then, in a specialisation an order
between these tasks can be specified. This results in runs that are also runs
of the more general system. If two tasks can be executed alternatively, then a
specialisation might add the information to decide which of the tasks occurs;
in this case, some of the runs of the more general model are ruled out in the
specialisation. All these relations can be formulated by means of the respective
sets of runs, and will be the subject of Section 3.

We also identify more subtle specialisation relations that refer to the branch-
ing behaviour of process models; a more special model could have “earlier” infor-
mation about the decision of a choice than a more general model, although their
respective sets of runs are identical. For a motivating example and our solution
to this phenomenon, see Section 4.

Section 5 comes back to the previous work on specialisation of Petri nets
mentioned above. We show that these concepts can be viewed as a special case
of our approach.

2 Basic Setting

In this paper, no formal definition of a process model is given since we do not
stick to any particular process modelling language. Instead, some characteristics
of a process model are expected to be defined: its set of tasks; its runs containing
task executions; and a precedence relation between task executions in runs. This
precedence relation should be a partial order, i.e. a transitive and irreflexive
relation (in accordance with the WorkFlow Management Coalition [13], we use
the term activity for a single execution of a task in a process run). Our definition
resembles the definition of Partial Languages as defined by Grabowski [4] and
Pomsets as defined by Pratt [8].

Given a process model P with set of tasks T , its behaviour is defined by its
set of possible runs.

Definition 1 (Process run). A process run (or just run) π of a process model
P with set of tasks T is given by

– a finite set of activities Aπ,
– partially ordered by a precedence relation π, and
– a mapping λπ:A→ T mapping each activity to a task.

Remark 1. We have decided to consider finite runs only because infinite runs of
process models are only of theoretical interest. However, each infinite run can be
approximated by an infinite sequence of finite runs where each run is a proper
prefix (defined below) of its successor.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 111

If an activity x is mapped to a task λ(x) then it represents an occurrence
of λ(x). Activities have to be distinguished from tasks since there can be more
than one occurrence of a task in one run, with different precedence relations to
other activities.

Definition 2 (Immediate precedence).
Given a process run π, we denote by →π:= π \(π ◦ π) the immediate
precedence relation.

Remark 2. Since the set of activities Aπ is finite, π is the transitive closure of
→π.

In graphical representations, we depict the relation →π by means of directed
arcs, i.e., we give the Hasse-diagram of partial orders. Two activities x and y
satisfy x π y if and only if there is a nonempty path leading from x to y.

Example 1.
Figure 1 depicts a process run π such that :
Aπ = {1, 2, 3, 4, 5}, →π= {(1, 2), (2, 3), (3, 4), (1, 5)}, and λπ(1) = a, λπ(2) = b,
λπ(3) = c, λπ(4) = b, λπ(5) = b. Here, activities are denoted by numbers and
tasks by lowercase letters.

1
a

2
b

3
c

4
b

5
b

Fig. 1. A process run π

Note that a process run can feature several branches, and that a given task can
occur at different places in the process run. In the above example, task b can
occur after another occurrence of task b, and both occur concurrently to a third
one. However, they are associated with different activities, respectively 4 and 2,
which are ordered by the precedence relation, and 5.

In case of sequential semantics of processes, where each run is represented
by a sequence of occurring tasks, we can easily distinguish the first, the second,
etc. occurrence of a single task. Each sequence can be viewed as a mapping from
the set {1, 2, 3, . . . , length(run)} to the set of tasks. For partial-order semantics,
there is no such unique representation of a run. Hence the “same behaviour” can
be represented by runs which only differ w.r.t. the activities. Such runs are said
to be isomorphic.

Definition 3 (Isomorphic runs). Let π and π′ be two process runs of the
same process model P with set of tasks T . Then, π′ is isomorphic to π iff there
is a bijection β:Aπ → Aπ′ such that

112 PNSE’11 – Petri Nets and Software Engineering

1. ∀x, y ∈ Aπ: x→π y ⇐⇒ β(x)→π′ β(y) and
2. ∀x ∈ Aπ: λπ(x) = λπ′(β(x))

Clearly, process run isomorphism is an equivalence relation. If isomorphic
process runs are not distinguished, any representative of the equivalence class is
used.

Example 2. Figure 2 schematises the isomorphism between two process runs.
Process run π (Figure 2(a)) and process run π′ (Figure 2(b)) both yield the
same graph of tasks when abstracting away the activities.

1a

2
b

3
a

(a) Process run π

4a

5
b

6
a

(b) Process run π′

a

b

a
(c) Task occurrences

Fig. 2. A process run π′ isomorphic to a process run π

In general, activities are formalised differently even though they have the
same meaning in terms of tasks. Sometimes it is still necessary to distinguish
activities within a process run in order to be able to refer to precise occurrences
of a task. When this distinction is irrelevant in the pictures, only a • will be
used instead of the actual activity (Figure 2(c)).

3 Linear Time Specialisation

The meaning of a π b is that λ(a) is executed before λ(b) in run π. If activities
a and b are not ordered by means of π, they occur in any order (this order is
not captured by our notion of run) or concurrently. Each linearisation of a run
π, obtained by adding elements to the order relation π, yields another run,
which we consider more specific than π. In turn, each run generalises its set of
linearisations.

The following definition not only compares the precedence relations between
activities but also the respective sets of activities of two runs. It formalises the
observation that a run of a more specific process definition might contain more
details than a run of a less specific process definition. Hence the runs in the
following definition can belong to distinct processes.

Definition 4 (Process run specialisation). Let P and P ′ be two process
models with sets of tasks T and T ′, respectively. A process run π′ of P ′ specialises

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 113

a process run π of P (denoted by π′ ≥ π) if there is an injective mapping µ:Aπ →
Aπ′ such that

1. ∀x, y ∈ Aπ, x→π y ⇒ µ(x) π′ µ(y) and
2. ∀x ∈ Aπ, λπ(x) = λπ′(µ(x)).

Remark 3. As a consequence of Definition 4, if x π y then µ(x) π′ µ(y).

Each activity in the process run π has a corresponding activity in the spe-
cialised process (by the mapping µ), mapped to the corresponding task (2).
Moreover, for each precedence relation in π, there is a corresponding sequence
of precedences in π′ (1).

Example 3. Figure 3 shows a process run π′ specialising a process run π together
with the mapping µ.

π:

π′:

µ:

a b c b

b

a b c d b

e b

Fig. 3. Process run π′ specialises process run π

Up to an isomorphism, a process run π′ of P ′ specialises a process run π
of P if and only if Aπ ⊆ Aπ′ and π⊆ π′ . This justifies the “≥”-notion for
specialisations. It is formalised by the following lemma.

Lemma 1. Let P and P ′ be two process models with sets of tasks T and T ′,
and runs π and π′, respectively. π′ ≥ π if and only if there exists a process run
π such that

1. π is isomorphic to π
2. Aπ ⊆ Aπ′

3. →π ⊆ π′

4. ∀x ∈ Aπ : λπ(x) = λπ′(x).

Proof. (⇒) Assume that π′ specialises π by means of mapping µ. Process run π
is constructed as follows:

Aπ = {x′ ∈ Aπ′ | ∃x ∈ Aπ : x′ = µ(x)}
 π= {(x′, y′) ∈ A2

π | ∃(x, y) ∈ π: µ(x) = x′ ∧ µ(y) = y′}
∀x ∈ Aπ : λπ(x) = λπ′(x)

(⇐) Assume that µ : Aπ → Aπ′ is an isomorphism. Mapping µ : Aπ → Aπ′ is
constructed by: ∀x ∈ Aπ, µ(x) = µ(x).

114 PNSE’11 – Petri Nets and Software Engineering

A process run π′ specialises π if π boils down to the same tasks graph as
in process π (4), π is isomorphic to π (1), but with activities in π′ (2). The
precedence relation in π respects the order relation in π′ (3).

Definition 5 (Linear time specialisation). A process model P ′ is a linear
time specialisation of a process model P if, for each run π′ of P ′ there exists a
run π of P such that π′ ≥ π.

The process model P is then said to be a a linear time generalisation of P ′.

As mentioned in the introduction, every valid statement about the more
general process should hold for the specialised process as well. In a more formal
setting, which is beyond the scope of this paper, any formula of an appropriate
logic that evaluates to true for the general process, should be evaluated to true
for the specialized process as well. Since in this section we concentrate on a
relation based on the runs only, this logic would be Linear Time and based on
partial orders, such as the one of [1].

The idea is that a less general process contains more features/information
than a more general one but inherits all properties from the more general one.

Representative examples of specialisation/generalisation: Table 1 de-
picts some representative examples of generalisation and specialisation. The pro-
cess models are given as Petri nets, and their runs are pictured as well. For each
example, both a specialised and a general version are given. The example is
named after the specialisation characteristic. Hence, the first one forces an ac-
tivity since it prevents activity associated with task b from occurring. The second
example adds an activity associated with task b. Finally, the last example im-
poses a sequential ordering between activities that are concurrent in the general
model, namely those associated with tasks b and c.

4 Branching Time Specialisation

Let us first consider an example motivating further enhancement of the special-
isation notion.

Example 4. Consider two processes P and P ′ modelled by the Petri nets in
Table 2. These nets are actually labelled Petri nets. The two transitions of the
net on the left-hand side labelled by a represent the same task a. As shown in the
pictures, they have identical sets of runs. Both processes start with an occurrence
of a and then either continue with an occurrence of b or with an occurrence of
c. Hence they cannot be distinguished just by inspecting their runs. However, in
process P , after the occurrence of a, there is a choice between continuing with
b or with c, whereas in process P ′ we have to choose immediately between the
run containing occurrences of a and b and the one containing occurrences of a
and c. In this case we might consider process P ′ as a specialisation of P since
additional (more precisely, earlier) information about the choice between b and
c is necessary.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 115

Special General

fo
rc

e
ac

ti
vi

ty
net

a

b

c

a

b

c

al
lo

w
al

te
rn

at
iv

e

runs a c
a c

b c

ad
d

ac
ti

vi
ty net

a b c

a

a c

a

ig
n
or

e
ac

ti
vi

ty

runs a b c a c

or
d
er

ac
ti

vi
ti

es

net
a b c

a

d a

b

c a

d

u
n
or

d
er

ac
ti

vi
ti

es

runs a b c d
a

b

c

d

Table 1. Representative examples of specialisation/generalisation

We cannot distinguish processes P and P ′ by means of their runs as in
the previous section. Therefore, it is necessary to carefully examine all possible
behaviours. To do so, we first define the prefix of a run.

Definition 6 (Prefix of a run). A run π is a prefix of a run π′ if there is an
injective mapping µ:Aπ → Aπ′ such that

1. ∀x, y ∈ Aπ, x→π y ⇐⇒ µ(x)→π′ µ(y)
2. ∀x ∈ Aπ, λπ(x) = λπ′(µ(x)).
3. ∀x′, y′ ∈ Aπ′ : x′ →π′ y′ ⇒ [(∃y ∈ Aπ, y′ = µ(y))⇒ (∃x ∈ Aπ, x′ = µ(x))].

Explanation: Each precedence relation in the prefix has a correspondence in the
complete run π′ (1) and corresponding activities are mapped to the same task (2).
Moreover, each precedence relation of the complete run π′ leading to an activity

116 PNSE’11 – Petri Nets and Software Engineering

P’ P

net

a

a

b

c

a

b

c

runs

a b

a c

a b

a c

Table 2. Runs do not always distinguish processes

that corresponds to one of the prefix also has its starting point corresponding to
an activity of the prefix (3).

Example 5. The process run of Figure 4(a) is a prefix of the process runs of
Figures 4(b) and 4(c).

a b

(a) Process run π

a b c

(b) Continuation π′

a

b

c

d e

(c) Continuation π′′

Fig. 4. A process run π with different extended runs π′ and π′′

Roughly speaking, a prefix of a run is constituted by a set of activities to-
gether with all their predecessors, up to an isomophism. This observation is
formalised in the following lemma:

Lemma 2. A run π is a prefix of a run π′ if and only if there exists a process
run π such that

1. π is isomorphic to π
2. Aπ ⊆ Aπ′

3. →π = →π′ ∩ Aπ ×Aπ

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 117

4. ∀x ∈ Aπ, λπ(x) = λπ′(x)
5. ∀y ∈ Aπ, x→π′ y ⇒ x ∈ Aπ.

Proof. (⇒) Let µ be the mapping mentioned in the definition of a prefix. Set
Aπ = {x′ ∈ Aπ′ | ∃x ∈ Aπ:x′ = µ(x)}. The other defining components of π are
items 3 and 4 of the lemma.
(⇐) Choose µ(x) = µi(x) for every x ∈ Aµ where µi is the isomorphism from π
to π.

Explanation: This lemma is very similar to lemma 1. Run π is exactly the re-
striction of run π′ to the activities in π.

Now, for a run that is a prefix of another run, we define the set of its contin-
uations.

Definition 7 (Extended run, continuations). An extended run is a run π
together with a set of runs C(P), called its continuations, such that π is a prefix
of each run in C(P).

Note that in general C(P) does not contain all runs with prefix π. Two ex-
tended runs are different if their continuations are different, even if their respec-
tive runs are isomorphic.

Example 6. Figure 4 pictures a process run π (Figure 4(a)), and two differ-
ent continuations: π′ in Figure 4(b) and π′′ in Figure 4(c). Then (π, {π′}) and
(π, {π′′}) are two different extended runs of π.

Isomorphic runs can lead to different states. Definition 7 avoids considering
states of processes. For applying our concept to concrete process definition lan-
guages, we might consider the states reached by runs instead, determining the
possible continuations.

Remark 4. For unlabelled Petri nets the distinction does not occur because iso-
morphic runs lead to identical markings. For labelled Petri nets the problem can
occur.

Definition 8 (Branching Time Specialisation). A process model P ′ is a
branching time specialisation of a process model P if for each extended run π′ of
P ′ with continuation C(P ′) there exists an extended run π of P with continuation
C(P) such that

– π′ ≥ π
– for each run π̃′ ∈ C(P ′) there exists a run π̃ ∈ C(P) such that π̃′ ≥ π̃.

Example 7. The nets in Table 2 can be distinguished using specialisation of
Definition 8, while they could not be with the linear time specialisation of Defi-
nition 5.

In Table 3, the activities are numbered after transitions names. The process
model P ′ has a run π′, consisting only of activity 1 labelled by a. Its set of

118 PNSE’11 – Petri Nets and Software Engineering

continuations C(P ′) contains this run itself and also the run 1 → 2, as given
in the figure. For P , we also have the run π = 1, labelled by a. Its set of
continuations C(P) contains also the run 1 → 4, as given in the figure. So, in
this example, for every continuation in C(P ′) we find an isomorphic continuation
in C(P). Conversely, consider the extended run π consisting only of activity 1
labelled by a in process model P , which is a prefix of both depicted runs. Its
continuations is the set of both runs depicted in the table. So it is possible to
continue with a b-activity and it is also possible to continue with a c-activity.
Now activity 1 (i.e., the run consisting only of this activity) can not be an
associated run of P ′ because it misses a continuation with an activity labelled
with c. Similarly, activity 3 can not be an associated run of P ′ because this one
misses a continuation with an activity labelled with b. Arguing about all possible
runs and continuations of P ′ as above shows that P ′ is a specialisation of P .

P’ P

net

t1

a

t3
a

t2

b

t4
c

t1

a
t2

b

t4
c

runs
1
a

2
b

3
a

4
c

1
a

2
b

1
a

4
c

Table 3. Runs display different activities

We call this concept of specialisation Branching Time Specialisation because,
again, we have that the valid statements (now expressable in Branching Time
Temporal Logic) of the more general process should also hold for the specialised
one.

5 Related Works

Abstraction and refinement have been the subject of numerous researches, and
we just mention some of them here. The goals include to keep the modelling
and reasoning as close as possible to the essence of the system to be developed,
while still taking into account that a concrete representation (also called concrete
implementation) of data should be provided at some later point together with
the way it is related with the abstract data.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 119

Tony Hoare [6] proposed a method to prove program correctness in the con-
text of stepwise refinement where a representation of abstract data is chosen.
Then John Guttag et al. [5] showed how the use of algebraic axiomatizations
can simplify the process of proving the correctness of an implementation of an
abstract data type. A number of works followed in the algebraic specification
field. Now, an explicit data type refinement construct is introduced in program-
ming languages like Scala [10].

As mentioned in the introduction, abstraction was studied for database mod-
elling by John and Diane Smith [9], with the concepts of generalisation and ag-
gregation. These concepts are also part of the object-oriented approaches (e.g.
UML based approaches), or languages.

The same concepts should also be adapted to the modelling of the behaviour
of a system, described by a process, a state-based diagram, etc.

Lee and Wyner [7] define a specialisation concept for dataflow diagrams.
They distinguish minimal execution set semantics in which adding an activity is
a specialisation (as in Table 1), and the maximal execution set semantics which
is the option they choose. So obviously their definition of specialisation differs
from ours.

In [14], they work on specialisation for a variant of Petri net (Workflow
Process Definition). They analyse the approach of van der Aalst and Basten [11]
who identify four types of inheritance of workflows, and propose an extension.

Wang et al. [12] stress that design issues are important, and, in the context of
component-based model-driven development, they present two refinement rela-
tions, a trace-based refinement and a state-based (data) refinement, that provide
different granularity of abstractions. So they combine the data refinement and
the behaviour refinement.

6 Conclusions

Summary

We have presented a very general notion of specialisation and generalisation of
processes which does not stick to a specific process modelling language but can
be applied to all process languages where behaviour can be expressed in terms
of partially ordered activities. Processes with sequential runs are a special case
where all activities in runs are mutually ordered. Specialisation is interpreted as
addition of features, where features can be additional tasks, additional ordering
information, additional information on choices and earlier information on choices.
All these features except the last one can be expressed by a specialisation relation
on runs whereas the last one concerns branching points of process models that
do not appear in runs and hence require a more involved definition based on
runs and their possible continuations.

Specialisation versus Refinement/Generalisation versus Aggregation

One could argue that refinement of a process element is a form of specialisation
because the more detailed view adds information. Conversely, what distinguishes

120 PNSE’11 – Petri Nets and Software Engineering

generalisation and aggregation? According to our definition, specialisation adds
something to a process, whereas refinement replaces something by something
else, which should be more detailed. For example, if a task is added to the
process, then the process is more special and associated activities show up in
its runs. If a task is refined to two subsequent tasks, then the process is more
detailed and the respective activities are refined accordingly in its runs.

Specialisation versus Instantiation

In one of our previous examples we have shown that information about the
decision of choices can be viewed as a particular specialisation. The specialised
process contains less alternatives. If all choices are decided, then the process is
deterministic and contains no alternative at all. In other words, it only has a
single run (remember that our notion of a run captures possible concurrency
so that no additional runs caused by interleaving appear). Depending of the
representation of the process and of its single run, both might look very similar.
However, the run represents an instance of the process (and was an instance of
the original process, too) whereas the process is on a lower meta-level. Whereas
repeated specialisation of processes is possible and always yields new processes,
instantiation of processes decreases the meta-level by one and can only occur
once.

Extensions

It is obvious that there are features, that can be added, which cannot be handled
by our concept so far. One example considers concurrency. Our notion of partially
ordered runs is interpreted in such a way that activities that are not ordered can
occur concurrently or in any order. However, it could be possible to specialise
such a specification by demanding that activities have to occur concurrently
whereas any order would be illegal. This cannot be expressed by our notion
unless we add an additional “concurrent” relation. Other, similar relations are
“not later than” or “at most two of three activities occur concurrently”.

Another extension refers to data. Usually tasks are performed for some or
several data objects. This data does not appear in runs of our processes. For a
combined view of processes and data, and for a combined notion of specialisation,
the process view and the data view have to be integrated. There is an obvious
way to do this integration by carrying over the data attributes from tasks to
activities. Then the mapping between activities constituting our specialisation
relation has to be extended to these data objects; the more general process
handles the more general data.

Representation

In data modelling, generalisation and other abstraction techniques such as ag-
gregation are represented graphically in the model. While this is nicely possible

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 121

for aggregation in process models (see, for example, [2]), we do not see an ele-
gant solution for generalisation in process models. One obvious approach is to
depict additional tasks and additional relations between tasks by means of dif-
ferent symbols (colours or lines, respectively). However, if a single specialisation
considers changes in different parts of a process then it is not obvious to express
that these changes can only occur together.

The Partial Order of Specialisation

Our notion of generalisation and specialisation is not primarily given as a prob-
lem (is x a specialisation of y ?) but as a specification means. However, it is an
interesting question whether the above question is decidable and, in the positive
case, what is the complexity of a decision algorithm or of the problem in general
(i.e., the complexity of the most efficient algorithm).

It is not difficult to see that the specialisation relation between single process
runs is decidable, although any algorithm heavily depends on the data struc-
ture used to represent the respective process runs. Notice that by definition
process runs are finite, i.e., have a finite set of activities. We cannot deal with
isomorphism classes of process runs in algorithms but instead consider arbitrary
representative process runs.

Proposition 1. Given two process runs π and π′ of two process models P and
P ′, it is decidable whether π′ specialises π.

Proof. π′ can only be a specialisation of π if, for each task t, π′ has at least as
many activities labelled by t as π has. This condition is easy to check. Assume
that it holds true.

There are finitely many injective label-preserving mappings from the activ-
ities of π to the activities of π′, and it is not difficult to construct them in
a systematic way. For each pair of activities of π which are in the immediate
precedence relation we check whether the respective target activities are ordered
in π′ (they do not necessarily have to be immediate successors!). If this is true
for at least one mapping, then π′ is a specialisation of π.

Things become more difficult when process models are compared, because
each process model can have infinitely many runs. Since we do not consider
any particular process model, nothing can be said about decidability in general.
Clearly, there is only a chance for decidability of specialisation if a process model
cannot generate infinitely many arbitrary runs.

It is not difficult to prove that “being a specialisation” is a partial order on
process models. Its minimal element is the empty process model which is a (use-
less, though) generalisation of all process models. Using this order one might
ask, for a given set of process models, whether there is a “largest” generalisa-
tion, whether this is unique, and whether it can be constructed algorithmically.
Similarly, it would be interesting to find the “smallest” specialisation of a set of
process models. There are no obvious answers to these questions, and hence the
study of the partial order of specialisation is subject to future work.

122 PNSE’11 – Petri Nets and Software Engineering

References

1. Girish Bhat and Doron Peled. Adding partial orders to linear temporal logic.
Fundamenta Informaticae, 36(1):1–21, 1998.

2. Jörg Desel and Agathe Merceron. Vicinity respecting homomorphisms for ab-
stracting system requirements. Transactions on Petri Nets and Other Models of
Concurrency, 4:1–20, 2010.

3. Ulrich Frank and Bodo Van Laak. A Method for the Multi-Perspective Design of
Versatile E-Business Systems. In Proceedings of the 8th Americas Conference on
Information Systems, pages 621–627, 2002.

4. Jan Grabowski. On partial languages. Fundamenta Informaticae, 4(2):428–498,
1981.

5. John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and
software validation. Commun. ACM, 21(12):1048–1064, 1978.

6. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

7. Jintae Lee and George M. Wyner. Defining specialization for dataflow diagrams.
Information Systems, 28(6):651–671, 2003.

8. Vaughan Pratt. Modelling concurrency with partial orders. Int. Journal of Parallel
Programming, 15:33–71, 1986.

9. John Miles Smith and Diane C. P. Smith. Database abstractions: aggregation and
generalization. ACM Trans. Database Systems, 2(2):105–133, 1977.

10. The Scala Programming Language. http://www.scala-lang.org/.
11. Will M. P. van der Aalst and Twan Basten. Inheritance of workflows: an ap-

proach to tackling problems related to change. Theoretical Computer Science,
270(1-2):125–203, 2002.

12. Zizhen Wang, Hanpin Wang, and Naijun Zhan. Refinement of Models of Software
Components. In Proceedings of SAC‘10, pages 2311–2318, 2010.

13. Workflow Management Coalition. http://www.wfmc.org/.
14. George M. Wyner and Jintae Lee. Applying Specialization to Petri Nets: Impli-

cations for Workflow Design. In Christoph Bussler and Armin Haller, editors,
Business Process Management Workshops, volume 3812, pages 432–443, 2005.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 123

