
Editors: Michael Duvigneau and
Daniel Moldt and
Kunihiko Hiraishi

Proceedings of the
International Workshop on

P etri
N ets and
S oftware
E ngineering
PNSE’11

University of Hamburg
Department of Informatics

These proceedings are published online with CEURWorkshop Proceedings (http://
CEUR-WS.org/, ISSN 1613-0073) as Volume 723. Copyright for the individual papers
is held by the papers’ authors. Copying is permitted only for private and academic
purposes. This volume is published and copyrighted by its editors.

http://CEUR-WS.org/
http://CEUR-WS.org/

Preface

These are the proceedings of the International Workshop on Petru Nets and
Software Engineering (PNSE’11) in Newcastle upon Tyne, United Kingdom,
June 20–21, 2011. It is a co-located event of Petri Nets 2011, the 32nd interna-
tional conference on Applications and Theory of Petri Nets and Concurrency,
and ACSD 2011, the 11th International Conference on Application of Con-
currency to System Design.

More information about the workshop can be found at

http://www.informatik.uni-hamburg.de/TGI/events/pnse11/

For the successful realisation of complex systems of interacting and reactive
software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri nets (P/T-nets, coloured Petri nets and extensions) in
the formal process of software engineering, covering modelling, validation,
and verification, is presented as well as their application and tools supporting
the disciplines mentioned above.

The program committee consists of:

Kamel Barkaoui (France)
Piotr Chrzastowski-Wachtel (Poland)
José-Manuel Colom (Spain)
Michael Duvigneau (Germany) (Chair)
Giuliana Franceschinis (Italy)
Guy Gallasch (Australia)
Xudong He (USA)
Kunihiko Hiraishi (Japan) (Chair)
Gabriel Juhás (Slovakia)
Peter Kemper (USA)
Astrid Kiehn (India)
Hanna Klaudel (France)
Lars Kristensen (Norway)
ZhiWu Li (China)
Robert Lorenz (Germany)
Daniel Moldt (Germany) (Chair)
Atsushi Ohta (Japan)
Wojciech Penczek (Poland)

4 PNSE’11 – Petri Nets and Software Engineering

Laure Petrucci (France)
Lucia Pomello (Italy)
Yann Thierry-Mieg (France)
Naoshi Uchihira (Japan)
H.M.W. (Eric) Verbeek (Netherlands)
Manuel Wimmer (Austria)
Karsten Wolf (Germany)
Shingo Yamaguchi (Japan)
Satoshi Yamane (Japan)

We received 18 high-quality contributions. The program committee has ac-
cepted five of them for full presentation. Furthermore the committee accepted
six papers as short presentations. Two contributions were submitted and ac-
cepted as posters.

The international program committee was supported by the valued work of
Luca Bernardinello, Kent Inge Fagerland Simonsen, Elisabetta Mangioni, Ar-
tur Męski, Maciej Szreter, and Samir Tata as additional reviewers. Their work
is highly appreciated.

Furthermore, we would like to thank the organizational teams of the Japan
Advanced Institute of Science and Technology, Kanazawa, Japan and the Uni-
versity of Newcastle, Newcastle upon Tyne, U.K., for their general organiza-
tional support.

Without the enormous efforts of authors, reviewers, PC members and the orga-
nizational teams this workshop wouldn’t provide such an interesting booklet.

Thanks!

Michael Duvigneau, Daniel Moldt, and Kunihiko Hiraishi
Newcastle, June 2011

Contents

Part I Invited Talks

Unfolding Models of Asynchronous Systems: Applications to
Analysis and Synthesis
Victor Khomenko . 9

Design, Modelling and Analysis of a Workflow Reconfiguration
Manuel Mazzara, Faisal Abouzaid, Nicola Dragon and Anirban
Bhattacharyya . 10

Part II Long Presentations

Efficient Implementation of Prioritized Transitions for
High-level Petri Nets
Michael Westergaard and H.M.W. (Eric) Verbeek . 27

Modelling Local and Global Behaviour: Petri Nets and Event
Coordination
Ekkart Kindler . 42

Towards Verifying Parallel Algorithms and Programs using
Coloured Petri Nets
Michael Westergaard . 57

Bounded Model Checking Approaches for Verification of
Distributed Time Petri Nets
Artur Męski, Agata Półrola, Wojciech Penczek, Bożena Woźna-
Szcześniak and Andrzej Zbrzezny . 72

Extending PNML Scope: the Prioritised Petri Nets
Experience
Lom-Messan Hillah, Fabrice Kordon, Charles Lakos and Laure Petrucci . 92

6 Contents

Part III Short Presentations

Specialisation and Generalisation of Processes
Christine Choppy, Jörg Desel and Laure Petrucci . 109

Integrating Verification into the PAOSE Approach
Marcin Hewelt, Thomas Wagner and Lawrence Cabac 124

Transitions as Transactions
Shengyuan Wang, Weiyi Wu, Yao Zhang and Yuan Dong 136

A Component Framework where Port Compatibility Implies
Weak Termination
Debjyoti Bera, Kees M. van Hee, Michiel van Osch and Jan Martijn
van der Werf . 152

Improving the Development Tool Chain in the Context of
Petri Net-Based Software Development
Tobias Betz, Lawrence Cabac and Matthias Güttler 167

On the use of Pragmatics for Model-based Development of
Protocol Software
Kent Inge Fagerland Simonsen . 179

Part IV Poster Abstracts

A Goal Based Approach on top of Petri Nets
Nejm Saadallah and Benoit Daireaux . 193

PNTM – Integration of Petri Nets and Transactional Memory
Weiyi Wu, Yao Zhang, Shengyuan Wang and Yuan Dong 196

Part I

Invited Talks

Unfolding Models of Asynchronous Systems:
Applications to Analysis and Synthesis

Victor Khomenko

Newcastle University
School of Computing

victor.khomenko@ncl.ac.uk

Abstract. Analysis and synthesis of concurrent systems suffers from
combinatorial state space explosion. That is, even a relatively small sys-
tem specification can (and often does) yield a very large state space.
One of the prominent techniques for alleviating this problem is based on
complete prefixes of Petri net unfoldings. It relies on the partial order
view of concurrent computation, and represents system states implicitly,
using an acyclic Petri net. This talk describes applications of the un-
folding technique to analysis of concurrent systems in general, and to
verification and synthesis of asynchronous circuits in particular.

Design, Modelling and Analysis of
a Workflow Reconfiguration

Manuel Mazzara1, Faisal Abouzaid2,
Nicola Dragoni3, and Anirban Bhattacharyya1

1 Newcastle University, Newcastle upon Tyne, UK
{Manuel.Mazzara, Anirban.Bhattacharyya}@ncl.ac.uk

2 École Polytechnique de Montréal, Canada
m.abouzaid@polymtl.ca

3 Technical University of Denmark (DTU), Copenhagen
ndra@imm.dtu.dk

Abstract. This paper describes a case study involving the reconfigu-
ration of an office workflow. We state the requirements on a system
implementing the workflow and its reconfiguration, and describe the sys-
tem’s design in BPMN. We then use an asynchronous π-calculus and
Webπ∞ to model the design and to verify whether or not it will meet
the requirements. In the process, we evaluate the formalisms for their
suitability for the modelling and analysis of dynamic reconfiguration of
dependable systems.

1 Introduction

Competition drives technological development, and the development of depend-
able systems is no exception. Thus, modern dependable systems are required to
be more flexible, available and dependable than their predecessors, and dynamic
reconfiguration is one way of achieving these requirements.

A significant amount of research has been performed on hardware reconfig-
uration (see [5] and [9]), but little has been done for reconfiguration of services,
especially regarding computational models, formalisms and methods appropri-
ate to the service domain. Furthermore, much of the current research assumes
that reconfiguration can be instantaneous, or that the environment can wait dur-
ing reconfiguration for a service to become available (see [14] and [13]). These
assumptions are unrealistic in the service domain. For example, instantaneous
mode change in a distributed system is generally not possible, because the system
usually has no well-defined global state at a specific instant (due to significant
communication delays). Also, waiting for the reconfiguration to complete is not
acceptable if (as a result) the environment becomes dangerously unstable or the
service provider loses revenue by the environment aborting the service request.

These observations lead to the conclusion that further research is required
on dynamic reconfiguration of dependable services, and especially on its formal
foundations, modelling and verification. In a preliminary paper [16], we exam-
ined a number of well-known formalisms for their suitability for reconfigurable

The invited speaker is Manuel Mazzara.

dependable systems. In this paper, we focus on one of the formalisms (Webπ∞)
and compare it to a π-calculus in order to perform a deeper analysis than was
possible in [16]. We use a more complex case study involving the reconfiguration
of an office workflow for order processing, define the requirements on a system
implementing the workflow and its reconfiguration, and describe the design of a
system in BPMN (see section 2). We then use an asynchronous π-calculus with
summation (in section 3) andWebπ∞ [18] (in section 4) to model the design and
to verify whether or not the design will meet the reconfiguration requirements.
We chose process algebras because they are designed to model interaction be-
tween concurrent activities. An asynchronous π-calculus was selected because
π-calculi are designed to model link reconfiguration, and asynchrony is suitable
for modelling communication in distributed systems. Webπ∞ was selected be-
cause it is designed to model composition of web services.

Thus, the contribution of this paper is to identify strengths and weaknesses
of an asynchronous π-calculus with summation and Webπ∞ for modelling dy-
namic reconfiguration and verifying requirements (discussed in section 5). This
evaluation may be useful to system designers intending to use formalisms to
design dynamically reconfigurable systems, and also to researchers intending to
design better formalisms for the design of dynamically reconfigurable systems.

2 Office Workflow: Requirements and Design

This case study describes dynamic reconfiguration of an office workflow for order
processing that is commonly found in large and medium-sized organizations
[7]. These workflows typically handle large numbers of orders. Furthermore, the
organizational environment of a workflow can change in structure, procedures,
policies and legal obligations in a manner unforseen by the original designers
of the workflow. Therefore, it is necessary to support the unplanned change of
these workflows. Furthermore, the state of an order in the old configuration may
not correspond to any state of the order in the new configuration. These factors,
taken in combination, imply that instantaneous reconfiguration of a workflow is
not always possible; neither is it practical to delay or abort large numbers of
orders because the workflow is being reconfigured. The only other possibility is
to allow overlapping modes for the workflow during its reconfiguration.

2.1 Requirements

A given organization handles its orders from existing customers using a number
of activities arranged according to the following procedure:

1. Order Receipt: an order for a product is received from a customer. The order
includes customer identity and product identity information.

2. Evaluation: the product identity is used to perform an inventory check on the
availability of the product. The customer identity is used to perform a credit check
on the customer using an external service. If both the checks are positive, the order
is accepted for processing; otherwise the order is rejected.

M. Mazzara et al.: Workflow Reconfiguration 11

3. Rejection: if the order is rejected, a notification of rejection is sent to the customer
and the workflow terminates.

4. If the order is to be processed, the following two activities are performed concur-
rently:
(a) Billing: the customer is billed for the total cost of the goods ordered plus

shipping costs.
(b) Shipping: the goods are shipped to the customer.

5. Archiving: the order is archived for future reference.
6. Confirmation: a notification of successful completion of the order is sent to the

customer.

In addition, for any given order, Order Receipt must precede Evaluation,
which must precede Rejection or Billing and Shipping.

After some time, managers notice that lack of synchronisation between the
Billing and Shipping activities is causing delays between the receipt of bills and
the receipt of goods that are unacceptable to customers. Therefore, the managers
decide to change the order processing procedure, so that Billing is performed
before Shipping (instead of performing the two activities concurrently). During
the transition interval from one procedure to the other, the following require-
ments must be met:

1. The result of the Evaluation activity for any given order should not be
affected by the change in procedure.

2. All accepted orders must be billed and shipped exactly once, then archived,
then confirmed.

3. All orders accepted after the change in procedure must be processed accord-
ing to the new procedure.

2.2 Design

We designed the system implementing the office workflow using the Business
Process Modeling Notation (BPMN) [4]. We chose BPMN because it is a widely
used graphical tool for designing business processes. In fact, BPMN is a standard
for business process modelling, and is maintained by the Object Management
Group (see http://www.omg.org/).

The system is designed as a collection of eight pools: Office Workflow, Or-
der Generator, Credit Check, Inventory Check, Reconf. Region, Bill&Ship1,
Bill&Ship2 and Archive. The different pools represent different functional en-
tities, and each pool can be implemented as a separate concurrent task (see
Figure 1). Office Workflow coordinates the entire workflow: it receives a request
from a customer, and makes a synchronous call to Order Generator to create an
order. It then calls Credit Check (with the order) to check the creditworthiness
of the customer, and tests the returned value using an Exclusive Data-Based
Gateway. If the test is positive, Office Workflow calls Inventory Check (with the
order) to check the availability of the ordered item, and tests the returned value.
If either of the two tests is negative, the customer is notified of the rejected order

12 PNSE’11 – Petri Nets and Software Engineering

Fig. 1. Office workflow - BPMN diagram of the reconfiguration

and the workflow terminates. If both tests are positive, Office Workflow calls Re-
conf. Region, which acts as a switch between configuration 1 and configuration
2 of the workflow, and thereby handles the reconfiguration of the workflow.

Reconf. Region calls Bill&Ship1 by default: it makes an asynchronous call
to the Main pool within Bill&Ship1, which uses a Parallel Gateway to call Bill
and Ship concurrently and merge their respective results, and then returns these

M. Mazzara et al.: Workflow Reconfiguration 13

results to Office Workflow. The Office Workflow then calls Archive to store the
order, then notifies the customer of the successful completion of the order, and
then terminates the workflow. However, if Reconf. Region receives a change
configuration message, it calls the Main pool within Bill&Ship2 instead, which
makes sequential a call to Bill and then to Ship, and then returns the results to
Office Workflow.

Notice that for the sake of simplicity, we assume neither Bill nor Ship pro-
duces a negative result. Furthermore, the Bill and Ship pools are identical in both
configurations, which suggests their code is replicated (rather than shared) in
the two configurations. Finally, we assume the reconfiguration is planned rather
than unplanned.

3 Asynchronous π-Calculus

The asynchronous π-calculus ([10], [3]) is a subset of Milner’s π-calculus [20], and
it is known to be more suitable for distributed implementation. It is considered a
rich paradigm for asynchronous communication, although it is not as expressive
as Milner’s π-calculus in representing mixed-choice constructs, such as a.P+b.P ′

(see [22]).
We recall the (monadic) asynchronous π-calculus. Let N be a set of names

(e.g. a, b, c, ...) and V be a set of variables (e.g. x, y, z, ...). The set of the asyn-
chronous π-calculus processes is generated by the following grammar:

P ::= x̄z
∣∣ G

∣∣ P |P
∣∣ [a = b]P

∣∣ (νx)P
∣∣ A(x1, ..., xn)

where guards G are defined as follows:

G ::= 0
∣∣ x(y).P

∣∣ τ.P
∣∣ G+G

Intuitively, an output x̄z represents a message z tagged with a name x indi-
cating that it can be received (or consumed) by an input process x(y).P which
behaves as P{z/y} upon receiving z. Furthermore, x(y).P binds the name y in
P and the restriction (νx)P declares a name x private to P and thus binds x.
Outputs are non-blocking.

The parallel composition P |Q means P and Q running in parallel. G+G is
the non-deterministic choice that is restricted to τ and input prefixes.

[a = b]P behaves like P if a and b are identical.
A(y1, ..., yn) is an identifier (also call, or invocation) of arity n. It represents

the instantiation of a defined agent. We assume that every such identifier has
a unique, possibly recursive, definition A(x1, ..., xn)

def
= P where the xis are

pairwise distinct, and the intuition is that A(y1, ..., yn) behaves like P with each
yi replacing xi.

Furthermore, for each A(x1, ..., xn)
def
= P we require: fn(P) ⊆ {x1, ..., xn},

where fn(P) stands for the set of free names in P , and bn(P) for the set of
bound names in P . The input prefix and the ν operator bind the names. For
example, in a process x(y).P , the name y is bound. In (νx)P , x is considered to

14 PNSE’11 – Petri Nets and Software Engineering

be bound. Every other occurrences of a name like x in x(y).P and x, y in x̄〈y〉.P
are free.

Due to lack of space we omit to give details on structural congruence and
operational semantics for the asynchronous π-calculus. They can be found in [1]
for the version of the calculus we use in this paper.

The Model in Asynchronous π-Calculus The model in asynchronous π-
calculus needs to keep the synchronization between actions in sequence coherent
with the workflow definition. So sequence is implemented by using parallel com-
position with prefix and postfix on the same channel. Channel names are not
restricted since the full system is not described here and has to be put in paral-
lel with the detailed implementation of the environment process described (that
will be omitted here).

The entire model is expressed in asynchronous π-calculus as follows:

Entire Model

Let params =
{customer, item,Archive,ArchiveReply,Bill, BillReply,BillShip, Confirm,
CreditCheck, CreditOk,CreditReject, InventoryCheck,
InventoryOk, InventoryReject, OrderGenerator,
OrderGeneratorReply,OrderReceipt, Reject, Ship, ShipReply, reco, recn}
We can define the Workflow process as follows:

Workflow(params) ,
(ν order) (OrderReceipt(customer, item).OrderGenerator customer, item
|OrderGeneratorReply(order).CreditCheck customer
| (creditOk().InventoryCheck item+ CreditReject().Reject order)
| (InventoryOk().BillShip + InventoryReject().Reject order)
| reco().BillShip().(Bill customer, item, order |Ship customer, item, order)
|BillReply(order).ShipReply(order).Archive order
+recn().BillShip().(Bill customer, item, order
|BillReply(order).Ship customer, item, order) |ShipReply(order).Archive order
|ArchiveReply(order).Confirmorder) |Workflow(params)

In the model, the old region is identified as follows:

reco().BillShip().(Bill customer, item, order |Ship customer, item, order)
|BillReply(order).ShipReply(order).Archive order

And the new region is:

recn().BillShip().(Bill customer, item, order
|BillReply(order).Ship customer, item, order) |ShipReply(order).Archive order

In the asynchronous π-calculus, two outputs cannot be in sequence. In order
to impose ordering between Bill and Ship, in the new region, it is necessary to
put a guard on Ship, which requires enlarging the boundary of the old region to

M. Mazzara et al.: Workflow Reconfiguration 15

include the processes in the environment of the workflow that synchronize with
Bill and Ship. We did not model these processes because they are outside the
system being designed, but the limitations of the asynchronous π-calculus imply
that we must be able to access the logic of external services for which we know
only the interfaces. For a more detailed description of this problem, please see
[12].

The entire model represents a specific instance of the workflow that spawn
concurrently another instance with fresh customer and item which here are as-
sumed to be fresh names but in reality will be user entered (but it is not relevant
to our purposes). We have to assume the existence of a “higher level” process
(at the level of the BPEL engine) that activates the entire workflow and bounds
the names that are free in the above π-calculus process. In this model channels
creditOK, creditReject, InventoryOK and InventoryReject are used to receive
the result of the credit check and inventory check, respectively. The old/new re-
gion is externally triggered using specific channels reco and recn chosen according
to the value x received on channel region:

(ν x)Workflow(param) | region(x).([x = new]recn | [x = old]reco)

In section 4 we show a more efficient solution using Webπ∞.

Analysis in π-logic Logics have long been used to reason about complex
systems, because they provide abstract specifications that can be used to describe
system properties of concurrent and distributed systems. Verification frameworks
can support checking of functional properties of such systems by abstracting
away from the computational contexts in which they are operating.

In the context of π-calculi, one can use the π-logic with the HAL Toolkit
model-checker [8]. The π-logic has been introduced in [8] to specify the behav-
ior of systems in a formal and unambiguous manner by expressing temporal
properties of π-processes.

Syntax of the π-logic The logic integrates modalities defined by Milner ([21])
with EFφ and EF{χ}φ modalities on possible future. The π-logic syntax is:

φ ::= true | ∼ φ | φ ∧ φ′ | EX{µ}φ | EFφ | EF{χ}φ

where µ is a π-calculus action and χ could be µ, ∼ µ, or ∨i∈I µi and where I is
a finite set.

Semantics of π-formulae is given below:

• P |= true for any process P ;
• P |=∼ φ iff P 6|= φ;
• P |= φ ∧ φ′ iff P |= φ and P |= φ′ ;
• P |= EX{µ}φ iff there exists P ′ such as P µ−→ P ′ and P ′ |= φ (strong
next);

16 PNSE’11 – Petri Nets and Software Engineering

• P |= EFφ iff there exists P0, ..., Pn and µ1, ..., µn, with n ≥ 0, such as
P = P0

µ1−→ P1...
µn−→ Pn and Pn |= φ. The meaning of EFφ is that φ

must be true sometimes in a possible future.
• P |= EF{χ}φ if and only if there exists P0, ..., Pn and ν1, ..., νn , with n ≥ 0,

such that P = P0
ν1−→ P1...

νn−→ Pn and Pn |= φ with:
• χ = µ for all 1 ≤ j ≤ n, νj = µ or νj = τ ;
• χ =∼ µ for all 1 ≤ j ≤ n, νj 6= µ or νj = τ ;
• χ =

∨
i∈I µi : for all 1 ≤ j ≤ n, νj = µi for some i ∈ I or νj = τ .

The meaning of EF{χ}φ is that the truth of φ must be preceded by the
occurrence of a sequence of actions χ.

Some useful dual operators are defined as usual:
false, φ ∨ φ, AX{µ}φ (∼ EX{µ} ∼ φ), < µ > φ (weak next), [µ]φ (Dual of
weak next), AGφ (AG{χ}) (always).

Properties of the dynamic reconfiguration model
We need to verify that during the reconfiguration interval the requirements

given in section 2.1 hold. For this purpose, we need to express the requirements
formally, if possible, using the π-logic.

The result of the Evaluation activity for any given order should not be
affected by the change in procedure. The following formula means what-
ever the chosen path (old or new region), an order will be billed, shipped and
archived or refused:

AG{EF{OrderReceipt()}true}
AG{

`
EF{Bill customer, item, order}true ∧ EF{Ship customer, item, order}true∧

EF{Archive order}true
´
∨ EF{Reject }true}

All accepted orders must be billed and shipped exactly once, then
archived, then confirmed. The following formula means that after an order
is billed and shipped, it is archived and confirmed, and cannot be billed nor
shipped again:

AG{EF{BillShip()}true}
AG{EF{Bill customer, item, order}true ∧ EF{Ship customer, item, order}true∧
EF{Archive order}true} ∧ EF{Confirmorder}true}
AG{{Bill customer, item, order}false ∧ {Ship customer, item, order}false}

All orders accepted after the change in procedure must be processed
according to the new procedure We can express in the π-logic the following
requirement: “after a reception on the channel recn, no other reception on chan-
nel rec0 will be accepted”. This meets the desired requirement since it is obvious

M. Mazzara et al.: Workflow Reconfiguration 17

from the model that, if a signal is received on channel recn, the order will be
processed according to the new procedure.

AG{{recn()}true AG{rec0()}false}

However, since the choice between the old procedure and the new one is non-
deterministic, this formula will not be true, although it is an essential require-
ment for the model. This result illustrates the difficulty of the asynchronous
π-calculus to model the dynamic reconfiguration properly. A first attempt to
answer this problem is presented in the next section.

4 Webπ∞

Webπ∞ is a conservative extension of the π-calculus developed for modelling and
analysis of Web services and Service Oriented Architectures. The basic theory
has been developed in [18] and [15], whilst its applicability has been shown in
other work: [12] gives a BPEL semantics in term of Webπ∞, [6] clarifies some
aspects of the Recovery Framework of BPEL, and [17] exploits a web transaction
case study (a toy example has also been discussed in [16]).

Syntax and Semantics The syntax of webπ∞ processes relies on a countable
set of names, ranged over by x, y, z, u, · · · . Tuples of names are written ũ. We
intend i ∈ I with I a finite non-empty set of indexes.

P ::= 0 | x eu | X
i∈I

xi(eui).Pi | (x)P | P |P | !x(eu).P | 〈|P ; P |〉x

It is worth noting that the syntax of webπ∞ simply augments the asyn-
chronous π-calculus with a workunit process. A workunit 〈|P ; Q|〉x behaves as
the body P until an abort x is received, and then it behaves as the event handler
Q.

We give the semantics of webπ∞ in two steps, following the approach of
Milner [19], separating the laws that govern the static relations between processes
from the laws that rule their interactions. The static relations between processes
are governed by the structural congruence ≡, the least congruence satisfying the
Abelian monoid laws for parallel and summation (associativity, commutativity
and 0 as identity) and closed with respect to α-renaming and the axioms shown
in table 1.

The scope laws are standard while novelties regard workunit and floating
laws. The law 〈|0 ; Q|〉x ≡ 0 defines committed workunit, namely workunit with
0 as body. These ones, being committed, are equivalent to 0 and, therefore, can-
not fail anymore. The law 〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x moves
workunit outside parents, thus flattening the nesting. Notwithstanding this flat-
tening, parent workunits may still affect the children by means of names. The
law 〈|z ũ |P ; Q|〉x ≡ z ũ | 〈|P ; Q|〉x floats messages outside workunit bound-
aries. By this law, messages are particles that independently move towards their

18 PNSE’11 – Petri Nets and Software Engineering

Scope laws (u)0 ≡ 0, (u)(v)P ≡ (v)(u)P

P | (u)Q ≡ (u)(P |Q) , if u 6∈ fn(P)

〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z 6∈ {x} ∪ fn(Q)

Workunit laws 〈|0 ; Q|〉x ≡ 0

〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x
〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z 6∈ {x} ∪ fn(Q)

Floating law 〈|z eu |P ; Q|〉x ≡ z eu | 〈|P ; Q|〉x
Table 1. webπ∞ Structural Congruence

inputs. The intended semantics is the following: if a process emits a message,
this message traverses the surrounding workunit boundaries until it reaches the
corresponding input. In case an outer workunit fails, recoveries for this message
may be detailed inside the handler processes.

The dynamic behavior of processes is instead defined by the reduction relation
→ which is the least relation satisfying the axioms and rules shown in table 2
and closed with respect to ≡, (x)_ , _ |_, and 〈| _ ; Q|〉z. In the table we use
the shortcut: 〈|P ; Q|〉 def

= (z)〈|P ; Q|〉z where z 6∈ fn(P) ∪ fn(Q)

COM xi ev | Pi∈I xi(eui).Pi → Pi

˘ev/ eui

¯
REP x ev | !x(eu).P → P

˘ev/eu¯ | !x(eu).P
FAIL x | 〈|Qi∈I

P
s∈S xis(fuis).Pis |

Q
j∈J !xj(euj).Pj ; Q|〉x → 〈|Q ; 0|〉

where J 6= ∅ ∨ (I 6= ∅ ∧ S 6= ∅)

Table 2. webπ∞ Reduction Semantics

Rules (com) and (rep) are standard in process calculi and model input-output
interaction and lazy replication. Rule (fail) models workunit failures: when a
unit abort (a message on a unit name) is emitted, the corresponding body is
terminated and the handler activated. On the contrary, aborts are not possible
if the transaction is already terminated (namely every thread in the body has
completed its own work), for this reason we close the workunit restricting its
name.

The model in Webπ∞ For the modelling purposes of this work, the idea
of workunit and event handler turn out to be particularly useful. Webπ∞ uses
the mechanism of workunit to bound the identified regions, and event raising
is exploited to operate the non immediate change (reconfiguration). The model
can be expressed as follows (as a shortcut we will use here process invocation):

Workflow(customer, item) ,

M. Mazzara et al.: Workflow Reconfiguration 19

(ν order) OrderReceipt(customer, item).OrderGenerator customer, item
|OrderGeneratorReply(order).CreditCheck customer
| (CreditCheckReplyt(order).InventoryCheck item
+CreditCheckReplyf (order).Reject order)
| (InventoryCheckReplyt(order).BillShip
+InventoryCheckReplyf (order).Reject order)
| 〈|BillShip().(Bill customer, item, order |Ship customer, item, order
| (ν customer)(ν item)Workflow(customer, item))
; (ν customer)(ν item)Workflown(customer, item)|〉rec
|BillReply(order).ShipReply(order).Archive order
|ArchiveReply(order).Confirmorder

Webπ∞ shows here a subtle feature which is important for modelling recon-
figurable systems. Since the floating laws of structural congruence allow the asyn-
chronous outputs in a workunit to freely escape, once the region to reconfigure
has been entered and theBillShip has been triggered,Bill customer, item, order
and Ship customer, item, order will not be killed by any incoming rec signal.
This means that, once the region has been entered by an order, that order will
go through without being interrupted by reconfiguration events and the old or-
der will be processed according to the old procedure, not the new one. Future
orders will find instead only the new procedure Workflown waiting for orders:

Workflown(customer, item) ,
(ν order) OrderReceipt(customer, item).OrderGenerator customer, item
|OrderGeneratorReply(order).CreditCheck customer
| (CreditCheckReplyt(order).InventoryCheck item+
CreditCheckReplyf (order).Reject order)
| (InventoryCheckReplyt(order).BillShip +
InventoryCheckReplyf (order).Reject order)
|BillShip().(Bill customer, item, order |BillReply(order).Ship customer, item, order)
|ShipReply(order).Archive order |ArchiveReply(order).Confirmorder
| (ν customer)(ν item)Workflown(customer, item)

As in the π-calculus model, we have to assume the existence of a top level
process activating the entire workflow and bounding all the names appearing
free in the above π-calculus process. The change in procedure will be activated
when the channel t is triggered.

(ν customer)(ν item)(ν rec)Workflow(customer, item) | t().rec

This process is also responsible for triggering the reconfiguration.

Analysis in Webπ∞ Analysis in Webπ∞ is intended as equational reasoning.
At the moment, one severe weakness of Webπ∞ is its lack of tool support, i.e. au-
tomatic system verification. However, it is clearly possible to encode Webπ∞ into
the π-calculus, being the only technical complication the encoding of the worku-
nit and its asynchronous interrupt. Once the compilation into the π-calculus has
been done, we can proceed using HAL. From one side, Webπ∞ simplifies the

20 PNSE’11 – Petri Nets and Software Engineering

modelling of dependable systems expressing with its workunit the recovery be-
havior. On the other side, it makes the verification more difficult. Luckily, there
is an optimal solution using Webπ∞ as modelling language and the π-calculus as
intermediate language, i.e. a verification bytecode. We can then offer a practical
modelling suite to the designer and still use the tool support for the π-calculus.
At the moment our research has not gone so far, so we will just discuss the three
requirements here. We will analyse the requirements in terms of equational rea-
soning (see [18] and [15]). The case study of this paper is interesting at showing
both the modelling power of Webπ∞ and the weaknesses of its reasoning system.

The result of the Evaluation activity for any given order should not
be affected by the change in procedure. The acceptability of an order
(Evaluation activity) is computed outside the region to be reconfigured, and
there is no interaction between Evaluation and the region. That means that the
Evaluation in the old procedure workflow is exactly the same as in the new pro-
cedure workflown, i.e. the checks are performed in the same exact order. We can
formally express it, in term of equational reasoning, stating that the Evaluation
activity in the old procedure workflow is bisimilar to the Evaluation activity
in the new procedure workflown which is trivially true.

All accepted orders must be billed and shipped exactly once, then
archived, then confirmed. The presence of a workunit does not affect how the
order itself is processed. The workflow of actions described by the requirement
can be formally expressed as follows:

(ν x)(ν y) (Bill customer, item, order |Ship customer, item, order
|BillReply(order).x |ShipReply(order).y |x().y().Archive order
|ArchiveReply(order).Confirmorder)

In plain words this process describes billing and shipping happening in any
order but both before archiving and confirming. The channels x and y are there
precisely to work as a joint for billing and shipping. If we want to express the
requirements in term of equational reasoning, we can require that both the old
and the new regions have to be bisimilar with the above process. However, this
is too strict since the above process allows a set of traces which is a superset
of both the set of traces of the old configuration and the new one. In this case
similarity could be considered instead of bisimilarity.

All orders accepted after the change in procedure must be processed
according to the new procedure To show this requirements has been imple-
mented in the model semantic reasoning is not necessary, structural congruence
is sufficient. The change in procedure is here modelled by triggering the rec chan-
nel and spawning the workunit handler. The handler then activates a new in-
stance of the workflow based on the new procedure scheme which has been called
workflown. The floating laws of structural congruence of Webπ∞ (definition 1)

M. Mazzara et al.: Workflow Reconfiguration 21

allow the asynchronous outputs in a workunit to freely escape the workunit itself.
Thus, once the region to reconfigure has been already entered and the BillShip
has been triggered, Bill customer, item, order and Ship customer, item, order
will not be killed by any incoming rec signal. Thus, once the region has been
entered by an order, that order will be not interrupted by reconfiguration events
so that old order will be processed according to the old procedure and not the
new one.

5 Discussion

In this section, we discuss three issues which arose during design and modelling:
how the modelling influenced our design, how the π-calculus and Webπ∞ com-
pare with respect to modelling, and correctness criteria for verification of the
workflow reconfiguration.

Modelling and Design Different formalisms have different biases on design
because of their different perspectives. In one of the alternative designs we con-
sidered, the Bill and Ship pools were outside the reconfiguration region, so that
their code was shared between the two configurations. Thus, the boundary of the
reconfiguration region was different. We chose the design in section 2.2 because
it is easier to model. It is the job of a formalist to model what the system design-
ers produce, and ask them to change the design if it cannot be modelled or is
unverifiable. Our experience with asynchronous π-calculi and Webπ∞ suggested
that extending the boundary of the reconfiguration region to include billing and
shipping was a practical choice. This is because in the asynchronous π-calculus
(and consequently in Webπ∞), two outputs cannot be in sequence. So, in order
to impose ordering between Bill and Ship, we had to enlarge the boundary
of the reconfiguration region to include the processes in the environment of the
workflow that synchronize with them. The negative side of this solution is that
we have been forced to include in the region parts of the system that were not
intended to be changed. Here the asynchronous π-calculus shows its weakness in
terms of reconfiguring processes dynamically.

Comparison of π-calculus and Webπ∞ This paper has shown the Webπ∞
workunit as being able to offer a more efficient solution to the problem of mod-
elling the case study. In particular, by means of the Webπ∞ floating laws, re-
configuration activities can be better handled. However, at the moment, one
weakness of Webπ∞ is its lack of tool support, whereas the π-calculus is sup-
ported by verification tools (e.g. TyPiCal [11] and HAL [8]). Therefore, Webπ∞
has to be intended as a a front end for modelling with the the π-calculus as the
verification bytecode. As mentioned above, neither the asynchronous π-calculus
nor Webπ∞ can have two outputs in sequence, and this leads to the specific
design choice.

22 PNSE’11 – Petri Nets and Software Engineering

Correctness Criteria The standard notion of correctness used in process alge-
bras is congruence based on bisimulation. However, our requirements are not all
expressible as congruences between processes. The first and third requirements
can be expressed as congruences, and so bisimulation can be used in the reason-
ing. The second requirement cannot be expressed as a congruence because the
old and new configurations are not behaviourally congruent. So, we have used
reasoning based on simulation instead. Thus, we found that congruence as it has
been used in section 4 is not always applicable for verifying the correctness of
our models. Therefore, in section 3 we have investigated model checking.

The discussion leads us to the following:

1. It is easier to model workflow reconfiguration in Webπ∞ than in the asyn-
chronous π-calculus. However, modelling would be even easier in a syn-
chronous version of Webπ∞.

2. Model checking is more widely applicable than equational reasoning based
on congruences for verifying workflow reconfiguration.

These two conclusions seem to have wider applicability than just reconfigu-
ration of workflows; but this needs to be verified.

FutureWork We intend to proceed with a deeper analysis of alternative designs
for this case study, and evaluate other formalisms, such as VDM [2] and Petri
nets [23]. We are also working on a BPEL implementation of the system. We also
need larger industrial case studies to help us to design and evaluate formalisms
for the modelling and analysis of dynamic reconfiguration.

Acknowledgments

This work is partly funded by the EPSRC under the terms of a graduate studentship.
The paper has been improved by conversations with John Fitzgerald, Cliff Jones,
Alexander Romanovsky, Jeremy Bryans, Gudmund Grov, Mario Bravetti, Massimo
Strano, Michele Mazzucco, Paolo Missier and Mu Zhou. We also want to thank mem-
bers of the Reconfiguration Interest Group (in particular, Kamarul Abdul Basit, Carl
Gamble and Richard Payne), the Dependability Group (at Newcastle University) and
the EU FP7 DEPLOY Project (Industrial deployment of system engineering methods
providing high dependability and productivity).

References

1. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous π-calculus. Theoretical Computer Science, 195(2):291 – 324, 1998.

2. D. Bjorner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer, 1978.

3. G. Boudol. Asynchrony and the π-calculus. rapport de recherche 1702. Technical
report, INRIA, Sophia-Antipolis, 1992.

4. BPMN. Bpmn - business process modeling notation. ‘http://www.bpmn.org/.

M. Mazzara et al.: Workflow Reconfiguration 23

5. A. Carter. Using dynamically reconfigurable hardware in real-time communications
systems: Literature survey. Technical report, Computer Laboratory, University of
Cambridge, November 2001.

6. N. Dragoni and M. Mazzara. A formal semantics for the ws-bpel recovery frame-
work - the pi-calculus way. In WS-FM’09, Springer Verlag, 2009.

7. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In Proceedings of the Conference on Organizational Computing Systems (COOCS
1995). ACM, 1995.

8. G. L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verifica-
tion environment for mobile processes. ACM Transactions on Software Engineering
and Methodology, 12(4):440–473, 2003.

9. P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu. An overview of re-
configurable hardware in embedded systems. EURASIP J. Embedded Syst., 2006,
January 2006.

10. K. Honda and M. Tokoro. An object calculus for asynchronous communica-
tion. In P. America, editor, European Conference on Object-Oriented Programming
(ECOOP), pages 133–147. Lecture Notes in Computer Science 512, 1991.

11. N. Kobayashi. Typical: Type-based static analyzer for the pi-calculus.
http://www.kb.ecei.tohoku.ac.jp/ koba/typical/.

12. R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming, 70(1):96–118, 2007.

13. J. Magee, N. Dulay, and J. Kramer. Structuring parallel and distributed programs.
Software Engineering Journal (Special Issue), 8(2):73–82, 1993.

14. J. Magee, J. Kramer, and M. Sloman. Constructing distributed systems in conic.
IEEE Transactions on Software Engineering, 15(6):663–675, 1989.

15. M. Mazzara. Towards Abstractions for Web Services Composition. PhD thesis,
Department of Computer Science, University of Bologna, 2006.

16. M. Mazzara and A. Bhattacharyya. On modelling and analysis of dynamic recon-
figuration of dependable real-time systems. In DEPEND, International Conference
on Dependability, 2010.

17. M. Mazzara and S. Govoni. A case study of web services orchestration. In COOR-
DINATION, pages 1–16, 2005.

18. M. Mazzara and I. Lanese. Towards a unifying theory for web services composition.
In WS-FM, pages 257–272, 2006.

19. R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

20. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

21. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 1993.

22. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous pi-calculus. In Mathematical Structures in Computer Science, pages 256–
265. ACM, 1997.

23. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Fakultät Matematik und
Physik, Technische Universität Darmstadt, 1962.

24 PNSE’11 – Petri Nets and Software Engineering

Part II

Long Presentations

Efficient Implementation of
Prioritized Transitions for High-level Petri Nets

Michael Westergaard⋆ and H.M.W. (Eric) Verbeek

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

{m.westergaard,h.m.w.verbeek}@tue.nl

Abstract. Transition priorities can be a useful mechanism when mod-
eling using Petri nets. For example, high-priority transitions can be used
to model exception handling and low-priority transitions can be used to
model background tasks that should only be executed when no other
transition is enabled. Transition priorities can be simulated in Petri nets
using, e. g., inhibitor arcs, but such constructs tend to unnecessarily clut-
ter models, making it useful to support priorities directly.
Computing the enabling of transitions in high-level Petri nets is an expen-
sive operation and should be avoided. As transition priorities introduce
a nonlocal enabling condition, at first sight this forces us to compute en-
abling for all transitions in a highest-priority-first order, but it is possible
to do better. Here we describe our implementation of transition priorities
in CPN Tools 3.0, where we minimize the number of enabling computa-
tions. We describe algorithms for executing transitions at random, useful
for automatic simulation without user interactions, and for maintaining a
set of known enabled transitions, useful for interactive user-guided simu-
lation. Experiments show that using our algorithms we can execute 4−7
million transitions a minute for real-life models and more than 20 million
transitions a minute for other models, a significant improvement over the
1− 5 million transitions a minute possible for simpler algorithms.

1 Introduction

Prioritized transitions can be of use when modeling using Petri nets. For ex-
ample, one can give a transition high priority to force it occur before other
transitions if it is enabled, which is useful for handling exceptions, by letting
the exception handler have higher priority than transitions handling usual cases.
One can assign a transition a lower priority to prevent it from occurring unless
no other transitions are enabled, which is useful for implementing a scheduler
that should only be executed when all interesting tasks are unable to proceed.

In this paper we are concerned with efficient implementation of simulation of
high-level Petri net models with transitions with priorities as well as efficient en-
abling updates. The described algorithms are implemented in CPN Tools 3.0 [4].
⋆ This research is supported by the Technology Foundation STW, applied science

division of NWO and the technology program of the Dutch Ministry of Economic
Affairs.

Priorities can be implemented using inhibitor arcs or any construction which
serves the same purpose (by adding inhibitor arcs from places which have arcs
to transitions with higher priority), but it is beneficial to support them directly
in an implementation to reduce clutter in models. Furthermore, a direct imple-
mentation makes it possible to make enabling computation more efficient than
implementations relying on general constructs.

Enabling computation of high-level Petri nets, such as coloured Petri nets
(CPNs) supported by CPN Tools, is computationally expensive. To alleviate
this, tools can implement algorithms to avoid having to compute the enabling
of transitions too often. For example, if the goal is just to randomly execute
transitions, there is no need to compute the enabling for all transitions – as
soon as an enabled transition is found, it can be executed. By using caching of
enabling status and structural properties of the model, the number of enabling
computations can be reduced even further. We extend such an algorithm to
handle prioritized transitions by modifying the step where transitions are picked
at random to instead pick transitions at random in a highest-priority-first order,
so enabled transitions with higher priority are executed before transitions with
lower priority. We present an algorithm and data structures supporting this.

When a tool shows a model during simulation in a graphical user interface,
the enabling status of transitions is typically shown to allow users to pick between
enabled transitions for guided simulation. To do this, the enabling state of all
transitions must be computed. It is not necessary to recompute the enabling
status of all transitions after each execution of a transition, though. We only need
to recompute the enabling of transitions for which it has potentially changed,
and we can give a static over-approximation of this which roughly says that if
a transition is connected to a place also connected to the executed transition,
its enabling may have changed. We present an even better approximation in
Sect. 2. This approximation is not good enough if allowing priorities, as the
execution of a transition may enable or disable a transition with the highest
priority, thereby causing unconnected transitions to be disabled or enabled. We
present an algorithm for over-approximating the set of transitions influenced by
this.

The remainder of this paper is structured as follows: in the next section, we
present background material and in Sect. 3 we present algorithms for efficiently
finding a random enabled transition taking priorities into account, and for effi-
ciently updating the enabling status of all transitions. In Sect. 4, we conclude
and provide directions for future work.

2 Background

In this section we briefly introduce coloured Petri nets using an example and
describe an efficient algorithm for enabling computations. The algorithm is de-
scribed in further detail in [6, 11].

A Petri net is a bipartite graph, where the nodes are partitioned into places
and transitions . Places are usually drawn as circles or ellipses and transitions

28 PNSE’11 – Petri Nets and Software Engineering

n

n+1 n

nnn n

nn

e

P_HIGH

d

P_HIGH

cb

a

@+5

P_LOW

C

INT

B

INT

A

1

INT

Dependency Set Disable Set

a {b, c} {a}
b {a} {b, c}
c {d, e} {b, c}
d {b, c} ∅
e ∅ {e}

Fig. 1: A simple coloured Petri net.

are typically drawn as rectangles or lines. In Fig. 1, we see a Petri net with 3
places (A–C) and 5 transitions (a–e). Places can contain tokens and represent
the state of the system. In coloured Petri nets tokens are distinguishable and
can have a value from the type of the place they reside on. In Fig. 1, all places
have type INT (integer) and the only token is a single one with the value 1
residing on place A. Places and transitions are connected using directed arcs.
Arcs describe preconditions and postconditions for transitions and are inscribed
with expressions which may contain typed variables . For example, the arc from
the place A to the transition a has inscription n, which is a variable of type INT.
We allow double arcs as an abbreviation of an arc in both directions with the
same expression. In the example, we have a double arc between C and d.

A transition of a CPN model is enabled if there exists a binding of values to
all variables on arcs surrounding it so all input places (places with arcs to the
transition) contain all tokens dictated by evaluation of the corresponding arc
expressions. A transition with a binding is called a binding element . In Fig. 1,
the transition a is enabled in the binding n = 1 as A contains a single token
with value 1. An enabled binding element can be executed , consuming tokens
on input places, and producing new tokens on output places (places with an arc
from the transition). When a is executed in the binding n = 1, it consumes the
single token 1 from A and produces a new token on the place B.

Tokens can have an attached time stamp, and are only available when a
global clock reaches a value larger than or equal to their associated time stamp.
Transitions can have execution times, shown as @+ annotations. In Fig. 1 only
transition a has an execution time, namely 5. If a transition with an execution
time is executed, all produced tokens shall have a time stamp that is the current
global time plus the execution time of the transition. For example, if a is executed
at time 2 in the binding n = 1, the token on A is consumed and a new token
with value 1 and a time stamp of 7 (2 + 5) is produced on B. Transitions b and
c are not enabled before the global time reaches 7.

We can at any time partition transitions into enabled and disabled (i. e., not
enabled) transitions. Computing enabling is a complex task, so CPN Tools im-
plements an algorithm which uses heuristics to find bindings in a way that is fast
in practice (see [6, 11] for details), but even using this technique, computation
takes considerable time. If we just want to execute a random transition, there
is no need to compute the enabled state of all transitions; we randomly pick a

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 29

transition, check whether it is enabled, and if it is we execute it in a random
binding. If the transition is not enabled, we cannot execute it and just continue
with the next transition. This strategy, although better than computing the en-
abled state of all transitions, throws away information, namely that a transition
is known to be disabled. As we execute transitions, transitions may move from
disabled to enabled and vice versa, but only some transitions can move when
certain other transitions are executed. For example, executing transition a in
Fig. 1 can never alter the enabled state of e as the places they are connected do
not intersect. We can exploit this to do a more efficient enabling computation.
For example, during an execution of the model in Fig. 1, we first try executing
transition e, and find it is disabled. We then try executing a and succeed. Now,
there is no need to recompute the enabling of transition e as the enabling of
this transition cannot be altered by the execution of a. The dependency set of
a transition t captures this and is the set of all transitions that may be enabled
by executing t. This can be computed as all transitions for which an output
place of t is an input place (not counting places connected with double arcs to
t). Similarly, the disable set is the set of transitions that can become disabled
by executing a transition. We have summarized the dependency sets and disable
sets of transitions of Fig. 1 in the table in the right side of the figure.

When we deal with timed models, we can have an additional state for each
transition: it is not enabled right now, but may become enabled at a later stage
when time has increased. This leads us to partitioning transitions into three sets:
the Disabled, the Unknown, and the MaybeReady. The first are transitions known
to be disabled, the second are transitions for which the enabled state is not yet
known, and the last is for transitions that are not enabled but may become so
at a later point in time. We note, we do not have a set for enabled transitions,
as we immediately execute a transition if it is found to be enabled.

An algorithm for random execution of transitions is shown as Algorithm 1.
The algorithm works in time epochs, where Unknown contains all transitions that
are possibly enabled in the current epoch and MaybeReady transitions that may
become enabled in a later epoch. We start with all transitions in the MaybeReady
set. We start an epoch by increasing the time of the epoch to the least time stamp
any transition of MaybeReady can be enabled (l. 5) and move all transitions that
can be enabled at that time to Unknown (l. 6). As long as transitions can be
enabled at the current epoch (l. 7), we pick one randomly (l. 8). We assume
the existence of a function Enabled which returns one of three values: enabled,
disabled, and maybe_ready_at(n), where the last value not only indicates that
the transition is not enabled now, but also provides an estimate (n) of when the
transition may be enabled. If a transition is not enabled it is moved to either
Disabled or MaybeReady. If the picked transition is enabled (l. 9), we execute it,
add its dependency set to Unknown and remove its dependency set from Disabled
and MaybeReady (ll. 10–13). If a transition is disabled or maybe_ready_at(n), we
move it from Unknown to either Disabled or MaybeReady. The inner while loop
(ll. 7–19) executes all transitions enabled in a single epoch, and the outer loop

30 PNSE’11 – Petri Nets and Software Engineering

Algorithm 1 Algorithm for enabling computation for timed models.
1: Unknown← ∅
2: Disabled← ∅
3: MaybeReady← {0} × Transitions.all
4: while MaybeReady 6= ∅ do
5: IncreaseT ime(MaybeReady)
6: Unknown← RemoveLeast(MaybeReady)
7: while Unknown 6= ∅ do
8: Pick any t ∈ Unknown
9: if Enabled(t) = enabled then

10: Execute(t)
11: Unknown← Unknown ∪DependencySet(t)
12: Disabled← Disabled \DependencySet(t)
13: MaybeReady← MaybeReady \DependencySet(t)
14: else if Enabled(t) = disabled then
15: Unknown← Unknown \ {t}
16: Disabled← Disabled ∪ {t}
17: else if Enabled(t) = maybe_ready_at(n) then
18: Unknown← Unknown \ {t}
19: MaybeReady← MaybeReady ∪ {(n, t)}

(ll. 4–19) executes all epochs. The algorithm terminates when (if) there are no
more transitions in MaybeReady and Unknown, so all transitions are in Disabled.

The operations needed for Unknown are to add all transitions, pick a random
element, add a set of elements not already contained, and remove a particular
element. This can be efficiently implemented by enumerating all transitions from
0, 1, . . . , |Transitions| − 1, storing them in an array A of size |Transitions| and
adding a pointer last pointing to the position after the last element of Unknown.
Add all transitions can be performed by setting all entries of the array to their
index (A[i] := i) and setting the last pointer to |Transitions|, picking a random
element corresponds to drawing a random number r ∈ {0, 1, . . . , last − 1} and
returning the value A[r]. Adding a set of not already contained elements con-
sists of adding the elements to positions last, last+1, . . . and incrementing last
accordingly. Removal of an element consists of swapping the element with the
last one and decrementing the last counter. By combining the get random ele-
ment and remove operations (this is possible by moving lines 15 and 18 up after
line 8 in algorithm 1 and adding any transition to its own dependency set) we
can perform picking in constant time and insertion in time linear in the number
of elements we insert. We call this data-structure a RandomSet and use it to
implement Unknown. For MaybeReady we insert each transition with a weight,
namely the time at which it is earliest enabled, and only remove elements with
the least weight, which naturally makes us implement MaybeReady as a priority
queue, allowing us to add and remove elements in time log |Transitions| for each
element. Storing the position of elements in the priority queue also allows us to
remove internal elements (needed to remove the dependency set of a transition)
in the same time. We never read from the Disabled set, and hence do not need

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 31

to explicitly represent it. It is only shown to make the algorithm clearer (and
can be computed as the complement of Unknown and MaybeReady anyway).

3 Algorithm

In this section we develop an algorithm for fast random execution of transitions
for timed coloured Petri net models using priorities. We also develop algorithms
for operations useful for graphical tool support for simulation and modification
of such models. We also present experimental performance data of the algorithms
on both toy examples and several real-life models [5, 10, 12] developed in other
contexts.

When we talk about coloured Petri nets with priorities, we assign to each
transition an expression evaluating to a nonnegative integer indicating the pri-
ority of the transition. Priorities considered here are global and cannot depend
on the binding of the transition; we later discuss other priority concepts. We
can think of the priority as a function assigning to each transition t a numeric
priority, Priority(t)1. At any point in time, a transition is preenabled if all to-
kens required for executing the transition are available (also taking time into
account). Only the transitions with the highest priority among the preenabled
transitions are actually enabled. In the model in Fig. 1, we have assigned pri-
orities to a, d, and e, namely P_LOW, P_HIGH, and P_HIGH respectively. We
assume we have defined constants such that P_LOW < P_NORMAL < P_HIGH
and that transitions without a priority inscription have priority P_NORMAL.
Here we just use three levels of priorities, but our algorithm handles an arbitrary
number, p.

3.1 Random Execution

Our goal is to randomly execute transitions quickly, adhering to the priorities.
We use algorithm 1 as a basis. Extending this algorithm to handle priorities
is simple: instead of picking transitions completely randomly in line 8, we pick
them randomly among the transitions with the highest priority.

A way to implement this efficiently is to use a priority queue of RandomSets
for Unknown. That is, for each priority, we have a RandomSet like earlier. We can
get nearly the same time guarantees for this implementation as for the simple
RandomSet. We can get and remove an element with the lowest priority in time
log p where p is the number of different priorities used (3 in the example). This
extra cost (compared with constant time previously) is incurred as we may have
to rebalance the priority queue. The time required to add elements to Unknown
depends on the implementation. If we use no auxiliary data structure, we may
need to search the priority queue for the correct RandomSet to insert into, i. e.,
insertion takes time p for each element. We can keep a search tree mapping pri-
orities to RandomSets, lowering the insertion time to log b for each element. We
1 In our implementation we actually use a low number as high priority, but our expla-

nation shall not reflect that for improved readability.

32 PNSE’11 – Petri Nets and Software Engineering

can also maintain an array mapping priorities to RandomSets, bringing down
insertion time for each element to constant time. This, however, comes at the
cost of using memory linear in the highest numeric value of a priority. Finally,
we could store the RandomSets in a hash-map mapping priorities to the corre-
sponding RandomSet, which allows constant time look-up and using space linear
in p but using a larger constant than using the array. Unless p is large, which
one we use in practice has little influence on the speed of the algorithm. We do
not expect p to be larger than 10 in practice. We call any such implementation a
PriorityRandomSet and obtain an algorithm for random execution of transitions
adhering to priorities by using algorithm 1 with a PriorityRandomSet implemen-
tation for Unknown. In CPN Tools we use the implementation using an array as
index into the priority queue to impose as little overhead in execution time as
possible (as we do not have to traverse a pointer-based data-structure, but just
look up a value in an array). We notice that if p = 1 all representations collapse
to the same as the implementation not taking priorities into account, as we never
have to rebalance the priority queue and search in the auxiliary data-structure
pointing into the priority queue.

3.2 Random Enabling Computation

If we want to compute enabling for all transitions, this is easily done: sort the
transitions according to priority and compute enabling highest-priority first.
When an enabled transition is found, we stop computing enabling for transi-
tions with lower priority.

Sometimes this may not be desired, however. For example, if a user is only
looking at part of a model, the tool may only need to compute enabling for parts
of the transitions (the visible ones) to show enough information to the user. Fur-
thermore, we wish our algorithm to also efficiently handle maintenance of a set
of enabled transitions, which can be done without recomputing enabling for all
transitions. Hence, we seek an algorithm for computing the enabling of a random
transition as efficiently as possible but still adhering to priorities. Furthermore,
we want the algorithm to efficiently compute enabling of subsequent transitions,
i.e., the main focus is on amortized running time.

When we want to compute enabling for a transition, we need to know whether
any transition with higher priority is enabled. If we are computing enabling for
more than one transition, part of this work may be reusable. For example, in
Fig. 1, if we want to compute the enabling for a, b and c, we first need to establish
the enabling of d and e as their priorities are higher. Naturally, this computation
only needs to be done once, even if we first compute enabling for a and b and in
a subsequent call (without executing any transition) for c.

The idea of our enabling computation algorithm is to use the data-structures
Unknown, Disabled, and MaybeReady from algorithm 1. Ignoring priorities for the
time being, we update the data-structures as in the inner loop in lines 8–19 of
algorithm 1, except we do not execute transitions, and hence do not do operations
based on dependency sets (ll. 11–13). The adapted algorithm is algorithm 2. The
algorithm only checks if transitions are enabled at the current time, and needs

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 33

Algorithm 2 Algorithm for checking enabling without priority.
1: proc CheckEnabling(t) is
2: if t /∈ Unknown then
3: return false
4: else
5: if Enabled(t) = enabled then
6: return true
7: else if Enabled(t) = disabled then
8: Unknown← Unknown \ {t}
9: Disabled← Disabled ∪ {t}

10: return false
11: else if Enabled(t) = maybe_ready_at(n) then
12: Unknown← Unknown \ {t}
13: MaybeReady← MaybeReady ∪ {(n, t)}
14: return false

Algorithm 3 Simple algorithm for checking enabling with priority.
1: SortedTransitions← PrioritySort(Transitions.all)
2: proc CheckEnablingPriority(t) is
3: for all t′ ∈ SortedTransitions do
4: if Priority(t′) > Priority(t) then
5: if CheckEnabling(t′) then
6: return false
7: else
8: return CheckEnabling(t)
9: return CheckEnabling(t)

somebody external to increase time and move elements from MaybeReady to
Unknown when Unknown becomes empty. We note that we could use a bit-array
of entries in Unknown to retain constant time look-up in line 2 and maintain the
performance of all other operations.

To also handle priorities, we can use algorithm 2 as a subprocedure to com-
pute preenabledness, i. e., whether a transition is enabled when ignoring prior-
ities. A simple way to do this is shown as algorithm 3; we sort all transitions
according to priority and process them highest-priority-first until we reach t. If
we find a preenabled transitions with higher priority than t, we return false. If
we do not find a preenabled transition with higher priority than t we return the
preenabledness of t. We assume that we traverse the transitions in a highest-
priority-first order in line 3, and have introduced early termination as soon as
the condition in the if statement in line 4 no longer holds. This is acceptable,
as enabling of a transition with the same or lower priority cannot affect the en-
abling of t. If a transition is in Disabled it does not only mean it is disabled, but
the stronger condition that it is not even preenabled.

We choose to compute SortedTransitions based on all transitions instead of
based on Unknown (which would also work), as we then can precompute this for

34 PNSE’11 – Petri Nets and Software Engineering

a given model, making the execution CheckEnablingPriority independent of
this computation.

When this algorithm is called repeatedly, it only calls Enabled for each tran-
sition with higher priority than the first preenabled transition or the transition
with the lowest priority (whichever is higher) plus once for each call (as soon
as a transition is marked as disabled, it is no longer in Unknown). The number
of calls to CheckEnabling is the sum of the numbers of transitions with higher
priority than each of the transitions, which can be quadratic in the number of
transitions (if each transition has a unique priority and only the one with the
highest priority is enabled). A call to CheckEnabling is cheap as long as it does
not result in a call to Enabled, but if we want to limit the number of calls here,
we could introduce an approximation of the priority of the first enabled transi-
tion in SortedTransitions. As long as we have not found an enabled transition,
this estimate is −∞, and it is set to the priority of the first enabled transition
as soon as one is found. We also maintain an index of the last transition checked
for enabling, so we do not check transitions already verified to be disabled again,
thus skipping calls to CheckEnabling. The resulting algorithm allows the same
bound on the number of calls to CheckEnabling, namely one for each call plus
one for each transition with priority higher than or equal to the first preenabled
transition or the transition with the lowest priority (whichever is higher).

In CPN Tools we have implemented the version of the algorithm shown in
algorithm 3, i. e., without estimation of the priority of the first enabled transition.
This is done because CPN models rarely have more than a few transitions (50-
100), so traversing SortedTransitions imposes a very small overhead.

3.3 Enabling Set Maintenance

Often we wish to run a random simulation and show intermediate results to
users. We therefore wish to merge algorithm 1 (augmented to handle priority as
described earlier) and 3 into a single algorithm sharing Unknown, Disabled, and
MaybeReady in a way that makes it possible to do random simulation as well as
to check enabling of selected transitions with as few calls to Enabled as possible.

We can get by with few changes, as we do not have to change algorithm 3
as long as we faithfully maintain Unknown, Disabled, and MaybeReady. The best
place to call CheckEnablingPriority is between lines 9 and 10 in algorithm 1,
as this is the only place we know we have increased the time sufficiently that a
transition is enabled.

We can call CheckEnablingPriority for all the transitions we are interested
in, but that is not necessary. The reason we wish to avoid that in CPN Tools
is that this incurs a communication overhead, as the GUI and the simulator are
separate processes. This can be relevant for any tool if the number of transitions
is high, as enabling checks no longer depend directly on the total number of
transitions in the model.

If we disregard priority, the enabling status can only have changed for tran-
sitions in the dependency set of the last transition executed, but when taking
priority into account, things are not as simple, as the enabling of a transition

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 35

Algorithm 4 Algorithm for random simulation using priority while maintaining
the set of all enabled transitions.
1: SortedTransitions← PrioritySort(Transitions.all)
2: Unknown← ∅
3: Disabled← ∅
4: MaybeReady← {0} × Transitions.all
5: Enabled← ∅
6: while MaybeReady 6= ∅ do
7: IncreaseT ime(MaybeReady)
8: Unknown← RemoveLeast(MaybeReady)
9: while Unknown 6= ∅ do

10: Enabled← {t′ ∈ Unknown | CheckEnablingPriority(t′)}
11: while Enabled 6= ∅ do
12: Pick any t ∈ Enabled
13: Execute(t)
14: Unknown← Unknown ∪DependencySet(t)
15: Disabled← Disabled \DependencySet(t)
16: MaybeReady← MaybeReady \DependencySet(t)
17: Enabled← Enabled \DisableSet(t)
18: New←

{t′ ∈ DependencySet(t)∪DisableSet(t) | CheckEnablingPriority(t′)}
19: if New 6= ∅ then
20: if ∃t1 ∈ New, t2 ∈ Enabled.P riority(t1) > Priority(t2) then
21: Enabled← New
22: else
23: Enabled← Enabled ∪ New

with higher priority than all currently enabled transitions will disable them. We
know that all transitions that have remained in the Disabled set since last time
are still there (i. e., if a transition was not preenabled before and not in the
dependency set of the transition executed last, it is still not preenabled). We
also know that only if new transitions become enabled do we have to disable
other transitions. If we disable all enabled transitions and do not enable any
with the same or higher priority, we need to consider the preenabled transitions
or increase the model time. We can thus compute the enabled transitions using
algorithm 4. Here, we maintain a set Enabled in addition to the ones we already
maintain. This set contains all enabled transitions and aside from initialization
(l. 10), which takes place initially and whenever we need to increment time be-
cause no more transitions are enabled, we only ever update it according to the
dependency set and the disable set of executed transitions (ll. 17, 20, 23, 25, and
27). This algorithm can be made interactive by pausing and asking the user for
a transition to execute in line 12.

3.4 Extension to Other Priority Concepts

While the priority concept detailed until now, assigning to each transition a fixed
numeric priority, is in line with standard statically prioritized Petri nets [3], it is

36 PNSE’11 – Petri Nets and Software Engineering

not very high-level. For example, we cannot assign higher priority to a specific
task in a folded net (such as assigning d priority depending on n in Fig. 1). In [2]
a dynamic priority concept is adopted. This allows priorities to depend on the
entire marking of the model. In our opinion, this is way too centralized to easily
comprehend and specify.

With CPNs the natural way to assign dynamic priorities to transitions is
using general expressions just like guards or arc expressions. Although this is a
natural priority concept for coloured Petri nets, we have chosen not to adopt it.
The problem is that when the priority depends on the binding of transitions,
we have to compute every preenabled binding of every transition, subsequently
compute the priorities for each preenabled binding element, and finally pick one
with highest priority. Although this is conceptually nice and consistent with the
other inscriptions, it leads to dramatically decreased performance. The remain-
der of this section is dedicated to extending the static notion of priority presented
hitherto while compromising performance as little as possible.

Using a Subset of Variables in Priorities CPN Tools, in addition to re-
stricting the number of times enabling of a transition is called, also partitions
all variables surrounding a transition into binding groups. A binding group is a
subset of the variables surrounding a transition that can be assigned values inde-
pendently of all other variables (i. e., if two bindings of a transition are enabled,
the binding obtained by replacing the value of all variables in a binding group in
the first binding by the binding of the same variables from the second binding
is also enabled). Variables that occur in the same arc expression or the guard
must be within the same group. By requiring that all variables occurring in the
priority expression come from the same binding group, we can just compute all
possible bindings of variables in that binding group instead of for all variables
of the transition.

It is always correct to combine two binding groups into one, so in the worst
case transitions only have one binding group, forcing us to compute all enabled
bindings of all transitions anyway. We believe, though, that only a small sub-
set of variables will be used in the priority, typically just a process ID or an
independent priority on a place. In those cases, we can compute the priority for
all possibilities of the binding group, schedule the transition with all resulting
priorities, and execute it like before. This approach requires that we dynamically
add/remove transitions to SortedTransitions and compute all partial bindings for
the binding group comprising variables of the priority inscription for all transi-
tions in DependencySet(t)∪DisableSet(t) whenever we execute t. We have not
implemented this, as we believe that users may inadvertently build nets that
take prohibitively long to simulate, and many interesting cases can be solved by
splitting a transition into several, one for each desired priority. For example, if
we want d in Fig. 1 to execute with low priority if n > 5, we can just make
two copies of d, one with high and one with low priority, and give the highly
prioritized one a guard n<=5 and the one with low priority a guard n>5.

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 37

Scoped Priorities It is often useful to be able to use scoped priorities. For
coloured Petri nets with hierarchy [7], this means that we would like to say that
a given transition has higher or lower priority than all other transitions on the
same page (module), but it should not necessarily be considered less important
than enabled transitions on other pages. This is useful for implementing multiple
schedulers (e. g., for two separate but connected systems) and for handling errors
in multiple places without preempting unconnected operations (e. g., handle stale
messages on different communication channels). Furthermore, making priorities
local makes it much easier to use modular analysis techniques.

We can implement scoped priorities by running any of the algorithms for
each page in isolation (using algorithm 1 with a PriorityRandomSet for random
simulation, algorithm 3 if we want to compute enabling, and using algorithm 4
to maintain a set of enabled transitions). We introduce a new top loop which
randomly selects a page to execute a step on. We have not implemented this in
CPN Tools as we have not found an elegant way of having both scoped and global
priorities coexist in an easy-to-understand manner. An added advantage is that
flattening of a hierarchical CPN model remains a purely syntactical operation,
where we would otherwise have to consider interplay of local priorities.

3.5 Experimental Validation

We have compared the algorithm for random non-interactive simulation (algo-
rithm 3) developed in this section with a naive algorithm just evaluating enabling
in a highest-priority-first order and an algorithm computing all enabled bindings
for all transitions before selecting a transition to execute. Our findings are sum-
marized in Table 1. We have executed the algorithms with three toy examples
shipping with CPN Tools: the dining philosophers, a distributed database, and a
simple stop-and-wait protocol. We have also tested with three industrial exam-
ples: a protocol for routing in mobile ad-hoc networks (ERDP) [10], the DYMO
protocol for route discovery in mobile ad-hoc networks [5], and a protocol for
operational support for workflow execution (OS) [12]. All models have been de-
veloped independently of the implementation of priorities and hence represent
natural examples and not pathological examples designed to put our algorithms
in a good light. We also show extended versions of the operational support pro-
tocol, modeling more details of the system, and a version with all extensions
disabled in the model which is behaviorally equivalent to the original model, but
has more transitions to consider. We have made large and small versions of the
OS model; the small model (OS) only has a few participants, making the size
of the model suitable for state-space analysis, and the large version (OS’) has
many more participants and can only be analyzed using simulation. The three
versions of OS use priorities while the other models do not (as the others were
developed before CPN Tools supported priorities). For each model, we show the
complexity as reflected by the number of modules, the number of transition in-
stances, and the number of place instances. We also show the number of place
instances after merging all places in a port/socket assignment relationship as

38 PNSE’11 – Petri Nets and Software Engineering

Table 1: Experimental results.
Model Instances Transitions/minute

Pages Transitions Places All Bindings Priority Sorted Algorithm 3

Philosophers 1 3 3 (3) 3.21 · 106 12.39 · 106 22.19 · 106
Database 1 5 9 (9) 5.01 · 106 12.20 · 106 17.26 · 106
Protocol 1 5 10 (10) 2.81 · 106 7.42 · 106 21.18 · 106

ERDP 14 16 65 (11) 0.50 · 106 1.20 · 106 3.97 · 106
DYMO 15 25 55 (18) 0.75 · 106 2.53 · 106 4.14 · 106
OS 25 42 134 (25) 2.44 · 106 4.01 · 106 6.64 · 106
Extended OS 1 31 50 164 (36) 1.68 · 106 2.70 · 106 6.26 · 106
Extended OS 2 31 50 164 (36) 2.06 · 106 3.29 · 106 6.05 · 106
OS’ 25 42 134 (25) 0.43 · 106 1.24 · 106 4.21 · 106
Extended OS 1’ 31 50 164 (36) 0.37 · 106 0.94 · 106 4.11 · 106
Extended OS 2’ 31 50 164 (36) 0.44 · 106 1.21 · 106 4.32 · 106

well as places in a fusion group in parentheses. We show the number of transi-
tions we can execute for each model and algorithm. These tests are performed by
running CPN Tools 3.0.3 on a computer with a 2.7 GHz Core i7 Sandy Bridge
dual core CPU (using one core only). All tests were run for 5 minutes and the
average has been reported. The tests repeatedly execute a model and resets the
scheduler structures Unknown and MaybeReady as well as the state of the model
when no more transitions are enabled. We have not evaluated the performance of
algorithm 4 as it incurs a large communication overhead due to the architecture
of CPN Tools. We have not compared with a baseline simulator without priority
for two reasons: First, we only have an implementation with an old version of
the simulator, which for independent reasons is much slower, and second, the
performance when a model does not use priorities is exactly the same whereas
the performance of a model using priorities is incomparable, as the lack of sup-
port for priorities may cause the model to be able to reach states not reachable
when using priorities, thus comparing different behavior.

We see that using our optimized algorithm, the toy examples can execute
around 20 million transitions a minute. The largest gain is from not computing
all bindings (though we may compute enabling for all transitions). The reason
is that toy examples often have few transitions but a lot of enabled bindings
for each. Thus, computing enabling of all transitions is not very expensive (as
this terminates early in our implementation) but computing all bindings is. For
real-life models, we see that performance of the simple algorithms significantly
decreases as the number of transitions grow. The performance of our improved
algorithm is roughly constant at 4− 7 million transitions a minute. When look-
ing at the results for the large and small versions of OS, we see the improved
algorithm handles the large model almost without any penalty whereas the sim-
ple algorithms are orders of magnitude slower. This is again because we have
more enabled bindings of each transition. The penalty of the optimized algo-
rithm for real-life models stems from the fact that each transition is much more
complex (calls functions and does more advanced matching on the input tokens
consumed) and therefore takes longer to execute.

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 39

4 Conclusion and Future Work

We have presented algorithms for performing fast simulation of coloured Petri
nets with priorities. We have given details on performing fast random simula-
tion of CPN models with statically prioritized transitions. We have given an
algorithm for performing fast amortized enabling check of statically prioritized
transitions without assuming that enabling is tested in a specific order. Addi-
tionally, we have given an algorithm which can be used for maintaining a set
of enabled transitions during simulation, providing fast user-guided simulation
with interactive feedback. We have implemented all these features in CPN Tools
3.0 [4], and our experiments show we are able to execute 4 − 7 million transi-
tions a minute for real-life models and more than 20 million transitions for other
models. This is an improvement over the 1 − 5 million transitions a minute for
simple algorithms.

We have considered and sketched algorithms for extending our algorithms
to handle dynamically prioritized transitions and for scoped priorities. We have
chosen not to implement these, first, because dynamic priorities are prone to
introducing performance bottlenecks, and, second, because we have not been
able to introduce scoped priorities in a way that nicely coexists with global
priorities. As scoped priorities can be useful, it would be nice to consider this in
more detail.

We have not been able to find any published work concerning efficient simu-
lation of models with priorities. We think this is because the problem only really
becomes important with high-level Petri nets, where enabling computation is
several orders of magnitude more computationally expensive than for low-level
net classes. We have experimented with using the scheduling algorithm 1 for
Place-Transition Petri nets, but have not been able to make it outperform a
simple algorithm trying transitions at random without the extra book-keeping.
The complexity of enabling computation for high-level nets stems from the fact
that the high-level nature makes modelers more prone to generating many to-
kens, and that these tokens are not equal, so in the worst case we have to try
all combinations of tokens. Papers treating simulation of low-level nets with pri-
orities often translate nets with priorities to nets without, e. g., [3]. Work exists
on translating high-level nets with priorities to nets without [8] or for doing
distributed simulation with priorities present [9]. Here, we instead focus on ef-
ficient algorithms for direct simulation of high-level nets, which allows us to do
optimizations not possible in a parallel or distributed setting.

Our algorithms can also be used for analysis by means of state-space ex-
ploration. As for simulation, analysis can be done by translating to equivalent
models without priority [3, 8] and for low-level nets additionally by means of
static analysis or restriction [1, 2]. This is probably because a strong feature of
low-level nets is that this kind of analysis is possible. For high-level nets, anal-
ysis is usually only possible by means of state-space exploration or simulation,
making fast simulation algorithms more important. Our current state-space tool
implementation in CPN Tools is tuned toward breadth-first traversal, so unless
we store the Disabled and MaybeReady sets for each state, we cannot make use

40 PNSE’11 – Petri Nets and Software Engineering

of this information without recomputing it from scratch each time. As the state-
space tool of CPN Tools comprises a lot of legacy code, we decided that instead
of doing this directly, we would use the algorithm for computing enabling (algo-
rithm 3) instead. It would be interesting to look into algorithms for improving
state space analysis by computing transitions according to their priority and also
to investigate ways of using the Disabled and MaybeReady sets during state-space
generation.

References

1. F. Bause. On the analysis of Petri nets with static priorities. Acta Informatica,
33:669–685, 1996. 10.1007/BF03036470.

2. F. Bause. Analysis of Petri Nets with a Dynamic Priority Method. In Proc. of
ATPN’97, volume 1248 of LNCS, pages 215–234. Springer, 1997.

3. E. Best and M. Koutny. Petri net semantics of priority systems. TCS, 96(1):175–
215, 1992.

4. CPN Tools webpage. Online: cpntools.org.
5. K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen. Modelling and Initial Vali-

dation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks. In ATPN’08,
volume 5062 of LNCS, pages 152–170. Springer, 2008.

6. T.B. Haagh and T.R. Hansen. Optimising a Coloured Petri Net Simulator. Master’s
thesis, Dept. of Computer Science, Aarhus University, 1994.

7. K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Validation
of Concurrent Systems. Springer, 2009.

8. H. Klaudel and F. Pommereau. A Concurrent and Compositional Petri Net Se-
mantics of Preemption. In Proc. of IFM’00, volume 1945 of LNCS, pages 318–337.
Springer, 2000.

9. M. Knoke, F. Kühling, A. Zimmermann, and G. Hommel. Towards Correct Dis-
tributed Simulation of High-Level Petri Nets with Fine-Grained Partitioning. In
Proc. of ISPA’04, volume 3358 of LNCS, pages 64–74. Springer, 2004.

10. L.M. Kristensen and K. Jensen. Specification and Validation of an Edge Router
Discovery Protocol for Mobile Ad-hoc Networks. In Integration of Software Spec-
ification Techniques for Application in Engineering, volume 3147 of LNCS, pages
248–269. Springer, 2004.

11. K.H. Mortensen. Efficient Data-Structures and Algorithms for a Coloured Petri
Nets Simulator. In Proc. of 3rd CPN Workshop, volume 554, pages 57–74. DAIMI
PB, 2001.

12. M. Westergaard and F.M. Maggi. Modelling and Verification of a Protocol for
Operational Support using Coloured Petri Nets. In Proc. of ATPN’11, LNCS.
Springer, 2011.

M. Westergaard, H.M.W. Verbeek: Efficient Prioritized Transitions for HLPN 41

Modelling Local and Global Behaviour:
Petri Nets and Event Coordination

Ekkart Kindler

Informatics and Mathematical Modelling
Technical University of Denmark

eki@imm.dtu.dk

Abstract. Today, it is possible to generate major parts of a software
system from models. Most of the generated code, however, concerns the
structural parts of the software; the parts that concern the functional-
ity or behaviour of a system are still programmed manually. In order to
overcome this problem, we are developing the concept of coordination
diagrams that define the global behaviour on top of structural software
models. Basically, these diagrams define how the local behaviour of an
element is coordinated with the behaviour of the elements it is con-
nected to. The exact concepts of these coordination diagrams and their
notation is still under development, but there exists a first prototype
for experimenting and for fine-tuning its features. We call it the Event
Coordination Notation (ECNO).
For experimenting with the ECNO, we implemented also a simple mod-
elling notation for the local behaviour, which is based on Petri nets. In
this paper, we briefly discuss the general idea of the ECNO and then
present ECNO nets that define the local behaviour of elements. They
are implemented as a Petri net type for the ePNK tool, together with a
code generator that produces code that can be used in the ECNO frame-
work and runtime environment. This way, all the behaviour of a system
can be modelled – and code can be generated that easily integrates with
the structural models and existing software.
Keywords: Model-based Software Engineering, Local and global be-
haviour modelling, Event coordination, Code generation, ECNO nets.

1 Introduction

Software models and the automatic generation of code from these models are
becoming more and more popular in modern software development – as suggested
by the success of one of the major approaches, the Model Driven Architecture
(MDA) [1]. In many cases, however, code generation concerns the structural parts
or the standard parts of the software only; as soon as the actual functionality
and behaviour is concerned, major parts of the software are still programmed
manually. As pointed out in previous work [2], the reason is not so much that
there are no modelling notations for behaviour or that it would be difficult
to generate code from these models. The actual problem is to integrate the
behaviour models or the code generated from them with the code generated

from the structural models and with pre-existing parts of the software. One of
the main reasons for that problem is that, ultimately, the only mechanism for
integrating different parts of the software is invocation – of functions, of methods,
or of services.

Based on some earlier ideas [3, 4, 2], we set out to develop a concept that
allows us to identify events in which different partners or parts of the software
could or should participate; the notation allows us to define how the execution of
these events should be coordinated. The overall behaviour of the system would
then be a result of this coordination and synchronization of events combined
with the local behaviour of the different parts. In a way, this is similar to aspect
orientation with its join points and point cuts [5], but with a different focus.
The development of this notation is still in progress; in order to gain some
experience, though, we have implemented a first prototype, which consists of
a modelling part and an execution runtime environment, which we call Event
Coordination Notation (ECNO). From this prototype, we hope to learn more
about which constructs do help to adequately model and coordinate behaviour
and to collect efficiency and performance results for larger systems and for more
complex coordinations. This way, we intend to fine-tune ECNO’s constructs and
notations and to strike a balance between obtaining an adequate notation on a
high level of abstraction, with sufficient expressive power and universality on the
one-hand side, and efficient and performant execution on the other side.

As stated above, the research on ECNO is still in progress. Its major concern
is the integration of the local behaviour of elements by coordinating the execu-
tion of their events. In ECNO, the focus is on the coordination, i. e. on global
behaviour. The local behaviour would still be programmed manually based on an
API which is part of the ECNO framework (see [6] for more details). On the one
hand side, the possibility of programming the local behaviour in a traditional
way, makes it possible to integrate ECNO with classical software development
approaches. We consider this possibility as a major feature of ECNO – in par-
ticular easing the gradual transition from programmed software to modelled
software. One the other hand, programming is very tedious and not very much
in the spirit of model-based software engineering (MBSE). Therefore, we started
a side-line that is concerned with modelling the local behaviour and generating
code from that. We use an extended version of Place/Transition nets (P/T-nets)
[7, 8] for that purpose – mostly, because of our own background in Petri nets and
because we have a generic tool, the ePNK [9], which allows us to easily define
new net types of Petri nets and which is integrated with the eclipse platform
that provides all the necessary infrastructure and technology for code generation
from models and software development in general [10].

The main contribution of this paper is on the extended version of Petri nets
(Sect. 3) for modelling local behaviour: ECNO nets. But, in order to understand
the local behaviour models we need to see the context in which this local be-
haviour is coordinated. Therefore, we start with explaining the idea and concepts
of ECNO (Sect. 2).

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 43

Slot

insert
return_
pass
reset

Panel GUI

coffee GUI
tea GUI
cancel GUI

Control

coffee
tea
cancel
pass
reset

Coffee

Brewer
coffee
tea
reset
cup_in

Output GUI

cup_in GUI

cup_out GUI

*

cup_in: 1

coffee: 1
tea: 1
reset: ALL

coffee: 1
tea: 1
cancel: ALL

reset: ALL
pass: 1

pass: 1

*
*

*

*

insert: 1

*

return_: ALL
pass: 1

Safe

pass

GUICoin

insert GUI

pass
return_

Tea

1

Fig. 1. A class and coordination diagram

2 The Event Coordination Notation

In this section, we discuss the main ideas and main concepts of ECNO. We start
with an example in Sect. 2.1 and summarize the concepts in Sect. 2.2.

2.1 Example

The concepts of ECNO will be explained by using a simple example: the eternal
coffee (and tea) vending machine. Figure 1 shows a UML class diagram1 with
some extensions concerning events and their coordination. Therefore, we call it
coordination diagram.

Before explaining the extensions, let us have a brief look at it as a UML class
diagram. The diagram shows the different possible elements2 that are part of the
system: A coin can be close to the slot, which is represented by the reference from
Coin to Slot, or a coins can be in the slot, which is represented by the reference
from Slot to Coin. There is a Safe to which the coin will be passed, once a coffee
or tea is dispensed. There is a Panel for the user to interact with the vending
machine. This panel is connected to controllers, which is represented by the
reference from Panel to Control. The controllers are connected to the brewers,
which can be either coffee or tea brewers. At last, there is an output device for
the beverage, which is connected to the brewers. Note that Fig. 1 is a kind of class
diagram. Therefore, there can be different configurations, which could be defined
as an instance of this class diagram (in UML this would be an object diagram).
In our example, we assume that there are (initially) three coins (not inserted
yet to the slot), and that there are two coffee brewers and one tea brewer; for
1 For the experts, this actually is an EMOF diagram [11] or an Ecore diagram [10];
but this is not relevant here.

2 In order to point out that our objects are not objects in the traditional sense of
object orientation, we call them elements.

44 PNSE’11 – Petri Nets and Software Engineering

all other classes, we assume that there is exactly one instance. Remember that,
in these instances, the references of the class diagram are represented by links
from one element to another (where the link’s type is the reference).

Now, let us explain the extensions concerning the coordination of events
between the different elements: First of all, there are some events mentioned in
the operations section of the class diagram, like insert, pass and return_3 for
Coin. They define in which events the different elements could be involved or
could participate. The actual definition of these events will be discussed later
(see Fig. 2). More importantly, the references between the different elements are
annotated with events and an additional quantifier, which can be 1 or ALL. These
annotations define the coordination of events and which events and elements
needed to be executed together. We call such a combination of elements and
events an interaction. The meaning of these annotations is as follows: Let us
assume that some element is involved in the execution of some event and that,
in the coordination diagrams, the type of this element has a reference that is
labelled with that event. Then, some elements at the other end of the respective
link also need to participate: to be more precise, if the event is quantified by 1,
exactly one of these elements must participate; if the event is quantified by ALL,
all the elements at the other end of these links need to participate.

In our example, let us assume that there are two coins inserted to the slot.
This would be represented by two links from the slot to a coin – one to each
of the coins. If the slot does a return_ event, the annotation return_:ALL at
the reference from Slot to Coin means, that both coins must participate in the
execution of the event return_.

Note that, normally, this is required for all the references that are annotated
with the event. In our example, there are two references from Slot that are anno-
tated by pass – one to Coin and one to Safe. Therefore, when a slot participates
in a pass event, exactly one coin and exactly one safe will need to participate
in this interaction – this way, the coin will be passed from the slot to the safe,
which will be discussed later in Sect. 3.1.

In some cases, we do not want all these references to be considered. To this
end, the ECNO provides the concept of coordination sets, which allows us to
define which references should be followed together. But, we do not discuss the
details here since this is not relevant in this paper (see [6] for some more details).

Up to now, we have used events basically as names. In general, events can
have parameters, which can be used to share information between the different
partners that are participating in the event and the interaction. Figure 2 shows
the declaration of all events of our vending machine along with the event pa-
rameters. On a first glance, this looks very much like method declarations. In
contrast to methods, events do not have behaviour of their own, and they do
not belong to a particular element (or are not owned by them). Therefore, event
parameters can be contributed in many different ways, and by different elements.
It is not defined in advance, who will provide and who will use the parameters.

3 Since return is a key word of our target language Java, we use an additional under-
score in the event name return_.

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 45

insert(Coin coin, Slot slot); coffee();
pass(Coin coin, Slot slot); tea();
return_(Slot slot); cup_in();
reset(); cup_out();
cancel();

Fig. 2. Event declarations

And it is not clear in which direction the values will be propagated. The exe-
cution engine of ECNO, however, guarantees that all elements participating in
an interaction have the same parameters for the same event – if two partners
contribute inconsistent values, the interaction would not be possible. Likewise,
the interaction would not be possible if some partner needs4 a parameter, but
there is no partner that provides it.

A minor extension to class diagrams are the GUI annotations. These annota-
tions indicate which elements and events are relevant to the user – and actually
can be triggered by the user. As the name GUI indicates, this is mostly relevant
for the GUI part of execution engine for generating buttons and user dialogs. In
our case, there will be only buttons (see Fig. 7 in Sect. 4). Actually, it will not
always be the GUI that triggers events; events can be triggered also program-
matically; to this end, some elements would be registered with some specific
controllers.

2.2 Summary of concepts

Altogether, ECNO extends class diagrams by the explicit definition of events
and in which way different elements need to participate when an event is exe-
cuted. This is defined by coordination diagrams, which are an extension of class
diagrams. The basic mechanism for defining these coordination requirements
is annotating references with an event and a quantification. Each of these ref-
erences defines a bilateral coordination. In combination, however, they might
require that many different elements participate in an interaction: First, there
might be different references for the same event, which require different other
elements to participate. Second, the other elements that are required to par-
ticipate might have references with annotations, which require further elements
to participate; in this way, establishing a chain of required elements. Third, an
event annotation with quantification ALL requires that all the elements at the
other end of the respective links participate. As we will see later, there is a fourth
possibility: the local behaviour of an element can require synchronization of two
different events. This way, cooperation diagrams define the global behaviour of a
system based on the local behaviour of its elements5.

4 We will see later in the Petri nets defining the local behaviour what that means.
5 Harel and Marelly called the global behaviour inter-object behaviour and the local
behaviour intra-object behaviour [12] – in a different setting though.

46 PNSE’11 – Petri Nets and Software Engineering

Fig. 3. Local behaviour of the coffee brewer

In the ECNO, there exist some more concepts (e. g. collective parameters of
events) and we have some ideas of additional constructs, which are not discussed
here (see [6] for a bit more information).

Figure 1 does not say anything about the local behaviour of the elements.
The definition of the local behaviour will answer the following questions: when
can an event be executed by an element, what is the local effect, and which
(different) events need to be executed together (synchronized). ECNO provides
an API for defining, or more precisely, for programming local behaviour for every
element. But, in the context of this paper, we will use Petri nets for defining the
local behaviour. These extended Petri nets will be discussed in the next section.

3 Modelling local behaviour with Petri nets

The local behaviour of an element defines when and under which (local) condi-
tions an event or a combination of events can be executed locally, and it defines
what happens locally when the event is executed as part of the global interaction.

3.1 Examples

Not surprisingly, this local behaviour can be defined by a slightly extended ver-
sion of P/T-nets. We will discuss the main concepts by the help of some examples
first. The concepts will then be clarified and explained in general in Sect. 3.2.

We start with a simple ECNO net that models the coffee brewer. It is shown
in Fig. 3. Except for the annotations associated with the transitions, this is a
conventional P/T-net. The transition annotations relate a transition of the Petri
net to an6 event; we call this annotation an event binding. After the event coffee,
which represents the user pressing the coffee button, the coffee is brewed, which
6 We will see later, that one transition can actually be bound to more than one event
– this way enforcing the synchronization of different events.

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 47

Fig. 4. Local behaviour of the coin

will be dispensed, when a cup is inserted (event cup_in). The reset event is
possible only when the coffee machine is in the initial state (no coffee is being
made). In this example, the notation for event bindings might appear a bit
verbose, and it is not clear why, the event is assigned to some “variable”. This
will become clear in the next example, when referring to the events’ parameters
in conditions or actions. In the coffee brewer, these assignments do not have any
particular meaning.

The behaviour of the coin is more interesting. It is shown in Fig. 4. First of
all, the event bindings and the involved events have parameters. Let us consider
the one with the insert event: as we have seen earlier, insert has two parameters,
the coin and the slot. The annotation refers to these two parameters. The first
one, this, assigns the coin itself as the first parameter (coin) to this event. The
second parameter is none, which is the keyword indicating that in this instance,
the coin does not assign a parameter to the event insert (it could do that in
other instances though). The other annotation of this transition is the action,
which will be executed when all partners of an interaction are found. In this
case, the coin does two things: First, it deletes the link to the slot (since it is
inserted now) and it also removes itself from the engine so as not to be visible
at the GUI anymore. The first line removes the link, which is “addressed” by the
coin_slot_ref attribute (which is a constant which will be discussed later). The
slot from which it is removed is denoted by i.slot, where i is the variable to which
the insert event was assigned, and slot is one of its parameters, which is assigned
to the event by the slot. This is why we needed to give a name to an event in
the event binding.

Once the coin is inserted, the Petri net for the coin allows two things to
happen: either the coin can be passed to the slot by the transition that is bound
to event pass, or the coin is returned by the transition bound to event return_.
In the case of pass, the coin assigns itself (this) as the coin parameter; and there

48 PNSE’11 – Petri Nets and Software Engineering

Fig. 5. Local behaviour of the slot

is no action. In the case of a return_, no parameter is assigned to the event
(none), but the action will add a link from the coin to the slot again, where the
slot is coming from the parameter r.slot of the event return_. Moreover, the coin
registers itself with the engine again, so as to be visible in the GUI again.

Another extension that we see in this example is the declaration of attributes
at the top of Fig. 4. These declarations follow the syntax of the Java language.
Therefore, the additional keyword final actually defines a constant. In the dec-
larations of Fig. 4, the first line uses the ECNO mechanism to get access to the
reference feature from Coin to Slot in the model – this is very similar to the
mechanisms of the Eclipse Modeling Framework (EMF) [10] and we do not go
into details here. This feature is assigned to the attribute coin_slot_ref, which is
then used in the two actions to add, resp. remove a link of that kind. The second
line gets access to the execution engine of the ECNO framework (for adding and
removing the coin from and to the GUI).

Figure 5 shows the local behaviour of the slot. This is a rather degenerated
net. As a P/T-net, all transitions would be enabled all the time since their presets
are empty. Due to the event bindings, however, the local behaviour becomes a bit
more interesting. We start with explaining the bottom transition: This transition,
actually, has two events bound to it: reset and return_. This implies that reset
and return_must be executed together; this way, all coins will be returned during
a reset. The slot assigns itself as a parameter to the return_ event. Moreover,
the slot deletes all the links to the coins it contains (i. e. it returns the coins).

The transition bound to the pass event is even simpler. When it happens, the
link to the coin that is passed (accessible via the parameter p.coin) is removed
(since it is removed from the slot and passed to the safe).

At last, let us discuss the top transition of Fig. 5. It is bound to the insert
event, where the slot assigns itself to the event’s slot parameter. In the action, it
sets a link to that coin. This transition uses another concept: the condition which

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 49

Fig. 6. Local behaviour of the control

is shown above the transition. This condition guarantees that an insert event can
happen only when there are less than two coins in the slot. The condition refers
to the attributes (the references to the coin) in this example, but it could in
principle also refer to the parameters of the involved events.

The Petri net models for the other elements are similar. The last one that
we discuss here is the one for the control. This net is shown in Fig. 6. The
first transition guarantees that the event coffee (pressing the coffee button on
the panel) must go together with an event pass (passing a coin from the slot
to the safe). This way, it is indirectly guaranteed that there is a coin inserted.
Therefore, the coffee button on the panel is enabled only when there is a coin
inserted to the slot and when the coffee brewer is ready. The second transition
does the same for event tea. The last event synchronizes the cancel event (which
is triggered by pressing the cancel button on the panel) with the reset event: this
way, it is indirectly guaranteed that all coins that are currently inserted to the
slot are returned (see discussion of the local behaviour of the slot).

3.2 Concepts

As we have seen in Sect. 2.2, the main concepts of ECNO are the explicit defi-
nition of events and the coordination annotations of references that define how
to coordinate the execution of events. At runtime, the combination of all the
elements and events that meet these requirements will form an interaction.

The main concept for modelling the local behaviour of an element is to define
when the element can participate in an event and what happens when the event
is executed. In our Petri net notation, the event binding for transitions define
when an event or a combination of some events is possible. To this end, the
transitions of the Petri net refer to the respective events, and at the same time
provide the parameter that this element would contribute to the event.

In our example, these parameters where expressions with values of the ele-
ment (mostly this in our example). But, actually this can be more involved. For
example, if we have some event event(Integer x, Integer y), it would be possible
that an event binding looks as follows: e = event(none,e.x+1). The meaning of
this is that the element takes the first parameter of the event increments it and
assigns that value to the second parameter. If there were more events in the
binding, we could also use a parameter of one event and assign it as a parameter
to another event. Actually, there is no restriction in which way this could be
done – if there are cyclic dependencies in these assignments in some interaction,
the assignments will not be possible; the interactions will not be complete and,

50 PNSE’11 – Petri Nets and Software Engineering

therefore, will not be executable. It could also be that two partners would pro-
vide a value to the same parameter of the same event. The result will also be
an illegal interaction, if the provided parameter are not the same (equal in Java
terms).

On the one hand, this mechanism of parameter passing provides much ex-
pressive power and flexibility. Within the same interaction, data can be passed
in opposite directions. On the other hand, such power requires great care in us-
ing this mechanism in order not to preclude desired executions by unintended
cyclic dependencies. This, however, is a question of methodology and analysis
functions that can check that no cycles of that nature would occur (which how-
ever are yet to be developed). The execution engine of ECNO copes with these
situations – though computing all the parameters in complex situations might
be quite computation intensive. Making this more efficient is ongoing research.

In the extended Petri nets, transitions have two more extensions: conditions
and actions. Conditions are expressions that may refer to local attributes of
the element (and whatever the element can access from there); and they may
refer to the parameters of the events in which it participates. Conceptually, the
condition is evaluated when all necessary parameters of the events are available.
If, in a given combination of events, the condition evaluates to false, the complete
interaction is not executable. Only if the conditions of all participating elements
evaluate to true, the interaction is executable; its execution amounts to executing
all the actions of all participating elements (in an arbitrary order). An action
may refer to and access and change the local attributes and the parameters. The
parameters or rather the objects they refer to can be changed – a parameter
object itself cannot not be replaced, which follows the principle of parameters in
the Java language.

3.3 Discussion

Altogether, the ECNO together with ECNO nets for the local behaviour allow
to fully model the behaviour of a system. The generated code together with the
ECNO runtime environment implement that behaviour (see Sect. 4).

Since the ECNO is still under development, there are still some issues open
that need to be adjusted in order to strike a balance between usability of the
language (expressing behaviour on a high level of abstraction) and performance.
This is ongoing research and requires some larger case studies.

Technically, the ECNO nets define the local behaviour of the elements or
parts of a system only. To some Petri net people, this might look a bit strange,
since Petri nets are typically used to describe the overall behaviour or rather
the global behaviour of a system. In fact, this is more a question on how these
nets are used. The approach used here could be used for coordinating behaviour
in a more global way: to do that, we would have one or more elements that are
global and coordinate other elements by the mechanisms proposed here. That is
why our approach is technically local, but the Petri nets could still be used for
coordinating behaviour globally.

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 51

4 ECNO engine and generated code

Though the ECNO is still under development, the current prototype fully sup-
ports the concepts discussed in our example, and there is a code generator
that fully automatically generates the code for the elements from the ECNO
nets. An experimental ECNO runtime environment as well as the code gener-
ator for ECNO nets are deployed as an extension to Eclipse (Galileo or He-
lios) via the ePNK update site; You will find the information on how to in-
stall this experimental ECNO release, the example discussed in this paper, and
some explanations on how to generate the code from ECNO nets at http:
//www2.imm.dtu.dk/~eki/projects/ECNO/.

In this paper, we give a brief overview of the resulting software and of how
the generated code could be used. The generated code and the ECNO runtime
environment can be run as a stand-alone Java application (under JRE 1.6 or
higher). When the “VendingMachineInstance” is started as a Java application,
a GUI will start, which looks like the ones in Fig. 7. The left one shows the
GUI immediately after startup; the middle one shows the GUI after pressing the
“insert” buttons on two coins (the last coin cannot be inserted anymore); the
right one shows the situation after pressing the “coffee” button (note that since
two coins were inserted and there are two independent coffee brewers, you could
order the next coffee right away).

Fig. 7. Three screenshots: initial, after inserting two coins, after ordering a coffee

Note that a code generator for the coordination diagrams is not yet de-
ployed. Therefore, the model from Fig. 1 is “programmed” in class “VendingMa-
chineModel”, in a style that is similar to the automatically generated Package
and Factory classes for Ecore models of the Eclipse Modeling Framework (EMF)
[10]. Based on that “programmed model”, the class “VendingMachineInstance”
sets up the concrete configuration of a coffee machine.

In this paper, we cannot discuss the details of the generated code since this
would require a more detailed discussion of the ECNO runtime engine, its ar-
chitecture, and the ECNO programming API (see [6] for some more details).

52 PNSE’11 – Petri Nets and Software Engineering

Basically, each element has a method that, for a given event, defines all the pos-
sible choices; in turn, a choice defines how to calculate the parameters for the
events it participates in (which might depend on parameters of other events),
a condition defining whether the choices is enabled, and a method that finally
executes the action of the element. If you install the experimental prototype,
there will be an example project which includes the generated code.

As motivated earlier, the generated code should integrate with other exist-
ing code, which could be legacy code, manually written code, or code generated
from other models. This integration is possible along different lines: First, the
generated code can be used by other parts of the software in the classical ob-
ject oriented way7 without taking its ECNO specific extensions into account –
and without compromising the ECNO interactions. Note that, in order to be a
bit more agile, the current prototype uses its own philosophy to generate the
object oriented code from models. In principle however, ECNO could use any
other technology for automatically generating code from class diagrams; once
the prototype of ECNO stabilizes, we intend to use the EMF technology with its
vast amount of related technologies and tools. Second, the code snippets in the
ECNO nets (and in general any other implementations of the local behaviour)
could use and invoke any other part of the software. Third, other parts of the
software could use the API of the ECNO runtime to find out about enabled inter-
actions and initiate their execution (see [6] for details). At last, existing software
could be integrated with the ECNO by using adapter elements in the coordi-
nation diagrams, which delegate their behaviour to other parts of the software.
Clearly, the first two “lines of integration” would be the most convenient ways;
the last one is the most tedious one, since the adapters would require manual
implementation – but it should not be too difficult.

5 Related work

The ideas for ECNO have developed over some years; they started out in the field
of Business Process Modelling, where we used events and their synchronization
for identifying and formalizing the basic concepts of business process models
and their execution: AMFIBIA [13, 3]. It turned out that these ideas are much
more general and do not only apply in the area of business processes. This
generalisation resulted in MoDowA [4]. MoDowA, however, was tightly coupled
to aspects, and event coordination was possible only for very specific types of
relations. Therefore, the quest for distilling the basic coordination primitive was
still on. In [2], we pointed out some first ideas for such an event coordination
notation, which we call ECNO now.

Actually, none of the concepts of ECNO are particularly new or original. For
example, Petri nets [7, 8] have been made exactly for the purpose of modelling

7 This would require the ECNO engine to notify the controllers that are triggering
possible interactions about changes in the possible interactions, which is not yet
implemented.

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 53

behaviour. And many different mechanisms have been proposed for coordinat-
ing different Petri nets. For example, the box calculus and M-nets [14, 15] use
synchronization of transitions, for coordinating different Petri nets. Also Renew
[16, 17] uses executable Petri nets and has a concept of synchronous channels for
synchronizing Petri nets.

The idea of events and the way they are synchronized dates back even further
(in the earlier work, they would rather be called actions, which should however
not be confused with our concept of action). ECNO’s synchronization mecha-
nism resembles process algebras like CSP [18], CSS [19], or the π-calculus [20].
But, we are a bit more explicit with whom to synchronize and with how many
partners. Actually, there can be arbitrarily long chains or networks of required
participants in our approach. One approach that allows to define such interac-
tions (via connectors) is BIP [21]; but ECNO embeds a bit smoother with class
diagrams and allows for and is tuned to dynamically changing structures. And it
works together with classical programming and method invocation. Other parts
of the software could call methods of our elements as they please; we just need
to make sure that after such calls the possible interactions are updated. And,
our actions can call methods of other parts of the software, and via an API other
parts of the software can initiate and hook into interactions.

The ideas of the ECNO are an extension of our MoDowA approach (Mod-
elling Domains with Aspects) [4], which has some similarities with the Theme
approach [22]. In MoDowA, the interactions were restricted and implicitly de-
fined in two special kinds of relations. Therefore, we introduced a separate con-
cept and notation on top of references for making interactions explicit [6]; some
of these ideas came up during the work on the master thesis [23]. Technically,
ECNO is independent from aspect oriented modelling. Still, it was inspired by
aspect orientation and is close in spirit to aspect oriented modelling (see [24,
25] for an overview) or subject orientation [26]. Moreover, ECNO could serve as
an underlying technology for easily implementing aspect oriented models. In a
way, events are join points and the interactions are point cuts as, for example,
in AspectJ [5] in aspect oriented programming. There are two main differences
though: in aspect oriented programming, the join points are defined in the fi-
nal program; in that sense, the join points are artifacts and not concepts of the
domain model. By contrast, our events are concepts of the domain! The other
difference is the more symmetric interpretation and participation in an interac-
tion. The participants in an interaction are not only invoked by another element;
they can actively contribute parameters, and even prevent an interaction from
happening (if no other partners are available). A more subtle difference is that
interactions in our approach are attached to objects (actually, we called them
elements) and not to lines in a program, and interactions can only be defined
along existing links between the elements. This is a restriction – but a deliberate
one: it provides more structure and avoids clutter and unexpected interactions
between completely unrelated elements.

One of the main objectives of ECNO and coordination diagrams is that
the coordination of events should relate to the structural models (a UML class

54 PNSE’11 – Petri Nets and Software Engineering

diagram). The rationale is the smooth extension of used technologies and easing
the integration of behaviour models with structural ones and with pre-existing
software.

To sum up, all the individual concepts of ECNO existed before – we did not
invent them. The main contribution is the combination of these concepts, and
this way, making them more usable in practical software development in general
– and in model-based software engineering in particular.

6 Conclusion

In this paper, we have briefly discussed an event coordination notation, which
we call ECNO. This notation allows defining global behaviour of a system by
coordinating local behaviour: this global coordination is defined on top of struc-
tural diagrams. The focus of this paper is on a specific modelling notation for
the local behaviour which we called ECNO nets (for a discussion of the ECNO
engine and its API, we refer to [6]). From these models, the code for the complete
system including its behaviour can be generated. The example shows that the
coordination mechanisms of ECNO for defining global behaviour together with
the mechanisms for defining local behaviour are powerful enough to completely
define a system and generate code for it.

The most interesting research on ECNO, however, is yet to come: Scalability,
performance, and adequateness of the modelling notation still need investigation;
the constructs need to be adjusted, so as to strike a balance between these
different objectives. The prototype implementation discussed in this paper, lays
the foundation for these investigations.

Acknowledgements Since ECNO has developed over several years, many col-
leagues, students, and anonymous reviewers have contributed to what ECNO is
now. They are too many to name them here; but, there is a half-way complete list
on the ECNO Home page: http://www2.imm.dtu.dk/~eki/projects/ECNO/.

References

1. OMG: MDA guide. http://www.omg.org/cgi-bin/doc?omg/03-06-01 (2003)
2. Kindler, E.: Model-based software engineering: The challenges of modelling be-

haviour. In Aksit, M., Kindler, E., Roubtsova, E., McNeile, A., eds.: Proceedings
of the Second Workshop on Behavioural Modelling - Foundations and Application
(BM-FA 2010). (2010) 51–66 (Also published in the ACM electronic libraries).

3. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: A meta-model for the integration
of business process modelling aspects. International Journal on Business Process
Integration and Management 2(2) (2007) 120–131

4. Kindler, E., Schmelter, D.: Aspect-oriented modelling from a different angle: Mod-
elling domains with aspects. In: 12th International Workshop on Aspect-Oriented
Modeling. (2008)

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Proc. of ECOOP 2001 – Object-Oriented Programming,
15th European Conference, Springer (2001) 327–353

E. Kindler: Modelling Local/Global Behaviour: PN and Event Coordination 55

6. Kindler, E.: Integrating behaviour in software models: An event coordination no-
tation – concepts and prototype. In: 3rd Workshop on Third Workshop on Be-
havioural Modelling - Foundations and Application, Proceedings. (2011) Accepted.

7. Reisig, W.: Petri Nets. Volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag (1985)

8. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of
the IEEE. Volume 77. (1989) 541–580

9. Kindler, E.: ePNK: A generic PNML tool - users’ and developers’ guide : ver-
sion 0.9.1. Tech. Rep. IMM-Tech. Rep.2011-03, DTU Informatics, Kgs. Lyngby,
Denmark (2011)

10. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. 2nd edition edn. The Eclipse Series. Addison-Wesley (2006)

11. OMG: Meta Object Facility (MOF) specification, version 1.4.1. Tech. Rep.
formal/05-05-05, The Object Management Group, Inc. (2005)

12. Harel, D., Marelly, R.: Come let’s play: Scenario-based programming using LSCs
and the Play-engine. Springer (2003)

13. Axenath, B., Kindler, E., Rubin, V.: An open and formalism independent meta-
model for business processes. In Kindler, E., Nüttgens, M., eds.: Workshop on
Business Process Reference Models 2005 (BPRM 2005), Satellite event of the third
International Conference on Business Process Management. (2005) 45–59

14. Best, E., Devillers, R., Hall, F.: The box calculus: A new causal algebra with
multi-label communication. In Rozenberg, G., ed.: Advances in Petri nets 1992.
Volume 609 of LNCS. Springer-Verlag (1992) 21–69

15. Best, E., Fraczak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: An algebra of
high-level Petri nets, with an application to the semantics of concurrent program-
ming languages. Acta Inf. 35(10) (1998) 813–857

16. Kummer, O.: A Petri net view on synchronous channels. Petri Net Newsletter 56
(1999) 7–11

17. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: ICATPN. Volume 3099 of Lecture Notes
in Computer Science., Springer (2004) 484–493

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
19. Milner, R.: Communication and Concurrency. International Series in Computer

Science. Prentice Hall (1989)
20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Parts I & II).

Information and Computation 100(1) (1992) 1–40 & 41–77
21. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components

in BIP. In: Software Enigneering and Formal Methods, Forth IEEE International
Conference, IEEE Computer Society (2006) 3–12

22. Clarke, S., Baniassad, E.: Aspect-oriented analysis and design: The Theme ap-
proach. Addison-Wesley (2005)

23. Nowak, L.: Aspect-oriented modelling of behaviour – imlementation of an execution
engine based on MoDowA. Master’s thesis, DTU Informatics (2009)

24. Brichau, J., Haupt, M.: Survey of aspect-oriented languages and execution models.
Tech. Rep. AOSD-Europe-VUB-01, AOSD-Europe (2005)

25. Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M.P., Bakker, J., Tekin-
erdogan, B., Siobhán Clarke and, A.J.: Survey of aspect-oriented analysis and
design approaches. Tech. Rep. AOSD-Europe-ULANC-9, AOSD-Europe (2005)

26. Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure ob-
jects). In: OOPSLA, ACM (1993) 411–428

56 PNSE’11 – Petri Nets and Software Engineering

Towards Verifying Parallel Algorithms and
Programs using Coloured Petri Nets

Michael Westergaard

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

m.westergaard@tue.nl

Abstract. Coloured Petri nets have proved to be a useful formalism for
modeling distributed algorithms, i.e., algorithms where nodes commu-
nicate via message passing. Here we describe an approach for modeling
parallel algorithms and programs, i.e., algorithms and programs where
processes communicate via shared memory. The model is verified for cor-
rectness, here to prove absence of mutual exclusion violations and to find
dead- and live-locks. The approach can be used in a model-driven de-
velopment approach, where code is generated from a model, in a model-
extraction approach, where a model is extracted from running code, or
using a combination of the two, supporting extracting a model from an
abstract description and generation of correct implementation code. We
illustrate our idea by applying the technique to a parallel implementation
of explicit state-space exploration.

1 Introduction

Parallel and distributed computing address important problems of scalability
in computer science, where some problems are too large or complex to be han-
dled by just one computer. Until now, focus has mostly been on distributed
algorithms, i.e., algorithms running on multiple computers communicating via a
network, as access to parallel computers, i.e., computers capable of running mul-
tiple processes communicating via shared memory (RAM), has been limited. For
this reason, there are many papers on modeling distributed algorithms, such as
network protocols [3, 5, 11, 12]. With the advance of cheap multi-core processors
and cheap multi-processor systems, access to multiple cores has become more
common, and the development and analysis of algorithms for parallel processing
becomes very interesting. As parallel computing allows much faster communi-
cation between processes, tasks that were not previously feasible or efficient to
do concurrently becomes interesting. In this paper, we present our experiences
developing parallel algorithms with synchronization mechanisms developed and
verified by means of coloured Petri nets (CPNs) [10]. This work was motivated
by the requirement for a parallel state-space exploration algorithm. In this pa-
per, we provide an approach that allows us to extract a model for analysis from
a program or abstractly described algorithm in a systematic way. We do this in
a way that allows us to automatically generate a skeleton implementation of the

algorithm subsequently. We use a simple state-space algorithm as example, but
the approach has also been used for other parallel algorithms, such as parts of a
protocol for operational support [16].

Classically, formal models can partake in a development in two different
ways: by extracting an implementation from a model, which we call model-driven
software engineering, or by extracting a model from an implementation, which
we call model-extraction. Our focus in this paper is on model-extraction but
in a way that allows us to also do code generation, thereby allowing a new
combined approach. The model-driven engineering approach is shown in Fig. 1
(top) and shows that we start with model which is verified according to one or
more properties. If it is ok, we can extract a program, and otherwise we refine the
model. Examples of this approach are within hardware synthesis [9,17], using a
CPN simulator to drive a security system [14], or general code generation from a
restricted class of CPNs [13]. The model-extraction approach is shown in Fig. 1
(bottom). Here, we do not start with a model, but rather with a program. From
the program, we extract a model and verify it for correctness. If an error is found,
the resulting error-trace is replayed on the original program to determine if it can
be reproduced here. If not, the abstraction used to extract the model is refined
and the cycle restarts. This approach is rarely used in the high-level Petri net
world, but is employed by, e.g., FeaVer [6] to translate C code to PROMELA
code usable in SPIN [8], Java PathFinder [7] to translate Java programs to
PROMELA, SLAM [1] for automatically translating C device drivers to boolean
programs, BLAST [2] for model-checking C programs, and many other tools.
Both of these approaches may terminate the loop without providing a definite
response.

The model-driven software engineering and model-extraction approaches have
different strengths and weaknesses. The main strength of the model-driven soft-

m

m
Verification

if ok
then 1`m
else empty

Ok

if ok
then empty
else 1`c

COUNTER_EXAMPLE

MODEL

Model
Refinement

MODEL

initial_model

c

Extract
Program

m p

PROGRAM

1

1`initial_model

a

()

if valid
then empty
else 1`()

if valid
then 1`c
else empty

p

c

if ok
then empty
else 1`c

if ok
then 1`()
else empty

a

mmp

Refine
Abstraction

Check
Counter-example

Verification
Model

Extraction

UNIT

Failure

COUNTER_EXAMPLE

COUNTER_EXAMPLE

Ok

UNIT

initial_abstraction

ABSTRACTION

MODEL

program

PROGRAM

1

1`initial_abstraction

1

1`program

Fig. 1: Model-driven software engineering (top) and model-extraction (bottom).

58 PNSE’11 – Petri Nets and Software Engineering

ware engineering approach is that it is possible to verify an algorithm before
implementation and we can even get a guaranteed-correct (template) implemen-
tation with little or no user-interaction. The disadvantage is that the approach
is of little use for already existing software. The model-extraction approach pre-
cisely alleviates this by extracting a model from an existing implementation
automatically, ensuring there is correspondence between the model and imple-
mentation. The main disadvantage is that we need an implementation of a,
perhaps faulty, algorithm before analysis can start.

We would like to provide a translation supplying as many of the strengths
of these approaches as possible. By supporting model-extraction in a way that
allows subsequent code generation, we can support both approaches plus a new
merged approach, shown in Fig. 2. Here we extract a model from a descrip-
tion in one – possibly abstract – language, manually or automatically refine the
abstraction until we can prove the system to be correct (optionally modifying
the original description if we find errors), and then extract an implementation.
While the last step seems superfluous if we already have an implementation, it
can be useful, for example, to use a program written in pseudo-code as input,
automatically derive and verify a model, and from the model extract a runnable
program in a desired implementation language. Alternatively, we can do round-
trip engineering, where we take an implementation as input, verify and correct
it on the level of a model, and update the original implementation to reflect the
changes.

To do this, we use systematic extraction and abstraction methods that can
be derived from a program or from an algorithm written in pseudo code. Our
approach builds on process-partitioned coloured Petri nets (PP-CPNs) as de-
scribed in [13]. The use of a (slightly restricted class of) CPNs allows us to
refine data-structures as much as required and even using actual data-structures
of the original algorithm or program. The restricted class of PP-CPNs allows
us to automatically generate executable code from the model. Derivation of ab-
stractions of the data-types used can be done by the user or automatically using
counter-example guided abstraction refinement (CEGAR) [4] as implemented
in SLAM [1] and BLAST [2]. CEGAR automatically improves abstractions by

a

()

if valid
then empty
else 1`()

if valid
then 1`c
else empty

p

c

if ok
then empty
else 1`c

if ok
then 1`m
else empty

a

mmp

Refine
Abstraction

Check
Counter-example

Verification
Model

Extraction

UNIT

Failure

COUNTER_EXAMPLE

Ok

MODEL

ABSTRACTION

MODEL

program
Extract
Program

PROGRAM

pm

COUNTER_EXAMPLE

Refine
Program

c

p p'

PROGRAM

initial_abstraction

initial_abstraction

1

1`initial_abstraction

1

1`program

Fig. 2: Our approach combining model-driven software engineering and model-
extraction.

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 59

replaying errors found in an abstract model on the original program and using
about why a given error-trace cannot be replayed in the original program to
refine the abstraction.

In this paper we focus on model-extraction. Our goal is to provide a proof-
of-concept, so we do certain steps that can be automated by hand, such as the
translation from code to a model using patterns. We do not address refinement
after discovery of errors in this paper, but assume an external library using
CEGAR or a user takes care of that. We have already treated the code generation
aspect in [13].

The rest of this paper is structured as follows: in the next section, we in-
troduce process-partitioned coloured Petri nets as defined in [13] and a simple
algorithm for state-space generation which we use as running example to illus-
trate our idea. In Sect. 3, we introduce our approach to generating PP-CPN
models from algorithms using a naive parallel version of the algorithm presented
in Sect. 2. In Sect. 4, we use state-space generation to identify a problem in the
original parallelization, fix the problem and show that the problem no longer is
present in a modified version. Finally, in Sect. 5, we sum up our conclusions and
provide directions for future work.

2 Background

In this section, we briefly introduce process-partitioned CPNs as defined in [13].
We also give a simple algorithm for explicit state-space generation which we use
as example in the remainder of the paper.

Process-partitioned CPNs. Coloured Petri nets (CPNs) consist of places ,
transitions , and arcs . Places are typed and arcs have expressions that may con-
tain variables. Places may contain tokens and we call the distribution of tokens
on all places a marking of the net, and the marking before executing any tran-
sitions the initial marking. CPNs have a module concept, where subpages are
represented by substitution transitions.

In [13] we introduce the notion of process-partitioned CPNs (PP-CPNs).
These are CPNs, which are partitioned into separate kinds of processes. In this
paper, we are only interested in models containing a single kind of process, so
we just look at process subnets (Def. 2 in [13]). A single process subnet is a
PP-CPN, but not necessarily the other way around, but in this paper, whenever
we talk about PP-CPNs, we assume they consist of exactly one process subnet.
A process subnet is a CPN with a distinguished process colour set serving as
process identifier. The model in Fig. 6 (left) is an example of a PP-CPN (we
provide a detailed description of the model in Sect. 3). The process colour set
of this model is P. The places of a process subnet are partitioned into process
places , local places , and shared places (in [13], we additionally introduce buffer
places for asynchronous communication between processes, but these are not
used here). These places correspond to the control flow, the local variables, and
shared variables of normal programs. Process places must have the process colour

60 PNSE’11 – Petri Nets and Software Engineering

set as type (in the example S and E and all unnamed places are process places),
local places must have a product of the process colour set and any other type as
type (in the example, s, b, and s’), and shared places can have any type (in the
example, Waiting and Visited).

In the initial marking, exactly one of the process places must contain all
tokens of the process colour set and the remaining process places must be empty
(modeling that all processes must start in the same location in the program).
Local places must initially contain exactly one token for each process so that if
we project onto the component of the process colour set, we obtain exactly one
copy of all values of the set (modeling that all local variables must be initialized).
All shared places must contain exactly one value (modeling that shared variables
must be initialized). All arc expression must ensure that tokens are preserved.

We have chosen to adopt the notion that we cannot create new processes
or destroy processes from [13] even though nothing in our approach breaks if
we allow dynamic instantiation and destruction of processes. This is mainly for
simplicity as we did not need dynamic instantiation in our examples.

1: Waiting← {Model.initial()}
2: Visited← {Model.initial()}
3: while Waiting 6= ∅ do
4: Pick a s ∈Waiting
5: Waiting←Waiting \ {s}
6: // Do any handling of s here
7: for all b enabled in s do
8: Execute b in s to get s′

9: if s′ /∈ Visited then
10: Waiting←Waiting∪{s′}
11: Visited← Visited ∪ {s′}

Fig. 3: Simple state-space explo-
ration algorithm.

State-space Generation. State-space
generation is a means of analysis of for-
mal models, such as the ones specified by
means of CPNs. A simple implementation
is shown in Fig. 3. We start in the ini-
tial marking of the model and compute
all enabled bindings. We then systemati-
cally execute each, note the marking we
reach by executing bindings, store them
in Waiting, and repeat the procedure
for each of these newly discovered mark-
ings. To also terminate in case of loops,
we store all markings for which we have
already computed successors in Visited
and avoid expanding them again. We of-
ten call a marking a state in the context
of state-space analysis.

3 Approach

We introduce our approach to verifying parallel algorithms by a parallel version
of the algorithm for generating state-spaces shown in Fig. 3. The basic idea is
to use the loop of Fig. 3 for each process and share the use of Waiting and
Visited, naturally with appropriate locking. From this algorithm, we illustrate
our approach to extract a PP-CPN model. The last step, going from a PP-CPN
model to implementation code, is handled in [13].

A simple way to parallelize Fig. 3 is shown in Fig. 4 (left). Here, we initial-
ize as before (ll. 1–2). We have moved the main loop to a separate procedure,

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 61

computeStateSpace. We perform mostly the same loop as before (ll. 16–24), but
instead of testing for emptiness and picking an element of the queue in three
steps, we do so using a procedure pickAndRemoveElement (ll. 17 and 24). The
implementation of pickAndRemoveElement (ll. 4–9) does the same as we did
before, except we return a bottom element ⊥ if no elements are available and
use that in the condition of the loop (l. 18). This forces us to perform the pick
in two places: before the first invocation of the loop (l. 17) and at the end of
the loop (l. 24). Handling of states (l. 19) and iteration over all enabled bind-
ings (ll. 20–21) is the same as before. Now, instead of checking if a state is a
member of Visited and conditionally adding it to the set, we do both in a sin-
gle step as shown in the procedure addCheckExists (ll. 22 and 11–14). We do
this under the assumption that adding an element to the set does nothing if the
element is already there. If the state was not already in Visited, we add it to
Waiting (l. 23). The reason for this re-organization is that we now assume that
pickAndRemoveElement, addCheckExists, and the access to Waiting in line
23 are atomic, e.g., by creating a data-structure ensuring this or by requesting a
lock for each data-structure before the start of an operation and releasing it af-
terward. This allows us to start two instances of computeStateSpace in parallel
in lines 26–27. We will not argue for the correctness of neither Fig. 3 nor Fig. 4
(left), but note that it is easy to convince ourselves that if one is correct, so is the
other with the assumption that pickAndRemoveElement and addCheckExists
happen atomically.

Model Extraction. To go from Fig. 4 (left) to a PP-CPN model, we first
extract the control-flow of the algorithm including generating representations of
data, and then we refine the update of the data until we can prove the properties
of the model we want.

Extracting the control-flow consists of creating the process places and tran-
sitions of the model. We do that using templates, very similar to the workflow-
patterns [15] for low-level Petri nets. In Fig. 5 we show the patterns necessary to
translate programs using our simple pseudo-code language to a PP-CPN model.
From left to right the patterns match an atomic action (Atomic), a sequence of
two subprograms (S1;S2), a conditional branch (if condition then S1 else S2),
a while loop (while condition do S), and a critical section (atomic S). The
type P is the process colour set and for each pattern, the place S is the start
place and E the end place. All places created are process places except for the
Mutex place, which is a shared place. We put all processes on the start place
of the top level. We can add new templates or derive other constructs, such as
a simplified conditional branch omitting the else path, a repeat/until loop, a for
loop, and a for all loop.

In the initial abstraction, we translate a condition to an unbound boolean
variable in the PP-CPN model. We add a local place for each local variable and
a shared place for each global variable. These are available on all subpages where
they are within the scope. In the initial abstraction, we approximate the type

62 PNSE’11 – Petri Nets and Software Engineering

1: Waiting← {Model.initial()}
2: Visited← {Model.initial()}
3:
4: proc pickAndRemoveElement() is
5: if Waiting = ∅ then
6: return ⊥
7: Pick a s ∈Waiting
8: Waiting←Waiting \ {s}
9: return s

10:
11: proc addCheckExists(s′) is
12: result← s′ /∈ Visited
13: Visited← Visited∪ {s′}
14: return result
15:
16: proc computeStateSpace() is
17: s← pickAndRemoveElement()
18: while s 6= ⊥ do
19: // Handle s here
20: for all b enabled in s do
21: Execute b in s to get s′

22: if addCheckExists(s′) then
23: Waiting←Waiting ∪ {s′}
24: s← pickAndRemoveElement()
25:
26: computeStateSpace()
27: || computeStateSpace()

1: Waiting← {Model.initial()}
2: Visited← {Model.initial()}
3: MayAdd← 0
4:
5: proc pickWithCounter() is
6: s← pickAndRemoveElement()
7: if s 6= ⊥ then
8: MayAdd←MayAdd + 1
9: return s

10:
11: proc computeStateSpace() is
12: repeat
13: s← pickWithCounter()
14: while s 6= ⊥ do
15: // Do any handling of s here
16: for all b enabled in s do
17: Execute b in s to get s′

18: if addCheckExists(s′) then
19: Waiting ← Waiting ∪

{s′}
20: MayAdd←MayAdd− 1
21: s← pickWithCounter()
22: until MayAdd=0
23:
24: computeStateSpace()
25: || computeStateSpace()

Fig. 4: Naive parallel state-space algorithm (left) and more involved algorithm
(right).

of all variables with UNIT, and local and shared places are not connected to
transitions.

Applying this extraction to the computeStateSpace procedure of Fig. 4 (left)
and flattening it, we obtain Fig. 6 (left). Transitions are named after the line
number they correspond to and conditions after the performed tests. Assign To
Value stems from expanding the for all loop in line 18 to a while loop and line 19
has been omitted. We have instantiated the process twice (initial marking of S).

Abstraction Refinement. The initial abstraction allows execution of traces
not allowed in the original program. In the model in Fig. 6 (left), it is possible
to first terminate p(1) and have p(2) continue computation. This is not possible
in Fig. 4 (left). The model does find all possible interleavings of the process,
though, so if the state-space does not contain any erroneous states, neither will
the program.

Abstraction refinement consists of using more elaborate types on local and
shared places, of adding arcs for reading and updating local and shared places,

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 63

pid

pid

Atomic

E
Out

P

S
In

P
In

Out

pid

pid

pid

pid

S2
S2

S1
S1

E
Out

P

P

S
In

P
In

Out

S1

S2

pid

if condition
then empty
else 1`pid

pid

pid

pid

if condition
then 1`pid
else empty

pid

Else
S2

Then
S1

If

P

E
Out

P

P

S
In

P
In

Out

S1 S2

if condition
then empty
else 1`pid

pid

pid

if condition
then 1`pid
else empty

pid

While

S
S

E
Out

PP

S
In

P
In

Out

S

pid

pid

pid

pid

pid

pid

P

P

P

S
In

P
In

BOOL

Acquire

false

true

true
Mutex

false

true

S
SS

Release

E
OutOut

1 1`true

Fig. 5: Patterns for control structures.

and of limiting the values of condition variables, often using values from the
local or shared places. Refinements must limit the behavior of previous models
(which formally must be able to simulate any refinement if we ignore local and
shared places), and must be true to the original program.

The basic idea is to refine the types of places modeling local and global
variables and add tests accordingly. When we cannot determine an exact test or
update, we solve it by non-deterministically choosing among the possible values.
Here we only do a simple refinement to avoid the situation where one process can
decide that Waiting is empty just to have the other immediately afterward decide
it is not. For this, we refine the type of Waiting to a BOOL, indicating whether
the Waiting set is empty or not, and refine the type of s to indicate whether ⊥
was returned from isEmpty. The value of Waiting is initially false (as we add the
initial state in line 1 of Fig. 4 (left)) and we do not care about the initial value of
s, as it will be set before it is read. We make sure to read and update the values
of Waiting and s faithfully. Adding an element to Waiting (l. 23) implies setting
the value to true and for picking elements (ll. 17 and 24), we read the previous
value of Waiting, use that to set the value of s, and non-deterministically set the
value of the waiting set to true or false (though if the value already was true it
remains so) as we do not have enough information to know which is the correct
answer. We obtain the model in Fig. 6 (right). For readability, we have merged
the transitions 17 and 24, but this is not necessary for analysis. We no longer
can execute the erroneous trace on this refined model.

4 Analysis

The main reason we started this work in the first place is to analyze parallel
algorithms. Our focus is on new problems arising when creating parallel algo-
rithms, not on proving correctness of serial algorithms. We therefore assume that

64 PNSE’11 – Petri Nets and Software Engineering

pid

pid

pid

pid

pid

pid

pid

pid

While 20

P

P

P

P

P P

P

S

P

P

23

If 22

if waitingNonEmpty
then empty
else 1`pid

if addCheckExists
then empty
else 1`pid

pid

pid

E

17

While 18

if waitingNonEmpty
then 1`pid
else empty

pid
if moreEnabledBindings
then empty
else 1`pid

if moreEnabledBindings
then 1`pid
else empty

Assign
To Value

pid

21

pid

if addCheckExists
then 1`pid
else empty

24

P.all()

s' PxU.all()

PxU

b PxU.all()

PxU

s PxU.all()

PxU

Visited ()

UNIT

Waiting ()

UNIT

2
1`p(1)++
1`p(2)

2
1`(p(1),())++
1`(p(2),())

2
1`(p(1),())++
1`(p(2),())

2
1`(p(1),())++
1`(p(2),())

1 1`()

1 1`()

if moreEnabledBindings
then empty
else 1`pid

(pid, isEmpty(waiting))

(pid, s)

waiting

(pid, s)

pid

if addCheckExists
then empty
else 1`pid

pid

pid

pid

pid

pid

pid

pid

if moreEnabledBindings
then 1`pid
else empty

if isNotBottom(s)
then empty
else 1`pid

pid

if isNotBottom(s)
then 1`pid
else empty

pid

pid

23

If 22

21

Assign
To Value

While 20

While 18

17/24

BOOL

Visited ()

UNIT

s all_b

PxB

b PxU.all()

PxU

s' PxU.all()

PxU

P

P

P

P

P

E

P

P

S P.all()

P

if addCheckExists
then 1`pid
else empty

waiting

Waiting false

false

waiting orelse rand

1 1`()

2
1`(p(1),false)++
1`(p(2),false)

2
1`(p(1),())++
1`(p(2),())

2
1`(p(1),())++
1`(p(2),())

2
1`p(1)++
1`p(2)

1 1`false

Fig. 6: Control-flow of (left) and a simple refinement of the model (right).

algorithms are correct under certain mutual-exclusion assumptions, and search
for such violations. We are also interested in potential dead- and live-locks. As-
suming a valid refinement, we can ensure that absence of safety violations in the
model guarantees absence in the real program as we can simulate all executions
of the algorithm. This includes proving absence of mutual-exclusion violations.
We cannot use our approach to ensure the absence of dead-locks, as we deal
with over-approximations of the possible interleavings and further restricting
the behavior may introduce new dead-locks, but we can still find dead-locks and
remove them from the implementation.

We can do state-space analysis of the derived models from Fig. 6, and obtain
a state-space with 81 states for the abstract model (left) and a state-space with
130 states for the refined model. As the models do not have any critical regions,
they of course have no mutual exclusion violations.

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 65

Dead-locks and Live-locks. As all processes have a distinguished start and
end-state, we can recognize dead-locks and live-locks in the model. A dead-lock
is a state without successors (a dead state) where not all processes reside on E.
Neither of the models in Fig. 6 has dead-locks; the model to the left has exactly
one dead state, where all process ids reside on E and the shared and local places
retain their initial marking. The model in Fig. 6 (right) also has one dead state,
where all process ids reside on E, Waiting is true, s is true for all processes, and
all remaining local and shared places have their initial value.

Live-locks are a harder to recognize. We only consider live-locks in the absence
of dead-locks. A model has a strong live-lock if the dead states of the model do
not constitute a home space, i.e., if it is not always possible to reach one of the
dead states. A strong live-lock in the model does not necessarily imply a live-
lock in the original algorithm, but can be used to identify parts of the original
program that should be further investigated. None of the models in Fig. 6 have
strong live-locks.

A model may have a weak live-lock if its state-space has a loop. A loop may
also just indicate that a loop may execute an unbounded number of times. Both
models in Fig. 6 have loops, but analysis shows that the transition While 20
is impartial , i.e., that in any infinite execution it occurs an infinite number of
times. This happens if we compute infinitely many successors (the state-space
has infinitely many states), and makes sense in our algorithm.

A particular interesting kind of live-lock is a loop reachable from a state
where E contains tokens. This means that even after one of the processes have
terminated, the amount of work done by another process is unbounded. We have
already seen that Fig. 6 (left) exhibits this due to too abstract modeling, i.e.,
that process p(1) may decide that Waiting is empty initially and terminate, just
to have p(2) decide it is non-empty and continue computation. We have seen this
is not possible in the original algorithm, which caused us to refine the model to
Fig. 6 (right). We would therefore expect that no such live-lock was present
in the refined model. Maybe surprisingly, one such does exist. This is seen by
having p(1) check Waiting in 17/24, modify Waiting to be empty, and successfully
continue. Then, p(2) checks Waiting, notices it is empty and terminates. Now,
p(1) continues. This is also possible in Algorithm 4 (left), and even quite likely
as the two processes will test Waiting initially, one of them will consume the only
element it contains initially, and other processes terminate. This also occurred in
reality in our first implementation of a parallel state-space exploration algorithm
using Algorithm 4 (left).

To fix this, we notice that the reason p(2) terminates prematurely in the
previous example is that it decided to terminate while p(1) can still add new
states to Waiting. The idea of an improved algorithm is to ensure that no pro-
cesses may terminate when others may produce new states. This prompts us to
make Algorithm 4 (right). We reuse calculateStateSpace, addCheckExists, and
pickAndRemoveElement from Algorithm 4 (left) and define a new procedure
for picking, pickWithCounter (ll. 5–9) which is used in place of the original
pickAndRemoveElement (ll. 13 and 21). We use MayAdd as a counter of the

66 PNSE’11 – Petri Nets and Software Engineering

number of processes which may add new states to Waiting. We add an addi-
tional loop around the previous main loop ensuring we only quit when MayAdd
is zero. We inline the call to pickWithCounter for the translation and use a
mutex around the call to ensure atomicity.

We use the same approach to translate the model to a CPN model. We
maintain the abstraction of Waiting and do no abstraction of MayAdd, i.e.,
we increment and decrement it according to the algorithm. We implement the
mutex around the call to pickWithCounter as a place with type UNIT containing
a single token acting as the mutex. We then obtain the model in Fig. 7. We
have not completely flattened it for readability and to keep resemblance with
the previous models in Fig. 6. At the left we have the loop in lines 13–21,
which mostly corresponds to Fig. 6 (right). The only changes are that aside from
renaming transitions to correspond with the line numbers of Algorithm 4 (right),
we have added a transition for the new line 20 causing some rerouting of the flow,
added a place representing MayAdd, and changed 13/21 (named 17/24 in Fig. 6)
to a substitution transition. We have modeled the new outer loop as a separate
page shown in Fig. 7 (top/right). We implement the semantics of a repeat/until
loop looping over the page in Fig. 7 (left). We share access to MayAdd. The
Test transition is explained later. The page corresponding to the substitution
transition modeling pickWithCounter is shown in Fig. 7 (bottom/right). Again,
we share access to a local place (s) and two shared places (MayAdd and Waiting).
In all cases, the S and E places of a subpage is in port/socket relationship with
the input and output place of the corresponding substitution transition.

We can use state-space analysis to verify that (for this configuration) we do
not violate the mutex property in pickWithCounter. The state-space for this
model contains 399 states and 934 bindings. We can check this explicitly by
looking at the total number of tokens on the four unnamed places in Fig. 7
(bottom/right). This is either 0 or 1, showing that never do we have more than
one process inside pickWithCounter. The Test transition in Fig. 7 is added
to easily test whether it is ever possible for a process to execute lines 15–20
while another process has terminated, i.e., whether it is possible for a process to
terminate while there is still work to do. The transition requires a token from E,
i.e., a process that terminated and that the value of MayAdd is non-zero (this is
handled by the guard [n<>0], which has not been explained but exactly ensures
this). If Test is enabled in any state, it means that a process has terminated while
another has more work to do. State-space analysis shows this is not the case. This
is also a safety property, so absence of violations in the model implies absence of
violations in the original algorithm. We can prove the property without adding
Test by searching for a state where E has tokens and Waiting is false or one of
the unnamed places below While 14 contains tokens.

We can convince ourselves that the mutex around pickWithCounter is nec-
essary by removing it and repeating analysis. We then get a state where Test is
enabled, and we can verify the same error is present in the original model (have
one process enter pickWithCounter and consume the last element of Waiting,

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 67

pid

if addCheckExists
then empty
else 1`pid

pid

n-1

true

if isNotBottom(s)
then empty
else 1`pid

waiting

pid

pid

if addCheckExists
then 1`pid
else empty

pid

pid

pid

20

13/21
pick

If 18

17

Assign
To Value

While 16

While 14

MayAdd

I/O

0

INT

E
Out

P

Visited ()

UNIT

s all_b

PxB

b PxU.all()

PxU

s' PxU.all()

PxU

Waiting false

BOOL

S
In

P.all()

P

P

P

P

P

P

P

P

In

Out

I/O

pid

pid

n

19

pid

pid

if moreEnabledBindings
then empty
else 1`pid

pid

pid

(pid, s)

if moreEnabledBindings
then 1`pid
else empty

if isNotBottom(s)
then 1`pid
else empty

pick

1 1`0

1 1`()

2
1`(p(1),false)++
1`(p(2),false)

2
1`(p(1),())++
1`(p(2),())

2
1`(p(1),())++
1`(p(2),())

1 1`false

2
1`p(1)++
1`p(2)

pid

n

if n = 0
then 1`pid
else empty

n

if n = 0
then empty
else 1`pid

pid

pid

pid

Test

[n<>0]

Until 22

13-21
13-21

E

P

MayAdd

0

INT P

S
P.all()

P

13-21

1 1`0

2
1`p(1)++
1`p(2)

true

pid

pid

if isNotBottom(s)
then empty
else 1`pid

pid

n+1

n

(pid, s)

pid

if isNotBottom(s)
then 1`pid
else empty

pid

pid

pid

pid

pid

(pid, waiting)

waiting
orelse rand

waiting

(pid, s)

Release
Mutex

8

If 7

Acquire
Mutex

6

P

P

P

P

Mutex
true

BOOL

MayAdd

I/O

0

INT

E
Out

P

S
In

P.all()

P

BOOL

s

I/O

all_b

PxB
I/O

In

Out

I/O

Waiting

I/OI/O

true

false

false

false

1 1`true

1 1`0

2
1`p(1)++
1`p(2)

2
1`(p(1),false)++
1`(p(2),false)

1 1`false

Fig. 7: CPN model of more elaborate state-space algorithm.

then have the other process enter pickWithCounter, notice there is no element
and return ⊥, and terminate, just to have the first process continue alone).

In addition to the analysis of non-termination, we naturally also check for
dead- and live-locks as before and find nothing unexpected. While Algorithm 4
(left) is quite simple and it is probably possible to convince oneself that it is
correct without verification, the introduction of MayAdd makes Algorithm 4
(right) sufficiently complicated that correctness is not immediately apparent. We
have verified the algorithm with up to 4 processes (yielding 55.709 states), which
is the configuration we use in practice. Verification has given us confidence that
the algorithm will work with any number of processes. We have also investigated
an extended version additionally adding a checkpointing mechanism where all

68 PNSE’11 – Petri Nets and Software Engineering

threads are paused while Waiting and Visited are written to disk in a consistent
configuration.

We also used the method to verify the implementation of a slightly simplified
version of the protocol for operational support developed in [16]. The protocol
supports a client which sends a request to an operational support service, which
mediates contact to a number of operational support providers. The protocol
developed in [16] has support for running all participants on separate machines,
i.e., using asynchronous communication, but we are satisfied with an implemen-
tation running the operational support server and providers on the same server.
We therefore have to send fewer messages, but need to access shared data on the
server. We devised a fine-grained locking mechanism using the method devised
in this paper and proved that it enforced mutual exclusion and well as caused
no dead-locks, increasing our confidence that the implementation works.

5 Conclusion and Future Work

We have sketched an approach for correct implementation of parallel algorithms.
The approach allows users to extract a model from an algorithm written in an
implementation or abstract language and verify correctness using state-space
analysis. The approach also facilitates the generation of skeleton implementation
code from the verified model using the approach from [13] as we rely on process-
partitioned coloured Petri nets. Finally, we can also combine the two approaches,
which facilitates writing an algorithm in an abstract language, extract a model
for verification, and then extract a skeleton implementation.

Verification of software by means of models is not new. Code-generation
from models have been used in numerous projects. The approach has been
most successful for generating specification of hardware from low-level Petri
nets and other formalisms to synthesize hardware such as computer chips [9,17].
The approach has also been applied to high-level Petri nets to generate lower
level controllers [14] and more general software [13]. Model extraction was pi-
oneered by FeaVer [6], which made it possible to extract PROMELA models
from C code using user-provided abstractions, and Java PathFinder [7] which
did the same for Java programs. The approach has successfully been refined us-
ing counter-example guided abstraction refinement (CEGAR) [4] which was first
implemented by Microsoft SLAM [1], which extracts and automatically refines
abstractions from C code for Microsoft Windows device drivers, and refined by
BLAST [2]. While the tools for model-extraction support a full development cy-
cle by abstraction refinement and reuse for modified implementations, the idea
of combining the two approaches is to the best of our knowledge new. The com-
bination allows some interesting perspectives. The perspective we have focused
on in this paper is the ability to write an algorithm in pseudo-code, extract a
model from the code, and generate an implementation in a real language. An-
other perspective is supporting a full cycle as well, where we extract a model
from a program, find and fix an error in the model, and emit code that is merged
with the original code, supporting a cycle where we do not need to fix problems

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 69

on the original code but can do so at the model level. The use of coloured Petri
nets instead of a low-level formalism allows us to use the real data-types used in
the program instead of abstractions, much like how FeaVer allows using C code
as part of PROMELA models, but with the added bonus that the operations
are a true part of the modeling language rather than an extension that requires
some trickery to handle correctly.

The work presented here is only in the initial stages, but looks very promising.
We have several ideas for future work. Currently, we have to manually extract
the model from patterns. This is tedious and error-prone, and it would be nice
to have automatic extraction. Such a translation should implement the patterns
included in Fig. 5, but could also use explicit patterns for repeat/until loops
and other constructs. Given an implementation of the translation to and from
models, we could look at supporting a full development cycle allowing us to
update existing code with changes to the model.

An implementation could also implement reduction rules like the one we
used to merge lines 17 and 24 in the model in Fig. 6 (right). We can also add
simplifications collapsing long traces of unconditional progress not modifying
any data to reduce the state-space without removing behavior. For example, in
Fig. 7 we can remove transitions Assign To Value and 17, merging the input place
of Assign To Value and the output place of 17, to obtain a smaller state-space of
26.909 states for 4 processes, down from 55.709 states. We can also merge the
acquisition of a lock with the first regular transition (merging the transitions
Acquire Lock with 6 in Fig. 7 (bottom/right)) and merging releases with the
last. This reduces the state-space to 14.841 states.

Currently, we provide abstractions manually. Like SLAM, we could easily
replay found errors on the original code and provide assistance in the develop-
ment of refinements, possibly even making them automatically. In our example,
replaying the early termination error trace found in Fig. 6 (left) on Algorithm 4
(left) would show that it is not possible for isEmpty to return false initially and
that it can only change from returning false to returning true if we execute line
23. Even though we might not be able to provide the abstraction refinement in
Fig. 6 (right) fully automatically, providing such diagnostics can be very useful
for the user for improving the refinement.

Our current method focuses on parallel algorithms with a fixed number of
identical processes, but there is nothing in our approach preventing us from
extending this to also handle distributed settings with asynchronous communi-
cation using buffer places and different kinds of processes; the code generation
in [13] even supports that out of the box. While the fixed number of processes
used in this paper works well for simple algorithms, more advanced algorithms
may need to spawn processes. Nothing in our approach inherently forbids this,
but the code generation in [13] does not support this out of the box. We believe
that it should be quite easy to devise a construction for starting new processes
and adapt the code generation to handle this.

One thing our approach does not support very well at the moment is intra-
procedure calls. We can currently simulate this in simple cases by inlining pro-

70 PNSE’11 – Petri Nets and Software Engineering

cedure calls, but this is not possible when using recursion. One way to fix it is
to view a recursive call as starting a new process for executing the child and
waiting for the result. If we support different kinds of processes, communication
between processes, and dynamic instantiation of processes, this should be easy
to add.

References

1. T. Ball and S.K. Rajamani. The SLAM project: debugging system software via
static analysis. In Proc. of POPL’02, pages 1–3. ACM Press, 2002.

2. D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. The Software Model
Checker BLAST: Applications to Software Engineering. STTT, 7(5):505–525, 2007.

3. J. Billington, M.C. Wilbur-Ham, and M.Y. Bearman. Automated protocol Verifi-
cation. In Proc. of IFIP WG 6.1 5th International Workshop on Protocol Specifi-
cation, Testing, and Verification, pages 59–70. Elsevier, 1985.

4. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking. J. ACM, 50:752–794, 2003.

5. K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen. Modelling and Initial Vali-
dation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks. In Proc. of
ATPN, volume 5062 of LNCS, pages 152–170. Springer, 2008.

6. The FeaVer Feature Verification System webpage. Online: cm.bell-labs.com/cm/
cs/what/feaver/.

7. K. Havelund and T. Presburger. Model Checking Java Programs Using Java
PathFinder. STTT, 2(4):366–381, 2000.

8. G.J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
9. IEEE Standard System C Language Reference Manual. IEEE-1666.

10. K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Validation
of Concurrent Systems. Springer, 2009.

11. L.M. Kristensen and K. Jensen. Specification and Validation of an Edge Router
Discovery Protocol for Mobile Ad-hoc Networks. In Integration of Software Spec-
ification Techniques for Application in Engineering, volume 3147 of LNCS, pages
248–269. Springer, 2004.

12. L.M. Kristensen, J.B. Jørgensen, and K. Jensen. Application of Coloured Petri
Nets in System Development. In Proc. of 4th Advanced Course on Petri Nets,
number 3098 in LNCS, pages 626–685. Springer, 2004.

13. L.M. Kristensen and M. Westergaard. Automatic Structure-Based Code Genera-
tion from Coloured Petri Nets: A Proof of Concept. In Proc. of FMICS’10, LNCS,
pages 215–230. Springer, 2010.

14. J.L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured
Petri Nets. In Proc. ATPN’96, volume 1091 of LNCS, pages 400–419. Springer,
1996.

15. W.M.P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

16. M. Westergaard and F.M. Maggi. Modelling and Verification of a Protocol for Op-
erational Support using Coloured Petri Nets. In Proc. of ATPN, LNCS. Springer,
2011.

17. A. Yakovlev, L. Gomes, and L. Lavagno. Hardware Design and Petri Nets. Kluwer
Academic Publishers, 2000.

M. Westergaard: Verifying Parallel Algorithms and Programs using CPN 71

Bounded Model Checking Approaches for
Verification of Distributed Time Petri Nets?

Artur Mȩski1,2, Wojciech Penczek2,3, Agata Półrola1, Bożena
Woźna-Szcześniak4, and Andrzej Zbrzezny4

1 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
polrola@math.uni.lodz.pl

2 Institute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, Poland
{meski,penczek}@ipipan.waw.pl

3 University of Natural Sciences and Humanities, Institute of Informatics,
3 Maja 54, 08-110 Siedlce, Poland

4 Jan Długosz University, IMCS, Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland
{b.wozna,a.zbrzezny}@ajd.czest.pl

Abstract. We consider two symbolic approaches to bounded model
checking (BMC) of distributed time Petri nets (DTPNs). We focus on the
properties expressed in Linear Temporal Logic without the neXt-time
operator (LTL−X) and the existential fragment of Computation Tree
Logic without the neXt-time operator (ECTL−X). We give a translation
of BMC to SAT and describe a BDD-based BMC for both LTL−X and
ECTL−X. The two translations have been implemented, tested, and com-
pared with each other on two standard benchmarks. Our experimental
results reveal the advantages and disadvantages of both the approaches.

1 Introduction

Verification of time dependent systems is a very active field of research. Many
efficient approaches have been put forward for the verification of timed automata
[1] and time Petri nets [22] by means of model checking [12, 26]. However, the
state explosion still remains the main problem to deal with while verifying a
timed system by searching through its state space, which in most cases is very
large due to infinity of the dense time domain. Furthermore, the size of the state
space is likely to grow exponentially in the number of the concurrent system
components. Symbolic model checking techniques [21] can be used to overcome
the above problem. These exploit various kinds of binary decision diagrams to
represent the model [24] or are based on a translation to a propositional satisfi-
ability problem.

Bounded model checking (BMC) is an efficient verification method using a
model truncated up to a specific depth only. In turn, SAT-based BMC verifica-
tion consists in translating a model checking problem solvable on a fraction of a
? Partly supported by the Polish Ministry of Science and Higher Education under the
grant No. N N206 258035.

model into a test of propositional satisfiability, which is then performed using a
SAT-solver [28]. The method has been successfully applied to verification of both
timed and untimed systems [3–5, 33]. Alternatively, one can use binary decision
diagrams to represent a truncated model and to perform BDD-based verification
[2, 13].

In this paper we investigate bounded model checking (BMC) approaches to
verification of Distributed Time Petri Nets with discrete semantics, based on
both SAT and BDD translations. There are several decisions taken that aim at
making the verification of TPNs as efficient as possible. Below, we discuss them
in detail to motivate clearly our approach. First of all, we believe that BMC
is one of the main practical approaches, which can be used in case of dealing
with huge or infinite state spaces. We motivate this point of view by comparing
our experimental results with these of Tina, which operate on full state spaces.
Clearly, BMC is restricted to verifying existential properties only, but it allows
for tackling bounded models of large systems, whereas other approaches suffer
from lack of memory.

Our second choice consists in dealing with distributed TPNs rather than with
just 1-safe TPNs. The reason is that a representation of a global state contains
only one clock for each process rather than one clock for each transition, which
makes the encoding and the verification much more efficient. Another choice
is related to the semantics. In this paper we investigate discrete semantics as
we believe that in this case model checking is again more efficient. However,
independently we are working on extending our approach to the dense semantics
as we are aware that this is also a very interesting issue. Since there are several
discrete semantics, we consider for each translation these which can be applied.

As to the temporal properties, we start with defining CTL∗−X, but restrict
ourselves two its two subsets CTL−X and LTL−X, as these sublanguages allow
for optimising the translations to SAT and BDDs. The languages do not contain
the next step operator X as we are dealing with time systems, in which, for some
discrete semantics, the next step may be not definable.

Next, we need to motivate our translations to SAT and BDDs. We are aware
of the fact that there has been a tremendous speed-up due to applying the
saturation technique [15] when performing decision diagram based verification.
Moreover, the saturation combined with BMC was presented in [34], however
only reachability checking was considered. Still, we believe, in most cases, BMC
approach to BDD-based verification can be viewed as an alternative way of
avoiding the BDD peak size when using BFS. In case of SAT we exploit the
most efficient translations known for ECTL−X and ELTL−X.

The above discussion motivates all the choices made in our paper and leads
us to the main result, which is offering and comparing two symbolic BMC ap-
proaches for DTPNs. We show that for existential properties our BMC is much
more efficient than Tina. We also compare efficiency of BMC depending on
whether it is based on a translation to SAT or to BDD.

The main contribution of this paper is thus the combination of the three
issues, as BMC has been studied, with both BDDs and, especially, SAT, but

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 73

mostly for standard untimed models, while discrete time Petri nets have been
studied with BDDs and extensions (e.g., [31]), but not for BMC.

To our best knowledge, no BMC method supporting ELTL−X and ECTL−X
for time Petri nets has been defined so far, although some solutions for untimed
Petri nets exist [27, 16]. Symbolic model checking has been investigated in many
papers [2, 5]. Verification of CTL properties based on BDDs was introduced in [9].
In [27] SAT-based BMC for the existential fragment of CTL was described and
implemented for elementary net systems. Verification methods using BDD-based
BMC were studied in [10, 13] for simple invariant properties, in [23] for CTL
over elementary nets systems, and in [19] for CTL extended with an epistemic
component over multi-agent systems. On the other hand, verification of temporal
properties for time Petri nets was a subject of intensive research of the teams of
H. Boucheneb and O.H. Roux [6, 7, 20].

The rest of the paper is organised as follows. Section 2 presents logics LTL−X
and CTL−X. Section 3 introduces time Petri nets. SAT-based BMC for ELTL−X
and ECTL−X is described in Section 4, whereas BDD-based BMC for these logics
is in Section 5. Sections 6 and 7 contain respectively experimental results and
concluding remarks.

2 Temporal Logics LTL−X and CTL−X

We start with defining the logic CTL∗−X, which can express both linear- and
branching-time properties. Then, we introduce variants of linear time temporal
logic (LTL−X) as well as of branching time temporal logic (CTL−X) as sublogics
of CTL∗−X. All the considered logics do not contain the next step operator X,
which is reflected in their acronyms by −X.

Let PV be a set of propositional variables such that {true, false} ⊆ PV , and
℘ ∈ PV . The language of CTL∗−X is given as the set of all the state formulae ϕs

(interpreted at states of a model), defined using path formulae ϕp (interpreted
along paths of a model), by the following grammar:

ϕs := ℘ | ¬ϕs | ϕs ∨ ϕs | Aϕp

ϕp := ϕs | ¬ϕp | ϕp ∨ ϕp | ϕpUϕp | ϕpRϕp

In the above A (’for All paths’) is a path quantifier, whereas U (’Until’), and
R (’Release’) are state operators. Further, the following standard abbreviations
are used in writing CTL∗−X formulae: ϕs ∧ ϕs

def
= ¬(¬ϕs ∨ ¬ϕs), ϕp ∧ ϕp

def
=

¬(¬ϕp ∨ ¬ϕp), Eϕp
def
= ¬A(¬ϕp), Gϕp

def
= falseRϕp , and Fϕp

def
= trueUϕp .

Next, we define several sublogics of CTL∗−X including variants of LTL−X
as well as of CTL−X. Although a standard model for LTL−X is a path, for
verification aims the logic is typically interpreted over all the paths of a Kripke
model. So, two semantics are possible depending on whether a formula holds at
all the paths or at some path of a model. Since we need to distinguish between
these two semantics (in order to specify counterexamples), we find it useful to
do it already at the level of the language by defining the universal (ALTL−X)

74 PNSE’11 – Petri Nets and Software Engineering

and the existential (ELTL−X) versions of the logic. In the literature on the
verification of linear time properties, if this distinction is not necessary, then
ALTL−X is typically called LTL−X.
ALTL−X (ELTL−X) is the fragment of CTL∗−X in which only the formulae of

the form Aϕp (Eϕp , respectively) are allowed, where ϕp is a path formula
which does not contain the path quantifiers A,E.

CTL−X is the fragment of CTL∗−X in which the syntax of path formulae is re-
stricted such that each state operators must be preceded by a path quantifier
(i.e., the modalities A, E, U, R can only appear paired in the combinations
AU, EU, AR, ER).

ACTL−X (ECTL−X) is the fragment of CTL−X such that the formulae are
restricted to the positive boolean combinations of A(ϕUψ) and A(ϕRψ)
(E(ϕUψ) and E(ϕRψ), respectively). Negation can be applied to proposi-
tions only.

A model for CTL∗−X is a Kripke structure M = (L, S, s0,→, V), where L is a set
of labels, S is a set of states, s0 ∈ S is the initial state, → ⊆ S × L × S is a
total successor relation (i.e., (∀s ∈ S)(∃s′ ∈ S)(s→s′)), and V : S −→ 2PV is a
valuation function.

In our paper we assume the standard semantics of CTL∗−Xwhich can be found
in several papers, among others in [11, 12], so we do not deliver it here. Moreover,
we assume that a CTL∗−X formula ϕ is true in the modelM (denoted byM |= ϕ)
iff ϕ is true at the initial state of the model, i.e., M, s0 |= ϕ.

3 Time Petri Nets

Let IN denote the set of natural numbers. We start with a definition of time
Petri nets:

Definition 1. A time Petri net (TPN) is a tuple N = (P, T, F,m0, Eft, Lft),
where P = {p1, . . . , pnP

} is a finite set of places, T = {t1, . . . , tnT
} is a finite set

of transitions, F ⊆ (P × T)∪ (T × P) is the flow relation, m0 ⊆ P is the initial
marking of N , and Eft : T → IN, Lft : T → IN ∪ {∞} are functions describing
the earliest and the latest firing time of the transition; where for each t ∈ T we
have Eft(t) ≤ Lft(t).

For a transition t ∈ T we define its preset •t = {p ∈ P | (p, t) ∈ F} and postset
t• = {p ∈ P | (t, p) ∈ F}, and consider only the nets such that for each transition
the preset and the postset are nonempty. We need also the following notations
and definitions:
– a marking of N is any subset m ⊆ P ;
– a transition t ∈ T is called enabled at m (m[t〉 for short) if •t ⊆ m and
t • ∩(m \ •t) = ∅; and leads from m to m′, if it is enabled at m, and m′ =
(m \ •t)∪ t•. The marking m′ is denoted by m[t〉 as well, if this does not lead
to misunderstanding;

– en(m)= {t∈T |m[t〉} is the set of all the transitions enabled at the marking
m;

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 75

– a markingm ⊆ P is reachable if there exists a sequence of transitions t1, . . . , tl ∈
T and a sequence of markings m0, . . . ,ml such that m0 = m0, ml = m, and
for each i ∈ {1, . . . , l} ti ∈ en(mi−1) and mi = mi−1[ti〉;

– a marking m concurrently enables two transitions t, t′ ∈ T if t ∈ en(m) and
t′ ∈ en(m \ •t);

– a net is sequential if no reachable marking of N concurrently enables two
transitions.

It should be mentioned that the time Petri nets defined as above are often called
1-safe in the literature. In this work we consider a subclass of TPNs – distributed
time Petri nets (DTPNs) [26]:

Definition 2. Let I = {i1, . . . , in} be a finite ordered set of indices, and let
N = {Ni = (Pi, Ti, Fi,m

0
i , Efti, Lfti) | i ∈ I} be a family of 1-safe, sequen-

tial time Petri nets (called processes), indexed with I, with the pairwise dis-
joint sets Pi of places, and satisfying the condition (∀i1, i2 ∈ I)(∀t ∈ Ti1 ∩
Ti2) (Efti1(t) = Efti2(t) ∧ Lfti1(t) = Lfti2(t)). A distributed time Petri
net N = (P, T, F,m0, Eft, Lft) is the union of the processes Ni, i.e., P =⋃

i∈I Pi, T =
⋃

i∈I Ti, F =
⋃

i∈I Fi, m0 =
⋃

i∈Im
0
i , Eft =

⋃
i∈IEfti, and

Lft =
⋃

i∈I Lfti.

Notice that the function Efti1 (Lfti1) coincides with Efti2 (Lfti2 , resp.) for the
joint transitions of each two processes i1 and i2. The interpretation of such a sys-
tem is a collection of sequential, nondeterministic processes with communication
capabilities (via joint transitions).

In what follows, we consider DTPNs only, assume that their initial markings
contain exactly one place of each of the processes of the net, and that all their
processes are state machines (i.e., for each i ∈ I and each t ∈ Ti, it holds
| • t| = |t • | = 1). This implies that in any marking of N there is exactly one
place of each process. It is important to mention that a large class of distributed
nets can be decomposed to satisfy the above requirement [18]. Moreover, for
t ∈ T we define IV(t) = {i ∈ I | •t ∩ Pi 6= ∅}, and say that a process Ni is
involved in a transition t iff i ∈ IV(t).

3.1 Concrete State Spaces and Models

The current state of the net is given by its marking and the time passed since
each of the enabled transitions became enabled (which influences the future be-
haviour of the net). In our work we assume a discrete-time semantics of DTPNs,
i.e., consider integer time passings only (cf. [26]). Thus, a concrete state σ of a
distributed TPN N can be defined as an ordered pair (m, clock), where m is
a marking, and clock : I → IN is a function which for each index i of a pro-
cess of N gives the time elapsed since the marked place of this process became
marked most recently [29]. The set of all the concrete states is denoted by Σ.
The initial state of N is σ0 = (m0, clock0), where m0 is the initial marking, and
clock0(i) = 0 for each i ∈ I.

For δ ∈ IN, let clock + δ denote the function given by (clock + δ)(i) =
clock(i) + δ, and let (m, clock) + δ denote (m, clock + δ). The states of N can

76 PNSE’11 – Petri Nets and Software Engineering

change when the time passes or a transition fires. In consequence, we introduce
a labelled timed consecution relation →c⊆ Σ × (T ∪ IN)×Σ given as follows:
– In a state σ = (m, clock) a time δ ∈ IN can pass leading to a new state
σ′ = (m, clock + δ) (denoted σ

δ→c σ
′) iff for each t ∈ en(m) there exists

i ∈ IV(t) such that clock(i) + δ ≤ Lft(t) (time-successor relation);
– In a state σ = (m, clock) a transition t ∈ T can fire leading to a new state
σ′ = (m′, clock′) (denoted σ

t→c σ
′) if t ∈ en(m), for each i ∈ IV(t) we

have clock(i) ≥ Eft(t), and there is i ∈ IV(t) such that clock(i) ≤ Lft(t).
Then, m′ = m[t〉,and for all i ∈ I we have clock′(i) = 0 if i ∈ IV(t), and
clock′(i) = clock(i) otherwise (action-successor relation).

Intuitively, the time-successor relation does not change the marking of the net,
but increases the clocks of all the processes, provided that no enabled transition
becomes disabled by passage of time (i.e., for each t ∈ en(m) the clock of at
least one process involved in the transition does not exceed Lft(t)). Firing of
a transition t takes no time – the action-successor relation does not increase
the clocks, but only sets to zero the clocks of the involved processes (note that
each of these processes contains exactly one input and one output place of t, as
the processes are state machines); and is allowed provided that t is enabled, the
clocks of all the involved processes are greater than Eft(t), and there is at least
one such process whose clock does not exceed Lft(t).

We define a timed run of N starting at a state σ0 ∈ Σ (σ0-run) as a maximal
sequence of concrete states, transitions, and time passings ρ = σ0

a0→c σ1
a1→c

σ2
a2→c . . ., where σi ∈ Σ and ai ∈ T ∪ IN for all i ∈ IN. An alternating run

is a timed run in which ai ∈ IN when i is even, and ai ∈ T when i is odd. A
non-alternating run is a timed run with ai ∈ T ∪ (IN \ {0}) for all i. Given a set
of propositional variables PV , we introduce a valuation function Vc : Σ → 2PV

which assigns the same propositions to the states with the same markings. We
assume the set PV to be such that each q ∈ PV corresponds to exactly one
place p ∈ P , and use the same names for the propositions and the places. The
function Vc is defined by p ∈ Vc(σ) ⇔ p ∈ m for each σ = (m, ·). The structure
Mc(N) = (T ∪IN, Σ, σ0,→c, Vc) is called a concrete (discrete-timed) model of N .

3.2 A Model for CTL∗
−XVerification of DTPNs

The concrete model Mc(N) = (T ∪ IN, Σ, σ0,→c, Vc) for a DTPN N defined in
Section 3 involves timed steps of arbitrary length. However, it can be proven
that without loss of generality one can consider a model with a restricted set of
timed labels, and of restricted values of the clock function. Let cmax(N) denote
the greatest finite value of Eft and Lft of the net N , cm1 denote the value
cmax(N) + 1, and CN be the set of natural numbers from the interval [0, cm1].
Next, for a function f : T → IN and a ∈ IN, let f |a denote the function given by
f |a(t) = f(t) if f(t) ≤ a, and f |a(t) = a otherwise. Let clocks : I → CN denote
the function which for each index i of a process of N gives the time either elapsed
since the marked place of this process became marked most recently, or “frozen”
on the value cm1 if the time elapsed since the marked place becomes marked

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 77

exceeded cmax(N). Let σ|cm1 , for σ = (m, clock) ∈ Σ, be the state (m, clocks)
with clocks = clock|cm1 . Moreover, for δ ∈ IN, let clocks ⊕ δ denote the function
given by (clocks⊕δ)(i) = clocks(i)+δ if clocks(i)+δ ≤ cm1, and (clocks⊕δ)(i) =
cm1 otherwise. The reduced (discrete-timed) model for DTPN N is defined as
follows: M̂c(N) = (T ∪ CN , Σs, σ0,→s, Vs), where Σs = {σ|cm1 | σ ∈ Σ}, Vs is
given by Vs(σ|cm1) = Vc(σ), and the relation→s⊆ Σs× (T ∪CN)×Σs is defined
by
– in a state σs = (m, clocks) a time δ ∈ CN can pass leading to a new state
σ′s = (m, clocks ⊕ δ) (denoted σs δ→s σ

′
s) iff for each t ∈ en(m) there exists

i ∈ IV(t) such that clocks(i)⊕ δ ≤ Lft(t),
– a transition t ∈ T can fire in a state σs = σ|cm1 leading to a state σ′s (denoted
σs

t→s σ
′
s) iff σ

t→c σ
′ for some σ′ ∈ Σ s.t. σ′s = σ′|cm1 .

In order to show that M̂c(N) can replaceMc(N) in CTL∗−X verification we shall
prove the following lemma:

Lemma 1. For a given DTPN N the models Mc(N) = (T ∪ IN, Σ, σ0,→c, Vc)

and M̂c(N) = (T ∪ CN , Σs, σ0,→s, Vs) are bisimulation equivalent.

The proof can be found in the appendix. In the proof we use an “intermediate”
model M̃c(N) = (T ∪CN , Σ, σ0,→r, Vc) with →r⊆ Σ × (T ∪CN)×Σ given by
– in a state σ = (m, clock) a time δ ∈ CN can pass leading to a new state
σ′ = (m, clock + δ) (denoted σ

δ→r σ
′) iff for each t ∈ en(m) there exists

i ∈ IV(t) such that clock(i) + δ ≤ Lft(t),
– a transition t ∈ T can fire in a state σ leading to a state σ′ (σ t→r σ

′) iff
σ

t→c σ
′,

(i.e., the model which differs from M̂c(N) in such a way that the values of the
clock function are not restricted to cm1) which is bisimulation equivalent to
Mc(N). Further, we define the following equivalence relation, which is used in
the next section to define a SAT-based BMC method.

Definition 3. Let σ = (m, clock) and σ′ = (m′, clock′) be two states of a DTPN
N (σ, σ′ ∈ Σ). The states σ, σ′ are ?-equivalent (denoted σ '? σ′) iff m = m′

and ∀t∈en(m)[(mini∈IV(t) clock(i) = mini∈IV(t) clock′(i) ∧ mini∈IV(t) clock(i) ≤
cmax(N)) ∨ (mini∈IV(t) clock(i) > cmax(N) ∧mini∈IV(t) clock′(i) > cmax(N))].

The following lemma shows that the equivalence preserves the behaviours of the
net. Its proof can be found in the appendix.

Lemma 2. Let σ, σ′ ∈ Σ be ?-equivalent. Thus, for any l ∈ T ∪ IN we have:
– if σ l→c σ1 for some σ1 ∈ Σ then there is σ′1 ∈ Σ s.t. σ′ l→c σ

′
1 and σ1 '? σ′1,

– if σ′ l→c σ
′
1 for some σ′1 ∈ Σ then there is σ1 ∈ Σ s.t. σ l→c σ1 and σ′1 '? σ1.

4 SAT-Based BMC for ELTL−X and ECTL−X

BMC is a verification technique whose main idea consists in considering a model
truncated up to a specific depth. Thus, BMC is mostly used to find counterexam-
ples for the properties expressed in “universal” logics (in our case ACTL−X and

78 PNSE’11 – Petri Nets and Software Engineering

ALTL−X), or to prove that properties expressed in “existential” logics (ECTL−X,
ELTL−X) hold.

The BMC method used in our paper is based on the BMC method for the
existential fragment of CTL∗−X (ECTL∗−X) [32], and on an improved BMC trans-
lation for the ECTL−X fragment [35]. In particular, in the paper we adapt
the BMC techniques mentioned above to the DTPN setting. Let M̃c(N) =
(T∪CN , Σ, σ0,→r, Vc) be a model for a given DTPNN = (P, T, F,m0, Eft, Lft)
, and ϕ an ECTL−X or ELTL−X formula describing an undesired property. To
show that ϕ is true in M̃c(N), it is enough to prove that ϕ holds in a frag-
ment (submodel) M ′ of M̃ . Thus, we start by taking a submodel M ′ of the
model M̃c(N) that consists of the finite prefixes of paths from M̃c(N) restricted
by a bound k ∈ IN – traditionally called k-paths. The number of k-paths in
M ′ depends on the checked formula ϕ, and it is specified by a value of a
function fk : FECTL∗−X

→ IN defined by: for ℘ ∈ PV , fk(℘) = fk(¬℘) = 0,
fk(ϕ∧ψ) = fk(ϕ)+fk(ψ), fk(ϕ∨ψ) = max{fk(ϕ), fk(ψ)}, fk(Eϕ) = fk(ϕ)+1,
fk(ϕUψ) = k · fk(ϕ)+ fk(ψ), fk(ϕRψ) = (k+1) · fk(ψ)+ fk(ϕ). Next, we trans-
late the problem of checking whether the M ′ is a model for ϕ to the problem of
checking the satisfiability of the following propositional formula:

[M̃c(N), ϕ]k := [M̃c(N)ϕ,σ
0

]k ∧ [ϕ]M ′ (1)

The first conjunct of Formula 1 represents all the submodels M ′ of M̃c(N) that
consists of fk(ϕ) k-paths, and the second a number of constraints that must
be satisfied on these submodels for ϕ to be satisfied. Once this translation is
defined, satisfiability of an ECTL−X or ELTL−X formula can be tested with a
SAT-solver.

How to define the formula [M̃c(N)ϕ,σ
0

]k in the DTPN settings we show
in the next subsection. Note however that for a given DTPN N , the formula
[M̃c(N)ϕ,σ

0

]k can be implemented either using the model M̃c(N) or using M̂c(N).
We have chosen M̃c(N) in order to simplify the implementation. It should be
explained that although in M̃c(N) there is no upper bound on the values of
clocks, restricting the lengths of the time steps allows to bound the values of
clocks on k-paths by a value depending on k and cmax(N). The definition of the
formula [ϕ]M ′ depends on whether ϕ is in ECTL−X or in ELTL−X, and whether
considered k-paths are, or are not loops; a k-path πk = (σ0, σ1, . . . , σk) is called
a (k, l)-loop, if
– σk '? σl for some 0 ≤ l < k (the non-alternating semantics).
– σk '? σl for some 0 ≤ l < k, and either both k and l are odd or they are

both even (the alternating semantics).
The difference in the above definitions follows from the fact that in the alternat-
ing semantics the looping runs need to preserve the alternating structure when
"unfolded", while in the non-alternating semantics their stucture is preserved
without any additional conditions. Using '? instead of the standard equality of
states follows from the fact that for the further possible behaviours of the net
at a given state only the minimal values of the clocks of the processes involved
in the enabled transitions are important.

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 79

A k-path πk is called a loop, if it is (k, l)-loop for some l ∈ {0, . . . , k − 1}. In
this paper we assume the definitions of [ϕ]M ′ that can be found, respectively, in
[35] (ECTL−X), and in [32, 5] (ELTL−X). However, to apply them to the DTPN
setting, we have changed the definition of the loop to the one presented above.
Definition of formula [M̃c(N)ϕ,σ

0

]k. Let M̃c(N) = (T ∪ CN , Σ, σ0,→r, Vc)
be a model of a given DTPN N = (P, T, F,m0, Eft, Lft), ϕ an ECTL−X
or ELTL−X formula, and k ∈ IN a bound. In order to define the formula
[M̃c(N)ϕ,σ

0

]k that constrains the fk(ϕ) symbolic k-paths to be valid k-paths
of M̃c(N), we proceed as follows. We assume that each state σ ∈ Σ is given
in a unique binary form, i.e., every state σ can be encoded as a bit vector
(σ[1], . . . , σ[lb]) of length lb depending on the number of places P of N , the
bound k , the value cmax(N) (i.e., the greatest finite value of Eft and Lft), and
the value fk(ϕ). Thus, each state σ can be represented by a valuation of a vector
w = (w[1], . . . , w[lb]) (called a global state variable), where w[i], for i = 1, . . . , lb
is a propositional variable (called state variable)5. A finite sequence (w0, . . . , wk)
of global state variables is called a symbolic k-path. Since in the ECTL−X case
we shall need to consider not just one but a number of symbolic k-paths, we
use the notation of j-th symbolic k-path (w0,j , . . . , wk,j), where wi,j are global
state variables for 0 ≤ j < fk(ϕ) and 0 ≤ i ≤ k; the number of symbolic k-paths
depends on the formula ϕ under investigation, and it is returned as the value
fk(ϕ) of the function fk; note that if ϕ is an ELTL−X formulae then fk(ϕ) = 1.

Let w,w′ be two global state variables. We define the following auxiliary
propositional formulae:
• Iσ(w) is a formula that encodes the state σ of the model M̃c(N), i.e., σ[i] = 1

is encoded by w[i], and σ[i] = 0 is encoded by ¬w[i].
• T S(w,w′) (T S ′(w,w′)) is a formula over w and w′ which is true for two

valuations σw of w and σw′ of w′ iff σw
δ→r σw′ , for δ ∈ CN (δ ∈ CN \ {0},

respectively). It encodes the time-successor relation of M̃c(N).
• AS(w,w′) is a formula over w and w′ which is true for two valuations σw

of w and σw′ of w′ iff σw
t→r σw′ , for t ∈ T . It encodes the action-successor

relation of M̃c(N).
The propositional formula [M̃ϕ,σ0

c]k is defined as follows:

[M̃ϕ,σ0

c]k := Iσ0(w0,0) ∧
fk(ϕ)−1∧

j=0

k−1∧

i=0

R(wi,j , wi+1,j)

where wi,j for 0 ≤ i ≤ k and 0 ≤ j < fk(ϕ) are global state variables, and
(a) R(wi,j , wi+1,j) := T S(wi,j , wi+1,j) when i is even, and R(wi,j , wi+1,j) :=
AS(wi,j , wi+1,j) when i is odd (the alternating semantics), or

(b) R(wi,j , wi+1,j) := T S ′(wi,j , wi+1,j) ∨ AS(wi,j , wi+1,j) (the non-alternating
semantics).

5 Notice that we distinguish between states of Σ encoded as sequences of 0’s and
1’s (we refer to these as valuations of w), and their representations in terms of
propositional variables w[i].

80 PNSE’11 – Petri Nets and Software Engineering

Note that if ϕ is an ELTL−X formula, then fk(ϕ) = 1, and the above definition
is equivalent to the following one: [M̃ϕ,σ0

c]k := Iσ0(w0,0)∧
∧k−1
i=0 R(wi,0, wi+1,0).

5 BDD-based BMC for ELTL−X and ECTL−X

Binary decision diagrams (BDDs) [8, 17] are an efficient data structure widely
used for storing and manipulating boolean functions. In the paper we use Re-
duced Ordered Binary Decision Diagrams (ROBDDs) instead of the “pure” BDD
structures. The advantage of ROBDDs is that they are canonical for a particular
function and variable order.

To introduce a BDD-based bounded model checking method, we start with
describing ECTL−X in terms of sets of reachable states at which the given for-
mula holds [17]. For this purpose we need the notion of a fixed point.

Let S be a finite set and τ : 2S −→ 2S a monotone function, i.e., X ⊆ Y
implies τ(X) ⊆ τ(Y) for all X,Y ⊆ S. Let τ i(X) be defined by τ0(X) = X and
τ i+1(X) = τ(τ i(X)). We say that X ′ ⊆ S is a fixed point of τ if τ(X ′) = X ′. It
can be proven that if τ is monotone, S is a finite set and |S| is a number of its
elements, then there exist m,n ≤ |S| such that τm(∅) is the least fixed point of
τ (denoted by µX.τ(X)) and τn(S) is the greatest fixed point of τ (denoted by
νX.τ(X)).

Let M = (L, S, s0,→, V) be a model, and SR ⊆ S a set of all the reachable
states of the model M . For X ⊆ SR, let pre∃(X) = {s ∈ SR | (∃s′ ∈ X)(∃l ∈
L) s

l→ s′} be a set of all the reachable states from which there is a transition
to some state in X. Further, we denote the set of all the reachable states of the
model M at which ϕ holds by [[M,ϕ]] or by [[ϕ]], if M is implicitly understood.
For ECTL−X formulae ϕ and ψ we define the following sets: [[true]] def= SR,
[[℘]]

def
= {s ∈ SR | ℘ ∈ V (s)}, [[¬ϕ]] def= SR \ [[ϕ]], [[ϕ∧ψ]] def= [[ϕ]]∩ [[ψ]], [[ϕ∨ψ]] def=

[[ϕ]]∪[[ψ]]. The remaining operators can be defined as fixed points in the following
way: [[EGϕ]] def= νX.[[ϕ]] ∩ pre∃(X), [[E[ϕUψ]]] def= µX.[[ψ]] ∪ ([[ϕ]] ∩ pre∃(X)).

To define the sets corresponding to ELTL−X formulae we proceed as follows.
Let M = (L, S, s0,→, V) be a model, and ϕ an ELTL−X formula. We begin
with constructing the tableau for ϕ, as described in [11], that is then combined
with the model M to obtain their product, which contains these paths of M
where the formula ϕ potentially holds. The product is then verified in terms of
CTL model checking of EGtrue formula under fairness constraints. The fairness
constraints, corresponding to sets of states, allow to choose only these paths
of the model, along which at least one state in each set representing fairness
constraints appears infinitely often. In the case of ELTL−X model checking,
fairness is applied to guarantee that E(ϕUψ) really holds, i.e., to eliminate paths
where ϕ holds continuously, but ψ never holds. Finally, we choose only these
reachable states of the product that belong to some particular set of states
computed for the formula. The corresponding states of the verified system that
are in this set, comprise the set [[M,ϕ]], i.e., the set of the reachable states
where the verified formula holds. As we are unable to include a more detailed

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 81

description of the method (due to the page limit), we refer the reader to [11] for
more details.

Before describing the BDD-based bounded model checking method, we first
define a submodel. Namely, for the model M = (L, S, s0,→, V) and U ⊆ S such
that s0 ∈ U , we define a submodel M |U = (L′, U, s0,→′, V ′), where: L′ = {l ∈
L | (∃s, s′ ∈ U) s

l→ s′}, →′ = {s l→ s′ | s, s′ ∈ U}, V ′ : U −→ 2PV is defined
by V ′(s) = V (s) for all s ∈ U . As the method can be applied to BMC of both
ECTL−X and ELTL−X, we do not distinguish between ECTL−X and ELTL−X
formulae, and in what follows, by ϕ we understand either an ECTL−X formula
or an ELTL−X formula.

Let M = (L, S, s0,→, V) be a model. For any set X ⊆ S we define the set of
successors of all the states in X by X;

def
= {s′ ∈ S | (∃s ∈ X)(∃l ∈ L) s l→ s′}.

The complete set of the reachable states is obtained by computing the least fixed
point µReach.{s0}∪Reach∪Reach;. With each iteration, when the set Reach
is extended with new states, i.e., with the set Reach;, the verified formula is
checked in the submodelM |Reach. The loop terminates and the algorithm returns
true, if the initial state s0 is in the set of states of the obtained submodel at
which ϕ holds. The search continues until no new states can be discovered from
the states in Reach, i.e., the fixed point is reached. When we obtain the complete
set of reachable states, and a path from the initial state on which ϕ holds could
not be found in any of the obtained submodels, the algorithm terminates with
false.

BDD-based Verification of DTPNs In order to verify a DTPN using BDDs
first we need to translate its underlying reduced model into boolean formulae that
are encoded with BDDs. Let M̂c(N) = (T ∪ CN , Σs, σ0,→s, Vs) be a model of
a given DTPN N = (P, T, F,m0, Eft, Lft). We assume that every state σ ∈ Σs
can be encoded as a bit vector (σ[1], . . . , σ[lb]) of length lb depending on the
number of places P of N , and the value cmax(N). Thus, each state σ can be
represented by a valuation of a vector w = (w[1], . . . , w[lb]) (called a global state
variable), where w[i], for i = 1, . . . , lb is a propositional variable (called state
variable).

Let w,w′ be two global state variables. We define the following boolean for-
mulae that are used in the encoding:
• Iσ(w) is a formula that encodes the state σ of the model M̂(N), i.e., σ[i] = 1

is encoded by w[i], and σ[i] = 0 is encoded by ¬w[i].
• TS(w,w′) is a formula over w and w′ which is true for two valuations σw of w

and σw′ of w′ iff σw
δ→s σw′ , for δ ∈ CN \ {0}. It encodes the time-successor

relation of M̂c(N).
• ASt(w,w′), where t ∈ T , is a formula over w and w′ which is true for two

valuations σw of w and σw′ of w′ iff σw
t→s σw′ . It encodes the action-

successor relation of M̂c(N) for the transition t ∈ T .

82 PNSE’11 – Petri Nets and Software Engineering

• T (w,w′) =
(∨

t∈T ASt(w,w
′)
)
∨TS(w,w′) is a formula over w and w′ which

is true for two valuations σw of w and σw′ of w′ iff σw →s σw′ . It encodes
the transition relation of M̂c(N).

Notice that due to the fact that an implementation of the alternating semantics
would be inefficient in the case of the BDD-based method, we apply only the
non-alternating semantics.

In our implementation we use the order of variables suggested in [17] where
the variables encoding the states and their successors are interleaved. The expla-
nation of how we can compute the BDDs for the sets X; and pre∃(X) (where
X ∈ Σs) that are needed by the described fixed point methods can be found also
in [17]. Moreover, we encode each disjunct of the formula encoding the transition
relation, with separate BDDs.

6 Experimental Results

In this section we consider two scalable DTPNs which we use to evaluate the
performance of our SAT- and BDD-based BMC algorithms, as well as of the
tool Tina, for the verification of several properties expressed in ECTL−X and
ELTL−X. The evaluation is given by means of the running time and the con-
sumed memory. Graphs representing the benchmarks described below can be
found at the webpage of VerICS – http://verics.ipipan.waw.pl/.

The first benchmark we consider is the Generic Timed Pipeline Paradigm
(GTPP) Petri net model [25], which consists of Producer producing data (Prod-
Ready) or being inactive, Consumer receiving data (ConsReady) or being inac-
tive, and a chain of n intermediate Nodes which can be ready for receiving data
(NodeiReady), processing data (NodeiProc), or sending data (NodeiSend). The
example can be scaled in the number of intermediate nodes. The intervals are
used to adjust the time properties of Producer, Consumer, and of the interme-
diate Nodes.

The second benchmark of our interest is the DTPN model for Fischer’s mu-
tual exclusion protocol (Mutex). The model consists of n time Petri nets, each
one modelling a process, plus one additional net used to coordinate the access of
processes to their critical sections Mutual exclusion means that no two processes
are in their critical sections at the same time. The preservation of this property
depends on the relative values of the time-delay constants δ and ∆. In particular,
Fischer’s protocol ensures mutual exclusion iff ∆ < δ. This DTPN can be scaled
in the number of processes.

The GTPP Petri net model, where all the intervals are set to [0, 2], was tested
with the ECTL−X formula ψ1 = EG(EF(¬ConsReady)), and the ELTL−X for-
mula ψ2 = EGF(¬ConsReady). The Mutex protocol, with ∆ = 1 and δ = 2,
was tested with the ECTL−X formulae: ψ1 = EGEF(critical1∨ . . .∨ criticalN),
ψ2 = EF(trying1 ∧ . . . ∧ tryingN ∧ EG(¬critical2 ∧ . . . ∧ ¬criticalN)), and the
ELTL−X formulae: ψ3 = EGF(critical1 ∨ . . . ∨ criticalN), ψ4 = EF(trying1 ∧
. . . ∧ tryingN ∧G(¬critical2 ∧ . . . ∧ ¬criticalN)).

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 83

The above systems have been carefully selected in order to reveal the advan-
tages and disadvantages of both SAT- and BDD-based BMC approaches.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35 40

M
e

m
o

ry
 i
n

 M
B

Number of processes

Memory usage for GTPP, ECTLX formula ψ1

BDD, fixed order
BDD, reordered
BDD, partitioning, fixed order
BDD, partitioning, reordered
SAT, alternating sem.
SAT, non-alternating sem.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40

T
im

e
 i
n

 s
e

c
.

Number of processes

Total time for GTPP, ECTLX formula ψ1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25

M
e

m
o

ry
 i
n

 M
B

Number of processes

Memory usage for GTPP, ELTLX formula ψ2

BDD, fixed order
BDD, reordered
BDD, partitioning, fixed order
BDD, partitioning, reordered
SAT, alternating sem.
SAT, non-alternating sem.
Tina

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25

T
im

e
 i
n

 s
e

c
.

Number of processes

Total time for GTPP, ELTLX formula ψ2

For the SAT-based BMC method two semantics are implemented: the alter-
nating and the non-alternating one. The results obtained for the non-alternating
semantics are superior to those for the alternating one in the following two cases:
(1) the length of the witness and the number of k-paths depends on the number
of components of the considered system; (2) the number of k-paths is constant
and their lengths are at least twice as long in the alternating semantics as in
the non-alternating one. On the other hand, the non-alternating semantics is
inferior to the alternating one in the case when the length of k-paths is indepen-
dent of the number of components of the considered system and their number
is independent of their lengths. Further, the assumed time limit (1800s) prefers
the non-alternating semantics, i.e., if a larger time limit than 1800s is set, then
for the alternating semantics much more components of a given system can be
verified than for the non-alternating one (see Mutex and the formula ψ1). The
reason is that the SAT-based BMC method for systems with a large number of
components (for the non-alternating semantics) generates the propositional for-
mulae that are more complicated than in case of the alternating semantics. This

84 PNSE’11 – Petri Nets and Software Engineering

results in the fact that the memory consumed by the SAT-solver is significantly
larger for the set of clauses generated in case of the non-alternating semantics,
therefore only smaller systems can be model-checked.

The method based on BDDs is implemented with reordering, and with the
fixed interleaving order of the BDD variables. The reordering is performed by
the Rudell’s sifting algorithm available in the implementation of CUDD library.
Moreover, we also use partitioned transition relations. In the case of GTPP, the
BDD-based method is remarkably superior to the SAT-based method in terms
of the verification times and the consumed memory for the tested formulae. The
reason is the substantial number of k-paths in SAT-BMC, which causes a larger
memory consumption and longer running times in comparison with the BDD-
based method. Where the length of the witness is constant regardless of the
number of the processes (i.e., in Mutex for ψ1 and the corresponding formula
ψ3), the SAT-based method is more efficient than the BDD-based one. Our
partitioning of the transition relation does not reduce noticeably the memory
usage, although in most of the considered cases the method benefits from the
reordering of the BDD variables. The BDD-based method deals better with the
increasing length of the witness when scaling in the number of processes or nodes.
In the case of Mutex, our experiments revealed that the method based on BDDs
is more efficient for small and medium models, but it consumes more memory.
The above observations seem to be consistent with other existing comparisons
of SAT versus BDD [2].

We compare also our results with those of Tina, however, as Tina does not
support a verification of ECTL−X formulae, the results only for ELTL−X are
taken into account. Unsurprisingly, as Tina is a non-bounded model checker, the
results are inferior to the results of our BMC methods. Although Tina seems to
perform well in the case of ψ4 for Mutex, it suffers from a significant increase of
the memory usage for 8 processes and is unable to verify more than 9 processes.

All the benchmarks can be found at the webpage of VerICS, together with an
instruction how to reproduce our results. For the tests we have used a computer
running Linux 2.6.38 with two Intel Xeon 2.00GHz processors and 4 GB of
memory. Both the algorithms have been implemented in C++. The BDD-based
method uses CUDD [30], which is a general purpose BDD library, while the
SAT-based technique uses MiniSat2 [14] for testing satisfiability of the generated
propositional formulae.

7 Conclusions

In this paper we have presented two different approaches for bounded model
checking of DTPNs: via a reduction to SAT and via BDDs. The two methods
have been tested and compared to each other on two standard benchmarks. The
specifications were given in the ECTL−X and ELTL−X languages. Additionally
we have compared our results with those obtained using the tool Tina. The
experimental results revealed that SAT-based BMC and BDD-based BMC are
complementary solutions to the BMC problem, as their performance depends

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 85

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80 90 100

M
e

m
o

ry
 i
n

 M
B

Number of processes

Memory usage for Mutex, ECTLX formula ψ1

BDD, fixed order
BDD, reordered
BDD, partitioning, fixed order
BDD, partitioning, reordered
SAT, alternating sem.
SAT, non-alternating sem.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n

 s
e

c
.

Number of processes

Total time for Mutex, ECTLX formula ψ1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12 14 16

M
e

m
o

ry
 i
n

 M
B

Number of processes

Memory usage for Mutex, ECTLX formula ψ2

BDD, fixed order
BDD, reordered
BDD, partitioning, fixed order
BDD, partitioning, reordered
SAT, alternating sem.
SAT, non-alternating sem.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16

T
im

e
 i
n

 s
e

c
.

Number of processes

Total time for Mutex, ECTLX formula ψ2

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70

M
e

m
o

ry
 i
n

 M
B

Number of processes

Memory usage for Mutex, ELTLX formula ψ3

BDD, fixed order
BDD, reordered
BDD, partitioning, fixed order
BDD, partitioning, reordered
SAT, alternating sem.
SAT, non-alternating sem.
Tina

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70

T
im

e
 i
n

 s
e

c
.

Number of processes

Total time for Mutex, ELTLX formula ψ3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 i
n

 M
B

Number of processes

Memory usage for Mutex, ELTLX formula ψ4

BDD, fixed order
BDD, reordered
BDD, partitioning, fixed order
BDD, partitioning, reordered
SAT, alternating sem.
SAT, non-alternating sem.
Tina

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 3 4 5 6 7 8 9 10

T
im

e
 i
n

 s
e

c
.

Number of processes

Total time for Mutex, ELTLX formula ψ4

86 PNSE’11 – Petri Nets and Software Engineering

SAT-BMC BDD-BMC
alternating sem. non-alternating sem. non-alternating sem.

Formula (k, fk(ψ)) (k, fk(ψ)) the number of iterations
GPP, ψ1 (4 · n+ 6, 4 · n+ 8) (2 · n+ 3, 2 · n+ 5) 2 · n+ 2

GPP, ψ2 (4 · n+ 6, 1) (2 · n+ 3, 1) 2 · n+ 2

Mutex, ψ1 (8, 10) (4, 6) 4

Mutex, ψ2 (2 · n+ 8, 2) (n+ 2, 2) 2 · n+ 1

Mutex, ψ3 (14, 1) (6, 1) 5

Mutex, ψ4 (4 · n+ 8, 1) (2 · n+ 2, 1) 2 · n+ 1

Table 1. The sizes of the witnesses. The number of nodes/processes is denoted by n.

on the system and the property that are verified. The approach based on BDDs
scales better than the SAT-based one, when witnesses are found at small and
constant depths with respect to the scaling parameter. From two of the consid-
ered semantics for SAT-BMC, the non-alternating one is more efficient.

The paper is the first one to present bounded model checking methods for
verifying ECTL−X and ELTL−X properties of time Petri nets. The encodings
that are used in the SAT-based method, are applied in the context of BMC and
DTPNs for the first time. Similarly, the verification methods for ECTL−X and
ELTL−X used in BDD-BMC have not been considered before in the bounded
model checking of time Petri nets. The dependence on the length of the witnesses,
and the performance of the two BMC methods for DTPNs has not been observed
before as well.

As this is our early attempt at BDD-based bounded model checking, it suffers
from some weaknesses. In particular, the encoding of the transition relation could
be improved, and some more recent developments in BDD-based symbolic model
checking could be applied.

In our future work we are going to consider dense semantics and more general
time Petri nets.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. N. Amla, R. Kurshan, K. McMillan, and R. Medel. Experimental analysis of
different techniques for bounded model checking. In Proc. of TACAS’03, volume
2619 of LNCS, pp. 34–48. Springer-Verlag, 2003.

3. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model
checking for timed systems. In Proc. of FORTE’02, volume 2529 of LNCS, pp.
243–259. Springer-Verlag, 2002.

4. M. Benedetti and A. Cimatti. Bounded model checking for Past LTL. In Proc. of
TACAS’03, volume 2619 of LNCS, pp. 18–33. Springer-Verlag, 2003.

5. A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proc. of DAC’99, pp. 317–320, 1999.

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 87

6. H. Boucheneb, G. Gardey, and O. H. Roux. TCTL model checking of time Petri
nets. Journal of Logic and Computation, 19(6):1509–1540, 2009.

7. H. Boucheneb and R. Hadjidj. CTL∗ model checking for time Petri nets. Theoretical
Computer Science, 353(1):208–227, 2006.

8. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, 35(8):677–691, 1986.

9. J. R. Burch, E. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1990.

10. G. Cabodi, P. Camurati, and S. Quer. Can BDD compete with SAT solvers on
bounded model checking? In Proc. of DAC’02, pp. 117–122, 2002.

11. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
In Proc. of CAV’94, volume 818 of LNCS, pp. 415–427. Springer-Verlag, 1994.

12. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
13. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi.

Benefits of bounded model checking at an industrial setting. In Proc. of CAV’01,
volume 2102 of LNCS, pp. 436–453. Springer-Verlag, 2001.

14. N. Eén and N. Sörensson. MiniSat - A SAT Solver with Conflict-Clause Minimiza-
tion. In Proc. of SAT’05, LNCS. Springer-Verlag, 2005.

15. G. Luettgen G. Ciardo and A. S. Miner. Exploiting interleaving semantics in
symbolic state-space generation. Formal Methods in System Design, 31:63–100,
2007.

16. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. In
Proc. of LPNMR’01, volume 2173 of LNCS, pp. 200–212. Springer-Verlag, 2001.

17. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2004.

18. R. Janicki. Nets, sequential components and concurrency relations. Theoretical
Computer Science, 29:87–121, 1984.

19. A. Jones and A. Lomuscio. A BDD-based BMC approach for the verification
of multi-agent systems. In Proc. of CS&P’09, volume 1, pp. 253–264. Warsaw
University, 2009.

20. D. Lime and O. H. Roux. Model checking of time Petri nets using the state class
timed automaton. Discrete Event Dynamic Systems, 16(2):179–205, 2006.

21. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
22. P. Merlin and D. J. Farber. Recoverability of communication protocols – impli-

cation of a theoretical study. IEEE Trans. on Communications, 24(9):1036–1043,
1976.

23. A. Mȩski, W. Penczek, and A. Półrola. BDD-based bounded model checking for el-
ementary net systems. In Proc. of CS&P’10, volume 237(1) of Informatik-Berichte,
pp. 219–230. Humboldt University, 2010.

24. A. Miner and G. Ciardo. Efficient reachability set generation and storage us-
ing decision diagrams. In Proc. of ICATPN’99, volume 1639 of LNCS, pp. 6–25.
Springer-Verlag, 1999.

25. D. Peled. All from one, one for all: On model checking using representatives. In
Proc. of CAV’93, volume 697 of LNCS, pp. 409–423. Springer-Verlag, 1993.

26. W. Penczek and A. Półrola. Advances in Verification of Time Petri Nets and Timed
Automata: A Temporal Logic Approach, volume 20 of Studies in Computational
Intelligence. Springer-Verlag, 2006.

27. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

88 PNSE’11 – Petri Nets and Software Engineering

28. Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver description. Techni-
cal Report D–153, Automated Reasoning Group, Computer Science Department,
UCLA, 2007.

29. A. Półrola and W. Penczek. Minimization algorithms for time Petri nets. Funda-
menta Informaticae, 60(1-4):307–331, 2004.

30. F. Somenzi. CUDD: CU decision diagram package - release 2.3.1. http://
vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

31. M. Wan and G. Ciardo. Symbolic reachability analysis of integer timed petri nets.
In Proc. of SOFSEM’2009, pp. 595–608, 2009.

32. B. Woźna. ACTL∗ properties and bounded model checking. Fundamenta Infor-
maticae, 63(1):65–87, 2004.

33. B. Woźna, A. Zbrzezny, and W. Penczek. Checking reachability properties for
timed automata via SAT. Fundamenta Informaticae, 55(2):223–241, 2003.

34. A. J. Yu, G. Ciardo, and G. Luettgen. Decision-diagram-based techniques for
bounded reachability checking of asynchronous systems. Software Tools for Tech-
nology Transfer, 11(2):117–131, 2009.

35. A. Zbrzezny. Improving the translation from ECTL to SAT. Fundamenta Infor-
maticae, 85(1-4):513–531, 2008.

A Appendix: Models for DTPNs - Proofs

In order to show that M̂c(N) can replace Mc(N) in CTL∗−Xverification (i.e., to
prove Lemma 1) we shall prove the following lemma:

Lemma 3. For a given distributed time Petri net N the models Mc(N) =

(T ∪ IN, Σ, σ0,→c), Vc and M̃c(N) = (T ∪ CN , Σ, σ0,→r, Vc) are bisimulation
equivalent.

Proof. We shall show that the relation R = {((m, clock), (m′, clock′)) | m =
m′∧∀(i ∈ I s.t. clock(i) ≤ cmax(N)) clock(i) = clock′(i) ∧ ∀(i ∈ I s.t. clock(i) >
cmax(N)) clock′(i) > cmax(N)} is a bisimulation. It is easy to see that σ0Rσ0,
and the valuations of the related states are equal (due to equality of their mark-
ings). Consider σ = (m, clock) ∈ Σ and σ′ = (m, clock′) ∈ Σ such that σRσ′.
– if σ δ→c σ1, where δ ∈ IN, then for each t ∈ en(m) there exists i ∈ IV(t) s.t.
clock(i) + δ ≤ Lft(t). Consider the following cases:
• if en(m) contains at least one transition t with Lft(t) < ∞, then this

implies that δ ≤ cmax(N). In this case consider δ′ = δ; it is easy to see
from the definition of R that for any t ∈ en(m) s.t Lft(t) <∞ if in σ for
some i ∈ I we have clock(i)+δ ≤ Lft(t), then in σ′ clock′(i)+δ′ ≤ Lft(t)
holds as well, and therefore the time δ′ can pass at σ′, leading to the
state σ′ + δ′, which satisfies (σ + δ)R(σ′ + δ′) in an obvious way.

• if en(m) contains no transition t with Lft(t) < ∞, then we can have
either δ < cm1 or δ ≥ cm1, where by cm1 we mean the value cmax(N)+1.
In the first case consider δ′ = δ; it is obvious that such a passage of time
at σ′ disables no transition and is allowed therefore; it is also easy to see

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 89

that (σ + δ)R(σ′ + δ′). In the case δ ≥ cm1 assume δ′ = cm1. Again, it
is obvious that such a passage of time at σ′ disables no transition and
due to this is allowed, and that in both the states σ + δ and σ′ + δ′ we
have clock(i) > cmax(N) for all i ∈ I, and therefore (σ + δ)R(σ′ + δ′).

– the three remaining cases are straightforward.

Next, we can prove Lemma 1:

Proof. To prove the lemma, it is sufficient to show that M̃c(N) and M̂c(N) are
bisimulation equivalent. So, we shall show that the relation R ⊆ Σ×Σs given by
R = {((m, clock), (m′, clocks)) | m = m′ ∧ clocks = clock|cm1} is a bisimulation.
It is easy to see that σ0Rσ0, and that the valuations of the related states are
equal (due to equality of their markings). Consider σ = (m, clock) ∈ Σ and
σ′ = (m, clocks) ∈ Σs with clocks = clock|cm1 .
– if σ δ→r σ1, where δ ∈ CN , then for each t ∈ en(m) there exists i ∈ IV(t)

s.t. clock(i) + δ ≤ Lft(t). Due to the fact that for each i ∈ I it holds
clock|cm1(i) ≤ clock(i), the time δ can pass at σ′ as well, leading to the state
(m, clock|cm1 ⊕ δ). Consider the states (m, clock+ δ) and (m, clock|cm1 ⊕ δ);
we should show that (clock + δ)|cm1 = clock|cm1 ⊕ δ. We have the following
cases: if clock(i) = clock|cm1(i) and clock(i) + δ < cm1, then clock(i) + δ =
clock|cm1(i)+δ = clock|cm1(i)⊕δ. If clock(i) = clock|cm1(i) and clock(i)+δ ≥
cm1 then clock|cm1(i)
⊕ δ = cm1, and therefore (clock + δ)|cm1(i) = clock|cm1(i)⊕ δ. If clock(i) ≥
cm1 and clock|cm1(i) = cm1 then clock(i) + δ ≥ cm1 and clock|cm1(i) ⊕ δ =
cm1 = (clock + δ)|cm1(i), which ends this part of the proof.

– if σ′ δ→s σ
′
1, where δ ∈ CN then for each t ∈ en(m) there exists i ∈ IV(t) s.t.

clock|cm1(i)⊕ δ ≤ Lft(t). If Lft(t) <∞, then this implies clock|cm1(i)⊕ δ ≤
cmax(N), which in turn gives that clock|cm1(i) ≤ cmax(N), and therefore
clock(i) = clock|cm1(i), clock(i) + δ ≤ cmax(N) and finally clock(i) + δ ≤
Lft(t), while if Lft(t) = ∞ then clock(i) + δ ≤ Lft(t) in an obvious way.
Thus, the time δ can pass in σ as well. Consider the states (m, clock + δ)
and (m, clock|cm1 ⊕ δ); we should show that (clock+ δ)|cm1 = clock|cm1 ⊕ δ,
which can be done analogously as in the previous part of the proof.

– The remaining two cases are straightforward.

Finally, we prove that the relation '? preserves the behaviours of the net
(Lemma 2):

Proof. Consider the states σ = (m, clock) and σ′ = (m, clock′) (σ, σ′ ∈ Σ) s.t.
σ '? σ′.
– Consider l = δ ∈ IN. The time δ can pass in σ iff for each t ∈ en(m)

there is i ∈ IV(t) s.t. clock(i) + δ ≤ Lft(t). If Lft(t) < ∞, then we have
that mini∈IV(t) clock(i) + δ ≤ Lft(t) ≤ cmax(N), which implies that the
states σ, σ′ satisfy mini∈IV(t) clock(i) = mini∈IV(t) clock′(i), and in turn
mini∈IV(t) clock′(i) + δ = mini∈IV(t) clock(i) + δ ≤ Lft(t). If Lft(t) =
∞ we can have two cases: if mini∈IV(t) clock(i) = mini∈IV(t) clock′(i) ≤
cmax(N) then mini∈IV(t) clock(i) + δ = mini∈IV(t) clock′(i) + δ which is not

90 PNSE’11 – Petri Nets and Software Engineering

greater than Lft(t) in an obvious way, while ifmini∈IV(t) clock(i) > cmax(N)
and mini∈IV(t) clock′(i) > cmax(N) then both mini∈IV(t) clock(i) + δ and
mini∈IV(t) clock′(i) + δ are greater than cmax(N) and do not exceed Lft(t).
Thus, the same time can pass at σ and at σ′, and the obtained states are
?-equivalent.

– Consider l = t ∈ T such that t ∈ en(m). The transition t can fire at σ leading
to a state σ1 = (m1, clock1) iff for each i ∈ IV(t) we have clock(i) ≥ Eft(t)
and there is i ∈ IV(t) such that clock(i) ≤ Lft(t).
• If Lft(t) < ∞ then from σ '? σ′ we have that mini∈IV(t) clock(i) =

mini∈IV(t) clock′(i), which implies that for each i ∈ IV(t) clock′(i) ≥
Eft(t) and there is i ∈ IV(t) such that clock′(i) ≤ Lft(t), which means
that t can fire at σ′ as well, leading to a state σ′1 = (m′1, clock

′
1). In the

obtained states we have m1 = m′1, clock1(i) = 0 = clock′1(i) for each i ∈
IV(t), and clock1(i) = clock(i), clock′1(i) = clock′(i) otherwise. Consider
a transition t′ ∈ en(m′). If IV(t)∩IV(t′) 6= ∅ then mini∈IV(t′) clock1(i) =
mini∈IV(t′) clock′1(i) = 0, while if IV(t) ∩ IV(t′) = ∅ then for each i ∈
IV(t′) the relation between clock1(i) and clock′1(i) is the same as between
clock(i) and clock′(i), which implies that either mini∈IV(t′) clock1(i) =
mini∈IV(t′) clock′1(i) ≤ cmax(N) or mini∈IV(t′) clock1(i) > cmax(N) ∧
mini∈IV(t′) clock′1(i) > cmax(N). Thus, we have σ1 '? σ′1.
• If Lft(t) =∞ then from the definition of cmax(N) we have that Eft(t) ≥
cmax(N), and therefore from the definition of '? for each i ∈ IV(t) it
holds clock′(i) ≥ Eft(t), while for all i ∈ IV(t) clock′(t) < Lft(t) in
an obvious way. Thus, the transition can fire at σ′ as well, leading to
a state σ′1 = (m1, clock

′
1). The proof that σ1 '? σ′1 is analogous to the

case Lft(t) <∞.
– The rest of the proof is straightforward.

A. Męski et al.: Bounded Model Checking Approaches for Verification of DTPN 91

Extending PNML Scope:
the Prioritised Petri Nets Experience

Lom-Messan Hillah1, Fabrice Kordon2, Charles Lakos3, and Laure Petrucci4

1 LIP6, CNRS UMR 7606
and Université Paris Ouest Nanterre La Défense

200, avenue de la République, F-92001 Nanterre Cedex, France
Lom-Messan.Hillah@lip6.fr

2 Université P. & M. Curie LIP6 - CNRS UMR 7606
4 Place Jussieu, F-75252 Paris cedex 05, France

Fabrice.Kordon@lip6.fr
3 University of Adelaide, Adelaide, SA 5005, Australia

Charles.Lakos@adelaide.edu.au
4 LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
Laure.Petrucci@lipn.univ-paris13.fr

Abstract. The Petri net standard ISO/IEC 15909 comprises 3 parts.
The first one defines the most used net types, the second an interchange
format for these — both are published. The third part deals with Petri
net extensions, in particular structuring mechanisms and the introduc-
tion of additional, more elaborate net types within the standard.
This paper focuses on the latter issue: how should a new net type be
added, while guaranteeing the compatibility with the current standard.
The extension of Petri nets with static or dynamic priorities is studied,
showing design choices to ensure the desired compatibility. The result is
integrated within the standard companion tool, PNML Framework. Then,
the approach is generalised so as to be used at a later stage for other
Petri nets extensions.
Keywords: Standardisation, PNML, Prioritised Petri Nets

1 Introduction

The International Standard on Petri nets, ISO/IEC 15909, comprises three parts.
The first one (ISO/IEC 15909-1) deals with basic definitions of several Petri net
types: Place/Transition, Symmetric, and High-level nets. It was published in
December 2004 [5].

The second part, ISO/IEC 15909-2, defines the interchange format for Petri
net models: the Petri Net Markup Language [7] (PNML, an XML-based repre-
sentation). This part of the standard was published on February 2011 [6]. It can
now be used by tool developers in the Petri Nets community with, for example,
the companion tool to the standard, PNML Framework [4].

The standardisation effort is now focussed on the third part. ISO/IEC 15909-
3 aims at defining enrichments and extensions on the whole family of Petri nets.

Extensions are, for instance, the support of modularity, time or probabilities.
Enrichments consider less significant semantic changes such as inhibitor arcs,
capacity places, etc. This raises flexibility and compatibility issues in the stan-
dard.

One of the interesting features in Petri nets is priorities. There are a number
possibilities: static priorities and dynamic priorities, as summarised in [9]. Since
such characteristics are of interest for several classes of Petri nets (from P/T up
to high-level), it is highly desirable to investigate their definition in an orthogonal
way that can be associated with any of the existing Petri net types.

This paper focuses on this objective: enrich existing Petri net types with
both static and dynamic priorities. To do so, we explore a modular and generic
enrichment mechanism that benefits from the current metamodels architecture
of the standard. Thus, we can preserve consistency between existing Petri net
types and those obtained with the proposed enrichments.

The paper is structured as follows. Section 2 summarises the specific aims of
part 3 of the standard. Section 3 defines prioritised Petri nets, before describing,
in Section 4, the introduction of Prioritised Petri nets types in the standard
metamodeling framework. The metamodels obtained are then integrated within
PNML Framework, and experimental results are reported in Section 4.3. Section 5
discusses the expertise drawn from the case of Prioritised Petri nets, so as to
give general guidelines for the integration of a new Petri net type within the
standard.

2 Aims of ISO/IEC 15909-3

While parts 1 and 2 of the ISO/IEC 15909 standard address simple and common
Petri nets types, part 3 is concerned with extensions. These can take several
forms, as described in Section 2.1. The work on these issues started with a one-
year study group drawing conclusions w.r.t. the scope to be addressed. According
to the study group conclusions, the standardisation project was launched in
November 2010, for delivery within 5 years. The choices to be made must of
course ensure compatibility with the previous parts of the standard, as discussed
in Section 2.2.

2.1 Petri nets extensions

The Petri net extensions considered can be of different kinds: nodes or arcs
extensions, structuring mechanisms, new Petri net types. One can even consider
the possibility of tools exchanging Petri net properties through the net files. In
this section, we present the main ideas underlying these possibilities.

Enrichments are concerned with the addition of a new type of node or arc to an
already existing Petri net type. Typical examples of such extensions are inhibitor
arcs or capacity places.

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 93

Enrichments5 are rather simple extensions since, although they modify the
net semantics, they do not not require the manipulation of data which is not
already described in the Petri net type. Indeed, let us illustrate this with the ca-
pacity place example. If a net is extended with capacity places, the capacity only
indicates a maximum marking the place can hold. The marking being already an
element of the Petri net type description, adding capacities is straightforward.
The mechanism for doing so is independent of the Petri net type: it is defined
as a maximal marking for the place in the same manner as its initial marking is
defined.

We have already tested enrichment mechanisms in practice within PNML
Framework, the companion tool to the standard [11, 4], by introducing special
arcs such as inhibitor, test, and reset arcs. As expected, this experiment proved
successful. An extension of the PNML (Petri Net Markup Language) grammar
for these special arcs is available online at [7].

Attribute Extensions

ObjectNature +value: ArcNatures
ArcNature

NORMAL
INHIBITOR
READ
RESET
TRANSFER

«Enumeration»
ArcNatures

Extended PT-Net

Label

Attribute

Place/Transition Net

«merge»

«import»

Arc

Fig. 1. Extending PT-Net with special arcs.

The experiment consisted in extending the metamodel of PT-Net, first by
defining the special arcs nature as attribute extensions, whose metamodel is
depicted in Fig. 1. Then, the extended PT-net metamodel is built by merging
the current PT-Net metamodel and importing the attribute extensions one. This
modular definition approach is put into practice in Section 4 and the use of the
import and merge relationships explained.

Modularity and structuring mechanisms are essential for modelling and analysis
purposes. Such mechanisms are independent of the Petri net type and should
thus be general enough. Preliminary theoretical work in that direction has been
presented in [8]. The main features are the following:
5 The name chosen is consistent with the notion of enrichment for abstract data
types [3].

94 PNSE’11 – Petri Nets and Software Engineering

– each module is composed of an interface and an implementation,
– the implementation is a Petri net,
– interfaces import and export Petri net elements (according to the implemen-

tation Petri net type): places, transitions, data types and operations,
– modules can be instantiated and connected so as to constitute an actual

complex system.

Even though the work on structuring mechanisms has progressed well, there
are still numerous issues to be considered, as detailed in [8]. For example, the
semantics for connecting modules can vary, and node fusion policies could be
defined. This leads to a more elaborate extension of Petri net types. Moreover,
practical experiments still need to be conducted.

New Petri net types build on existing types — at least the Core Petri Net model
— enhancing them with specific features which could be a new attribute or a
new element. However, they are distinguished from “enrichments” in that they
necessitate the elaboration of specific additional constructs. As an example, dy-
namically prioritised Petri nets associate with each Petri net transition a priority
function with a marking as input and some value, e.g. a real number, as output.
In this case, markings are already part of the defined Petri net elements, but real
numbers are not. Therefore, in contrast to the capacity place example discussed
above, dynamic priority is not an enrichment.

The core of this paper concerns how to introduce new Petri net types, and will
thus be detailed by first studying the case of prioritised Petri nets in Section 4,
and then generalising the approach in Section 5 to give guidelines for introducing
new Petri net types in the future.

Properties such as safety and liveness properties, are a much longer term issue
for standardisation, and will certainly not be achieved in the first release of part
3 of the standard, but might be in a future revision. The idea is to define storage
mechanisms for properties so as to include properties within Petri net files. Thus,
properties could be computed by one tool and later be exploited by another one.

2.2 Compatibility issues

The new features brought by part 3 of the standard must of course ensure com-
patibility with the previous stages, i.e. parts 1 and 2. This is essential since the
already defined Petri net types constitute the building blocks.

Hence, an enrichment, such as the aforementioned capacity places, basically
involves the addition of a new attribute to an already existing class of objects.
In the case of capacity places, this attribute is a maximum marking. Note that
this kind of extension easily applies to any type of net: a maximum marking is
a marking as defined for the net type, be it a P/T net or a high-level net.

Similarly, the modular or structuring constructs must apply to all kinds of
nets. They define the different parts of a module, that is the interface and the
implementation, the composition policy, etc. The implementation is then an

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 95

already known net type and the interface adds attributes telling which objects
are imported or exported. The composition policy has so far been quite simple:
place fusion and transition fusion, essentially. Nonetheless, work in this area
must be pursued further.

Finally, adding new Petri net types will, as discussed in Section 2.1, build
on at least the Petri net core model, thus preserving the essential characteristics
common to all Petri net types. However, one can easily imagine that Prioritised
P/T nets build on the P/T nets model while Prioritised high-level nets build
on high-level nets. Further, several kinds of extensions could be applied so as
to obtain a more elaborate net type, e.g. Prioritised Modular High-Level nets.
Therefore, extensions must be carefully designed, allowing for a high degree of
compatibility.

An important point must be investigated while some characteristics of Petri
Nets can be considered as “orthogonal” (i.e. without influence on each other). As
an example, priorities and colours can be considered separately and combined
together because they do not affect the same attributes6. Such an orthogonality is
important in the design of new Petri net types in the standard. This is discussed
further in section 5.

3 Prioritised Petri Nets

This section introduces the definition of prioritised Petri nets, starting with static
priorities.

Definition 1 (Statically Prioritised Petri net).
A Statically Prioritised Petri net is a tuple SPPN = (P, T,W,M0, ρ), where:

– (P, T,W,M0) is a Petri net.
– ρ is the static priority function mapping a transition into R+.

We can also consider the case where the priority of transitions is dynamic,
i.e. it depends on the current marking [1]. This definition was introduced in [9].
Note that the only difference with statically prioritised Petri nets concerns the
priority function ρ.

Definition 2 (Prioritised Petri net).
A Prioritised Petri net is a tuple PPN = (P, T,W,M0, ρ), where:

– (P, T,W,M0) is a Petri net.
– ρ is the priority function mapping a marking and a transition into R+.

The behaviour of a prioritised Petri net is now detailed, markings being
those of the associated Petri net. Note that the firing rule is the same as for non-
prioritised Petri nets, the priority scheme influencing only the enabling condition.
6 for shared attributes like marking, we so far duplicate them. As an example, there
are PTMarking for P/T nets and HLMarking for high-level nets.

96 PNSE’11 – Petri Nets and Software Engineering

Definition 3 (Prioritised enabling rule).

– A transition t ∈ T is priority enabled in marking M , denoted by M [t〉ρ, iff:
• it is enabled, i.e. M [t〉, and
• no transition of higher priority is enabled, i.e. ∀t′ : M [t′〉 ⇒ ρ(M, t) ≥
ρ(M, t′).

– The definition of the priority function ρ is extended to sets and sequences of
transitions (and even markings M):
• ∀X ⊆ T : ρ(M,X) = max{ρ(M, t) | t ∈ X ∧M [t〉}
• ∀σ ∈ T ∗ : ρ(M,σ) = min{ρ(M ′, t′) | M ′[t′〉ρ occurs in M [σ〉ρ}.

In the definition of ρ(M,X), the setX will often be the set T of all transitions,
in which case the T could be omitted and we could view this as a priority of
the marking, i.e. ρ(M). The definition of ρ(M,X) means that we can write the
condition under which transition t is priority enabled in marking M as M [t〉ρ,
or in the expanded form M [t〉 ∧ ρ(M, t) = ρ(M,T). We prefer the latter form if
the range of transitions is ambiguous.

If the priority function is constantly zero over all markings and all transi-
tions, then the behaviour of a Prioritised Petri Net is isomorphic to that of the
underlying Petri Net.

Note that we choose to define priority as a positive real-valued function over
markings and transitions — the higher the value, the greater the priority. We
could equally define priority in terms of a rank function which maps markings
and transitions to positive real values, but where the smaller value has the higher
priority. This would be appropriate, for example, if the rank were an indication
of earliest firing time. Note that the dependence of the priority function on the
markings (as well as the transitions) means that the priority is dynamic.

4 Adding Prioritised Petri Nets to the Standard

This section introduces the Petri nets metamodels modular definition approach
defined in Part 2 of the standard and how we put it into practice to design
prioritised Petri nets.

4.1 Current Metamodels Architecture

Figure 2 shows an overview of the metamodels architecture currently defined in
Part 2 of the standard. This architecture features three main Petri net types:
Place/Transition, Symmetric and High-level Petri nets. They rely on the common
foundation offered by the PNML Core Model. The PNML Core Model provides
the structural definition of all Petri nets, which consists of nodes and arcs and
an abstract definition of their labels. There is no restriction on labels since the
PNML Core Model is not a concrete Petri net type.

Such a modular architecture favours reuse between net types. Reuse takes two
forms in the architectural pattern of the standard: package import and merge
relationships, as defined in the UML standard [12].

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 97

Place/Transition nets

PNML Core Model

Symmetric nets

High-level Petri nets

«merge» «merge»

«merge»

Fig. 2. Metamodels architecture currently defined in ISO/IEC-15909 Part 2.

Import is meant to use an element from another namespace (package) with-
out the need to fully qualify it. For example, when package A includes: import
B.b, then in A we can directly refer to b without saying B.b. But b still be-
longs to the namespace B. In the ISO/IEC 15909-2 standard, Symmetric nets
import sorts packages such as Finite Enumerations, Cyclic Enumerations,
Booleans, etc.

Merge is meant to combine similar elements from the merged namespace to
the merging one. For example, let us assume that A.a, B.a and B.b are defined.
If B is merged into A (B being the target of the relationship), it will result in a
new package name A’:

– all elements of B now explicitly belong to A’ (e.g., A’.b);
– A.a and B.a are merged into a single A’.a which combines the characteristics

of both;
– actually, since A is the merging package (or the receiving package), A becomes

A’ (in the model, it is still named A).

Merge is useful for incremental definitions (extensions) of the same concept
for different purposes.

In the standard, this form of reuse is implemented for instance by defining
Place/Transition nets upon the Core Model and High-level nets upon Symmetric
nets, as depicted in Figure 2. That is why Symmetric nets elements and anno-
tations are also valid in High-Level Petri nets (but not considered as Symmetric
nets namespace elements anymore).

This extensible architecture is compatible with further new net types defini-
tions, as well as with orthogonal extensions shared by different net types. These
two extension schemes will be put into practice for defining prioritised Petri nets,
as discussed in the next section.

4.2 Metamodels for PT-Nets with Priorities

A prioritised Petri net basically associates a priority description with an existing
standardised Petri net, thus building a new Petri net type. The metamodel in

98 PNSE’11 – Petri Nets and Software Engineering

XX Priority YY Petri Net

XX Priorities

«import»

YY Petri Net

«merge»

Fig. 3. Modular construction of prioritised Petri Nets metamodels.

Figure 3 illustrates this modular definition approach. It shows a blueprint for
instantiating a concrete prioritised Petri net type, by merging a concrete Petri
net type and importing a concrete priority package. The XX Priority package
is the virtual representation of a concrete priority package and the YY Petri
net is the virtual representation of a concrete Petri net type.

For example, Figure 4 shows a prioritised PT-Net using static priorities only.
It is built upon a standardised PT-Net which it merges, and a Priority Core
package, which it imports. The Priority Core package provides the building
blocks to define Static Priorities, as depicted by Figure 5.

The purpose of the Priority Core package is to provide :

– the root metaclass for priorities, represented by the Priority metaclass;
– a priority level, which is an evaluated value represented by PrioLevel, as-

sociated with each instance of Priority;
– the ordering policy among the priority values of the prioritised Petri net.

This ordering policy is represented by the PrioOrderingPolicy metaclass.

The purpose of priority levels is to provide an ordered scalar enumeration of
values such that either the higher the value, the higher the priority, or the lower
the value, the higher the priority. With the Priority Core package, and thanks
to the PrioLevel metaclass, static priorities can thus be attached to transitions,
as in the Static Priority PT-Net shown in Figure 4.

Using the same approach, Figure 6 shows a prioritised PT-Net which uses
dynamic priorities. Dynamic priorities are built upon Priority Core.

This modular construction follows the extension schemes adopted so far in
the PNML standard, that were explained earlier in this section. For instance,

Transition Priority Core::Priority
priority

Static Priority PT-Net

PT-NetPriority Core

«import» «merge»

Fig. 4. Prioritised PT-Net metamodel showing how the priority description is attached.

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 99

Priority Core

Priority +policy: PrioOrdering
PrioOrderingPolicy

ASCENDING
DESCENDING

«Enumeration»
PrioOrdering

+value: Real
PrioLevel

evaluation0..1

* priorities

--PrioOrderingPolicy must have a singleton instance
context PrioOrderingPolicy inv:
PrioOrderingPolicy.allInstances->size() = 1

Fig. 5. Core package of priorities.

High-Level Petri nets build upon Symmetric nets that they merge, and new
specific sorts (such as List, String and arbitrary user-defined sorts) that they
import. The use of the merge and import relationships is therefore consistent.

This approach is consistent with the idea that a new Petri net type sub-
sumes the underlying one it builds upon, but the algebraic expressions it reuses
are generally orthogonal to net types. Next, we introduce the metamodel for
priorities.

Priority Metamodel Prioritised Petri nets augment other net models (e.g.
PT or Symmetric nets) by associating a priority description with the transitions.
Such priority schemes are of two kinds:

– static priorities, where the priorities are given by constant values which are
solely determined by the associated transition7;

– dynamic priorities, where the priorities are functions depending both on the
transition and the current net marking.

Figure 7 shows the modular architecture of priorities metamodels. The Prio-
rity Core package (detailed in Figure 5) provides the building blocks to define

7 For high-level nets such as Coloured nets, the priorities are given by constant values
which are solely determined by the associated binding element.

Dynamic Priority PT-Net

Dynamic Priorities PT-Net

«import» «merge»

Fig. 6. Prioritised PT-Net metamodel using dynamic priority

100 PNSE’11 – Petri Nets and Software Engineering

Priority Core

Dynamic Priorities Priority Operators

«import»

«import»

Fig. 7. Metamodel for priorities.

both Static Priorities and Dynamic Priorities. However, dynamic priori-
ties are further defined using Priority Operators. Dynamic priorities can en-
compass static ones by using a constant function (for the sake of consistency in
the use of priority operators).

Dynamic PrioritiesPriority Operators

Priority Core

Priority

PrioExpr

PrioTerm

1 prioExpr

subterm
*{ordered}

+value: Real
PrioConstant

MultiplicationAdditionSubtraction

Division

DynamicPriority

PrioOperator

op
er

at
or1

Guarded
Expression

LessThan

LessThanOr
Equal

GreaterThan
OrEqual

GreaterThan

Equality

Inequality
MarkingRef

«import»
«import»Or

And

Fig. 8. Dynamic priorities and priorities operators packages.

Figure 8 shows how the Dynamic Prioritiesmetamodel is built. A Dynamic-
Priority is a Priority Core::Priority. It contains a priority expression
(PrioExpr). A concrete priority expression is either a PrioTerm which represents
a term, a PrioConstant which holds a constant value or MarkingRef which will
hold a reference to the marking of a place.

Note that the actual reference to the metaclass representing markings is
missing. It must be added as an attribute (named ref) to MarkingRef once the

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 101

concrete prioritised Petri net type is created. Its type will then be a reference to
the actual underlying Petri net type marking metaclass. For instance, in the case
of prioritised PT-Net, this ref attribute will refer to the PTMarking metaclass.

A PrioTerm is composed of an operator (PrioOperator) and ordered sub-
terms. This definition enables priority expressions to be encoded in abstract syn-
tax trees (AST). For example, the conditional priority expression: ifM(P2) > 3
then 3 ∗M(P2) else 2 ∗M(P1), is encoded by the AST of Figure 9, assuming
that:

– P1 and P2 are places;
– M(P1) and M(P2) are respectively markings of P1 and P2;
– T1 is a transition the dynamic priority expression is attached to.

Guarded
Expression

GreaterThan

MarkingRef
"P2"

Multiplication Multiplication

PrioConstant
"3"

PrioConstant
"3"

PrioConstant
"2"

MarkingRef
"P2"

MarkingRef
"P1"

Fig. 9. AST of the conditional expression: if M(P2) > 3 then 3 ∗M(P2) else 2 ∗
M(P1).

The priority operators are gathered within the Priority Operators package
to allow for more flexibility in extending this priority framework. New operators
can thus be added easily to this package.

Note that all these operators can also be found in ISO/IEC 15909-2, but
are scattered among different sorts packages, thus directly tied to the sort they
are most relevant for. We suggest for the next revision of the standard that
they be gathered in separate and dedicated packages (e.g. arithmetic operators,
relational operators, etc.). This refactoring will allow for more reusability across
different Petri net type algebras definitions.

4.3 Towards experimentation with PNML Framework

PNML Framework is one of the standard’s companion tools, which provides an
intuitive and easy way to use Java Application Programing Interface (API) to
handle standardised Petri nets models. The design and development of PNML
Framework follows model-driven engineering (MDE) principles and relies on im-
plementing mature technology such as Eclipse Modeling Framework (EMF).

Thanks to MDE, PNML Framework already uses the same modular defini-
tion approach as in the standard. Dealing with new Petri net types as proposed

102 PNSE’11 – Petri Nets and Software Engineering

in this extension framework will thus be implemented in the same way as it
was for the first standardised net types [4]. PNML-specific information (i.e.,
XML tags and their relationships) is embedded in the metamodels as annota-
tion. The metamodels (in EMF) are thus self-contained w.r.t to PNML. This
PNML-specific information can thus be captured during code generation of the
appropriate reader and writer methods.

Using such an approach, an API to handle the new net type models can
be generated in any output language, not only Java. This is possible because
EMF format is the standardised eXtended Metadata Interchange (XMI), which is
XML-based. It is thus open to any technology which can handle XML. In PNML
Framework, code generation templates are designed to automatically capture
these annotations.

The standard uses UML merge relationship to implement the reuse between
metamodels. Therefore, UML merge constraints (preconditions) and transforma-
tions (postconditions) should also apply in our framework as well, at the design
level.

When we started the development of PNML Framework as a means for early
assessment of the standard design choices, EMF did provide powerful code gen-
eration capabilities (including code merging). However it did not provide models
merging in the sense defined by UML, which was a disappointment. It was up to
the modeler to come up with a way to implement this. UML plugin did provide
models merging, but this needs a round-trip transformation from EMF to UML
and vice versa, which practically turned out to be messy.

Recently, EMF Compare plugin now provides a workspace editor and a pro-
grammaging interface to compare and merge models, in a version control fashion.
This environment could be used to perform a basic merger in the following main
steps:

1. (a) If the source package of the merge relationship does not have any specific
elements different from the merge relationship target package, duplicate
the package of target Petri net type in the merge relationship and rename
it to the source of the merge relationship.

(b) If there are more than one merge relationship, perform this iteratively
by pair of packages, the source being incrementally augmented.

(c) If the source package does have specific elements, then design it first and
apply the merge with one target. If there many targets, apply previous
step.

2. Select the packages to import and import them.
3. Add relationships and attributes which need the merge operation to complete

first.

IBM’s Rational Software Architect also performs UML models comparison
and merger [10] but it is not free or open software. Up to now, we let the modeler
choose the means to perform the merger. Models merging is an important topic
which is addressed, not only in the UML standard, but also by several studies [13,
14].

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 103

In the next section, we propose a generalisation of the metamodel modular
definition approach we presented in this section, as an extension framework for
the definition of new Petri net types.

5 Generalisation

We now generalise the approach used to create prioritised Petri nets metamodels
to set up an extension framework as a proposal to be considered for ISO/IEC
15909-3. The purpose is to compose extensions on an existing Petri net type
to build a new net type. It is illustrated by Figure 10, where XX Extension
and ZZ Extension are extensions metamodels (e.g. priority and time) which
are composed over an existing YY Petri net type to build the (XX ◦ ZZ) YY
Petri net type metamodel.

(XX ◦ ZZ) YY Petri Net

XX Extension ZZ Extension

YY Petri Net

«import» «import»

«merge»

Fig. 10. Modular construction of a new net type by composing selected extensions.

This generalised modular definition approach involves two important charac-
teristics to build the new net type, that are the orthogonality and compatibility
of the combined features (extensions).

Orthogonality must guarantee upward compatibility: current net types defini-
tions must have the ability to be extracted from new definitions that build upon
them. For example, a Core model can currently be extracted from a Symmetric
net model; a partial Symmetric net model can be extracted from a High-Level net
model, after having pruned annotations and inscriptions that are not recognised
in Symmetric nets.

Let us consider a Petri net type made of n extensions that are orthogonal
in the sense defined in section 2.2. Compatibility must guarantee that the firing
rule of the new net is sound. This is the case when the set of firable transitions
can be expressed as follows:

Tf =
n⋂

i=1

firing i(T)

where Tf is the set of firable transitions and firing i are partial firing functions
using the dedicated attributes associated with a Petri net type extension.

These characteristics yield semantic issues that we are currently investigat-
ing with a group of Petri nets experts to assess how they should be tackled.

104 PNSE’11 – Petri Nets and Software Engineering

Underlying issues regarding semantics of Petri nets in terms of: (i) abbreviation
(e.g. P/T vs. Colored nets), (ii) extension of the modeling power (e.g. inhibitor
arcs) and (iii) change of semantic domain (e.g. time vs. stochastic) must be
properly addressed [2]. We will continuously submit the outcome of this inves-
tigative work to the ISO/IEC JTC1/SC7 WG19 working group, responsible for
the standardisation of Petri nets.

Experts must therefore pay careful attention to the compatibility issue be-
tween features since it is not considered at the syntactic level which concerns
their metamodels definition.

6 Conclusion

The standardisation effort of the International Standard ISO/IEC 15909 is cur-
rently focused on the third part, where enrichments and extensions to Petri nets
are being defined. This paper presents an extension scheme based on the stan-
dard approach, in order to define prioritised Petri nets. The presented work is
structured in two steps: first the formal definition of prioritised Petri nets and
their enabling rule, and then their metamodels definition.

Prioritised nets metamodels are built in a modular way. First, the priority
core metamodel defines the necessary concepts for static priorities. Then the
dynamic priorities package reuses the core package, while adding operators from
the priority operators package to its definition. Using these building blocks, a
static priority PT-Net can thus be defined upon the classic PT-Net package from
the standard, using the priority core. A dynamic priority PT-Net can also be
defined in the same way, this time using the dynamic priorities package.

Integrating new Petri net types defined using such an approach into the
companion tool, PNML Framework, is no more different than the initial work
which enables the support of the current standardized types (PT-Net, Symmetric
Net and High-Level Petri Net). PNML Framework being based on mature model-
driven engineering tools such as Eclipse Modeling Framework, enabling support
of new Petri net types follows three simple steps: (i) create the metamodels
of the extensions and the new type, (ii) annotate the metamodels with PNML-
specific information (XML tags and attributes), and finally (iii) click on a button
to generate the Java API to handle the new type. The annotation step follows
simple conventions that are embedded in the current metamodels, and which
are easy to reproduce. Code generation templates have been designed to capture
these annotations.

The purpose of this investigative work is to propose an extension framework
which enables experts to easily define new Petri net types, in a consistent way
with the current standard approach. Orthogonality and compatibility of com-
bined extensions to define new Petri net types are paramount for the semantic
aspect of the new net types, in particular regarding firing rules. Syntax will usu-
ally not be an issue, as the metamodel definition approach presented does not
consider semantic rules.

L.M. Hillah et al.: Extending PNML Scope: the Prioritised PN Experience 105

Perspectives to this work include presenting this approach as a contribution
to the next plenary session of the ISO/SC 7/WG 19 working group (responsible
for the standardisation of Petri nets in the ISO/IEC 15909 series), and exper-
iment new Petri net types definitions involving different features combination
such as time and priorities.

References

1. F. Bause. Analysis of Petri nets with a dynamic priority method. In Azéma, P.
and Balbo, G., editors, Proc. 18th International Conference on Application and
Theory of Petri Nets, Toulouse, France, June 1997, volume 1248 of LNCS, pages
215–234, Berlin, Germany, June 1997. Springer-Verlag.

2. M. Diaz, editor. Petri Nets, Fundamental Models, Verification and Applications.
Wiley-ISTE, 2009.

3. J. A. Gougen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach
to the specification, correctness, and implementation of abstract data types. In
Current Trends in Programming Methodology, pages 80–149. Prentice Hall, 1978.

4. L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PNML Framework: an extendable
reference implementation of the Petri Net Markup Language. In Proc. 31st Int.
Conf. Application and Theory of Petri Nets and Other Models of Concurrency
(PetriNets’2010), Braga, Portugal, June 2010, volume 6128 of Lecture Notes in
Computer Science, pages 318–327. Springer, June 2010.

5. ISO/IEC. Software and Systems Engineering - High-level Petri Nets, Part 1: Con-
cepts, Definitions and Graphical Notation, International Standard ISO/IEC 15909,
December 2004.

6. ISO/IEC. Software and Systems Engineering - High-level Petri Nets, Part 2: Trans-
fer Format, International Standard ISO/IEC 15909, February 2011.

7. ISO/IEC/JTC1/SC7/WG19. The Petri Net Markup Language home page. http:
//www.pnml.org, 2010.

8. E. Kindler and L. Petrucci. Towards a standard for modular Petri nets: A formal-
isation. In Proc. 30th Int. Conf. Application and Theory of Petri Nets and Other
Models of Concurrency (PetriNets’2009), Paris, France, June 2009, volume 5606
of Lecture Notes in Computer Science, pages 43–62. Springer, June 2009.

9. C. Lakos and L. Petrucci. Modular state spaces for prioritised Petri nets. In
Proc. Monterey Workshop, Redmond, WA, USA, volume 6662 of Lecture Notes in
Computer Science, pages 136–156. Springer, Apr. 2010.

10. K. Letkeman. Comparing and merging UML models in IBM Rational Software
Architect: Part 3 -A deeper understanding of model merging. IBM, http://www.
ibm.com/developerworks/rational/library/05/802_comp3/, 2005.

11. LIP6. The PNML Framework home page. http://pnml.lip6.fr/, 2011.
12. OMG. Unified Modeling Language: Superstructure - Version 2.4 - ptc/2010-11-14,

Jan. 2011.
13. P. Sriplakich, X. Blanc, and M.-P. Gervais. Supporting transparent model update

in distributed CASE tool integration. In Proceedings of the 2006 ACM symposium
on Applied computing, SAC ’06, pages 1759–1766, New York, NY, USA, 2006.
ACM.

14. B. Westfechtel. A formal approach to three-way merging of emf models. In Proceed-
ings of the 1st International Workshop on Model Comparison in Practice, IWMCP
’10, pages 31–41, New York, NY, USA, 2010. ACM.

106 PNSE’11 – Petri Nets and Software Engineering

Part III

Short Presentations

Specialisation and Generalisation of Processes

Christine Choppy1, Jörg Desel2?, and Laure Petrucci1

1 LIPN, CNRS UMR 7030, Université Paris 13, 93430 Villetaneuse, France
2 FernUniversität in Hagen, 58084 Hagen, Germany

Abstract. In data modelling, one of the most important abstraction
concepts is specialisation, with generalisation being the converse. Al-
though there are already some approaches to define generalisation for
process modelling as well, there is no generally accepted notion of gen-
eralisation for processes.
In this paper, we introduce a general definition of process specialisation
and generalisation. Instead of concentrating on a specific process de-
scription language, we refer to labelled partial orders. For most process
description languages, behaviour (if defined at all) can be expressed by
means of this formalism. We distinguish generalisation from aggrega-
tion, and specialisation from instantiation. For Petri nets, we provide
examples and suggest associated notations.
Our generalisation notion captures various previous approaches to gen-
eralisation, for example ignoring tasks, allowing alternative tasks and
deferring choices between alternative tasks. A general guideline is that a
more general process contains less features and/or less information than
a more specific one.
In the conclusion, we also consider the question of common generali-
sation of a set of processes. Finally, we suggest a generalisation concept
that goes beyond labelled partial orders, including additional behavioural
constraints and process data generalisation.

Keywords: Process generalisation; process specialisation

1 Introduction

Specialisation, and its counterpart generalisation, is an important concept of
data modelling which has been known for many years in database research [9].
The core idea of generalisation is to combine object types which share common
attributes to a more general supertype which only has the common attributes
whereas each more specific type inherits these attributes from the supertype and
has its own, private attributes. We can also adopt a top-down view instead of a
bottom-up one: starting with an object type, we might identify subtypes such
that the objects in each of the subtypes share common additional attributes
which might be meaningless for other objects. We can specialise the initial type
to these subtypes and distinguish common attributes and additional attributes
? This work was achieved while the second author was visiting University Paris 13.

of the subtypes. Such a specialisation can cover the supertype (every object
belongs to at least one subtype) or not, and it can divide the supertype into
disjoint subtypes (no object belongs to more than one subtype) or not.

Instead of attributes of objects, generalisation and specialisation also apply to
classes and their methods in object-oriented modelling, and in an even broader
scope, to arbitrary features that are inherited from the more general to the
more specific component. Generalisation and specialisation are very important
abstraction concepts in models that clarify mutual dependencies. They are the
prerequisite for reuse of system components and they allow to avoid redundancy.
For the maintenance of systems and of models, only these concepts support that
common features of different system or model components can be handled at a
single place, instead of considering various copies.

Whereas generalisation and specialisation are abstraction techniques that
have their own graphical representation in data modeling, there are only few
suggestions how to apply comparable concepts to process models. On the other
hand, the same arguments as above would apply to a generalisation and special-
isation concept in behavioural modelling as well. At several places, this demand
was explicitly expressed, see e.g. [3]. Actually, Ulrich Frank pointed us to this
question and provided more (unpublished) examples and papers that identify
the problem of process generalisation and specialisation.

We also considered other papers on specialisation for particular process mod-
els, such as Petri nets. In [14] a particular extensions of Petri nets is suggested,
based on [7]. Unfortunately, it remains unclear how this approach can be trans-
ferred to other modelling languages. Another relevant approach is given in [11],
however, this paper also restricts to a particular language. Moreover, it em-
phasises inheritance and change instead of specialisation and generalisation. In
particular, the inheritance is based on blocking and hiding of transitions whereas
in our notion blocking a transition will turn out to be a specialisation and hiding
a transition will turn out to be a generalisation.

Another important difference to previous papers is that we consider partial
order behaviour of process models instead of strings and sequential automata.
This choice is justified by the observation, that many process languages empha-
sise concurrency between activities which is most appropriately represented by
means of partial orders.

Our approach should be applicable to as many process modelling languages
as possible. Therefore, we do not start with any particular syntactical description
but rather concentrate on the behaviour of models. The behavioural notion used
in this paper is given by partially ordered sets of activities representing runs,
labelled by respective tasks that are expected to appear in a process model. Al-
though this formalism is quite easy to understand, it needs some more involved
technical notations that will be carefully introduced in Section 2. In our exam-
ples, we use Petri nets as a modelling language, but this does not restrict our
approach to this particular language. We use only elementary Petri nets and
expect the reader to understand them without any formal definition.

110 PNSE’11 – Petri Nets and Software Engineering

Our core criteria for a specialisation definition are that specialisation means
to add something (features, tasks, information) to a process model and that
everything valid for a more general process model should also hold for its spe-
cialisation. For example, adding a task to a process model results in the addition
of respective activities in the runs, where the remaining structure of the runs
is not changed. If, according to a process model, two tasks can be executed in-
dependently (in any order or concurrently), then, in a specialisation an order
between these tasks can be specified. This results in runs that are also runs
of the more general system. If two tasks can be executed alternatively, then a
specialisation might add the information to decide which of the tasks occurs;
in this case, some of the runs of the more general model are ruled out in the
specialisation. All these relations can be formulated by means of the respective
sets of runs, and will be the subject of Section 3.

We also identify more subtle specialisation relations that refer to the branch-
ing behaviour of process models; a more special model could have “earlier” infor-
mation about the decision of a choice than a more general model, although their
respective sets of runs are identical. For a motivating example and our solution
to this phenomenon, see Section 4.

Section 5 comes back to the previous work on specialisation of Petri nets
mentioned above. We show that these concepts can be viewed as a special case
of our approach.

2 Basic Setting

In this paper, no formal definition of a process model is given since we do not
stick to any particular process modelling language. Instead, some characteristics
of a process model are expected to be defined: its set of tasks; its runs containing
task executions; and a precedence relation between task executions in runs. This
precedence relation should be a partial order, i.e. a transitive and irreflexive
relation (in accordance with the WorkFlow Management Coalition [13], we use
the term activity for a single execution of a task in a process run). Our definition
resembles the definition of Partial Languages as defined by Grabowski [4] and
Pomsets as defined by Pratt [8].

Given a process model P with set of tasks T , its behaviour is defined by its
set of possible runs.

Definition 1 (Process run). A process run (or just run) π of a process model
P with set of tasks T is given by

– a finite set of activities Aπ,
– partially ordered by a precedence relation π, and
– a mapping λπ:A→ T mapping each activity to a task.

Remark 1. We have decided to consider finite runs only because infinite runs of
process models are only of theoretical interest. However, each infinite run can be
approximated by an infinite sequence of finite runs where each run is a proper
prefix (defined below) of its successor.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 111

If an activity x is mapped to a task λ(x) then it represents an occurrence
of λ(x). Activities have to be distinguished from tasks since there can be more
than one occurrence of a task in one run, with different precedence relations to
other activities.

Definition 2 (Immediate precedence).
Given a process run π, we denote by →π:= π \(π ◦ π) the immediate
precedence relation.

Remark 2. Since the set of activities Aπ is finite, π is the transitive closure of
→π.

In graphical representations, we depict the relation →π by means of directed
arcs, i.e., we give the Hasse-diagram of partial orders. Two activities x and y
satisfy x π y if and only if there is a nonempty path leading from x to y.

Example 1.
Figure 1 depicts a process run π such that :
Aπ = {1, 2, 3, 4, 5}, →π= {(1, 2), (2, 3), (3, 4), (1, 5)}, and λπ(1) = a, λπ(2) = b,
λπ(3) = c, λπ(4) = b, λπ(5) = b. Here, activities are denoted by numbers and
tasks by lowercase letters.

1
a

2
b

3
c

4
b

5
b

Fig. 1. A process run π

Note that a process run can feature several branches, and that a given task can
occur at different places in the process run. In the above example, task b can
occur after another occurrence of task b, and both occur concurrently to a third
one. However, they are associated with different activities, respectively 4 and 2,
which are ordered by the precedence relation, and 5.

In case of sequential semantics of processes, where each run is represented
by a sequence of occurring tasks, we can easily distinguish the first, the second,
etc. occurrence of a single task. Each sequence can be viewed as a mapping from
the set {1, 2, 3, . . . , length(run)} to the set of tasks. For partial-order semantics,
there is no such unique representation of a run. Hence the “same behaviour” can
be represented by runs which only differ w.r.t. the activities. Such runs are said
to be isomorphic.

Definition 3 (Isomorphic runs). Let π and π′ be two process runs of the
same process model P with set of tasks T . Then, π′ is isomorphic to π iff there
is a bijection β:Aπ → Aπ′ such that

112 PNSE’11 – Petri Nets and Software Engineering

1. ∀x, y ∈ Aπ: x→π y ⇐⇒ β(x)→π′ β(y) and
2. ∀x ∈ Aπ: λπ(x) = λπ′(β(x))

Clearly, process run isomorphism is an equivalence relation. If isomorphic
process runs are not distinguished, any representative of the equivalence class is
used.

Example 2. Figure 2 schematises the isomorphism between two process runs.
Process run π (Figure 2(a)) and process run π′ (Figure 2(b)) both yield the
same graph of tasks when abstracting away the activities.

1a

2
b

3
a

(a) Process run π

4a

5
b

6
a

(b) Process run π′

a

b

a
(c) Task occurrences

Fig. 2. A process run π′ isomorphic to a process run π

In general, activities are formalised differently even though they have the
same meaning in terms of tasks. Sometimes it is still necessary to distinguish
activities within a process run in order to be able to refer to precise occurrences
of a task. When this distinction is irrelevant in the pictures, only a • will be
used instead of the actual activity (Figure 2(c)).

3 Linear Time Specialisation

The meaning of a π b is that λ(a) is executed before λ(b) in run π. If activities
a and b are not ordered by means of π, they occur in any order (this order is
not captured by our notion of run) or concurrently. Each linearisation of a run
π, obtained by adding elements to the order relation π, yields another run,
which we consider more specific than π. In turn, each run generalises its set of
linearisations.

The following definition not only compares the precedence relations between
activities but also the respective sets of activities of two runs. It formalises the
observation that a run of a more specific process definition might contain more
details than a run of a less specific process definition. Hence the runs in the
following definition can belong to distinct processes.

Definition 4 (Process run specialisation). Let P and P ′ be two process
models with sets of tasks T and T ′, respectively. A process run π′ of P ′ specialises

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 113

a process run π of P (denoted by π′ ≥ π) if there is an injective mapping µ:Aπ →
Aπ′ such that

1. ∀x, y ∈ Aπ, x→π y ⇒ µ(x) π′ µ(y) and
2. ∀x ∈ Aπ, λπ(x) = λπ′(µ(x)).

Remark 3. As a consequence of Definition 4, if x π y then µ(x) π′ µ(y).

Each activity in the process run π has a corresponding activity in the spe-
cialised process (by the mapping µ), mapped to the corresponding task (2).
Moreover, for each precedence relation in π, there is a corresponding sequence
of precedences in π′ (1).

Example 3. Figure 3 shows a process run π′ specialising a process run π together
with the mapping µ.

π:

π′:

µ:

a b c b

b

a b c d b

e b

Fig. 3. Process run π′ specialises process run π

Up to an isomorphism, a process run π′ of P ′ specialises a process run π
of P if and only if Aπ ⊆ Aπ′ and π⊆ π′ . This justifies the “≥”-notion for
specialisations. It is formalised by the following lemma.

Lemma 1. Let P and P ′ be two process models with sets of tasks T and T ′,
and runs π and π′, respectively. π′ ≥ π if and only if there exists a process run
π such that

1. π is isomorphic to π
2. Aπ ⊆ Aπ′

3. →π ⊆ π′

4. ∀x ∈ Aπ : λπ(x) = λπ′(x).

Proof. (⇒) Assume that π′ specialises π by means of mapping µ. Process run π
is constructed as follows:

Aπ = {x′ ∈ Aπ′ | ∃x ∈ Aπ : x′ = µ(x)}
 π= {(x′, y′) ∈ A2

π | ∃(x, y) ∈ π: µ(x) = x′ ∧ µ(y) = y′}
∀x ∈ Aπ : λπ(x) = λπ′(x)

(⇐) Assume that µ : Aπ → Aπ′ is an isomorphism. Mapping µ : Aπ → Aπ′ is
constructed by: ∀x ∈ Aπ, µ(x) = µ(x).

114 PNSE’11 – Petri Nets and Software Engineering

A process run π′ specialises π if π boils down to the same tasks graph as
in process π (4), π is isomorphic to π (1), but with activities in π′ (2). The
precedence relation in π respects the order relation in π′ (3).

Definition 5 (Linear time specialisation). A process model P ′ is a linear
time specialisation of a process model P if, for each run π′ of P ′ there exists a
run π of P such that π′ ≥ π.

The process model P is then said to be a a linear time generalisation of P ′.

As mentioned in the introduction, every valid statement about the more
general process should hold for the specialised process as well. In a more formal
setting, which is beyond the scope of this paper, any formula of an appropriate
logic that evaluates to true for the general process, should be evaluated to true
for the specialized process as well. Since in this section we concentrate on a
relation based on the runs only, this logic would be Linear Time and based on
partial orders, such as the one of [1].

The idea is that a less general process contains more features/information
than a more general one but inherits all properties from the more general one.

Representative examples of specialisation/generalisation: Table 1 de-
picts some representative examples of generalisation and specialisation. The pro-
cess models are given as Petri nets, and their runs are pictured as well. For each
example, both a specialised and a general version are given. The example is
named after the specialisation characteristic. Hence, the first one forces an ac-
tivity since it prevents activity associated with task b from occurring. The second
example adds an activity associated with task b. Finally, the last example im-
poses a sequential ordering between activities that are concurrent in the general
model, namely those associated with tasks b and c.

4 Branching Time Specialisation

Let us first consider an example motivating further enhancement of the special-
isation notion.

Example 4. Consider two processes P and P ′ modelled by the Petri nets in
Table 2. These nets are actually labelled Petri nets. The two transitions of the
net on the left-hand side labelled by a represent the same task a. As shown in the
pictures, they have identical sets of runs. Both processes start with an occurrence
of a and then either continue with an occurrence of b or with an occurrence of
c. Hence they cannot be distinguished just by inspecting their runs. However, in
process P , after the occurrence of a, there is a choice between continuing with
b or with c, whereas in process P ′ we have to choose immediately between the
run containing occurrences of a and b and the one containing occurrences of a
and c. In this case we might consider process P ′ as a specialisation of P since
additional (more precisely, earlier) information about the choice between b and
c is necessary.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 115

Special General

fo
rc

e
ac

ti
vi

ty
net

a

b

c

a

b

c

al
lo

w
al

te
rn

at
iv

e

runs a c
a c

b c

ad
d

ac
ti

vi
ty net

a b c

a

a c

a

ig
n
or

e
ac

ti
vi

ty

runs a b c a c

or
d
er

ac
ti

vi
ti

es

net
a b c

a

d a

b

c a

d

u
n
or

d
er

ac
ti

vi
ti

es

runs a b c d
a

b

c

d

Table 1. Representative examples of specialisation/generalisation

We cannot distinguish processes P and P ′ by means of their runs as in
the previous section. Therefore, it is necessary to carefully examine all possible
behaviours. To do so, we first define the prefix of a run.

Definition 6 (Prefix of a run). A run π is a prefix of a run π′ if there is an
injective mapping µ:Aπ → Aπ′ such that

1. ∀x, y ∈ Aπ, x→π y ⇐⇒ µ(x)→π′ µ(y)
2. ∀x ∈ Aπ, λπ(x) = λπ′(µ(x)).
3. ∀x′, y′ ∈ Aπ′ : x′ →π′ y′ ⇒ [(∃y ∈ Aπ, y′ = µ(y))⇒ (∃x ∈ Aπ, x′ = µ(x))].

Explanation: Each precedence relation in the prefix has a correspondence in the
complete run π′ (1) and corresponding activities are mapped to the same task (2).
Moreover, each precedence relation of the complete run π′ leading to an activity

116 PNSE’11 – Petri Nets and Software Engineering

P’ P

net

a

a

b

c

a

b

c

runs

a b

a c

a b

a c

Table 2. Runs do not always distinguish processes

that corresponds to one of the prefix also has its starting point corresponding to
an activity of the prefix (3).

Example 5. The process run of Figure 4(a) is a prefix of the process runs of
Figures 4(b) and 4(c).

a b

(a) Process run π

a b c

(b) Continuation π′

a

b

c

d e

(c) Continuation π′′

Fig. 4. A process run π with different extended runs π′ and π′′

Roughly speaking, a prefix of a run is constituted by a set of activities to-
gether with all their predecessors, up to an isomophism. This observation is
formalised in the following lemma:

Lemma 2. A run π is a prefix of a run π′ if and only if there exists a process
run π such that

1. π is isomorphic to π
2. Aπ ⊆ Aπ′

3. →π = →π′ ∩ Aπ ×Aπ

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 117

4. ∀x ∈ Aπ, λπ(x) = λπ′(x)
5. ∀y ∈ Aπ, x→π′ y ⇒ x ∈ Aπ.

Proof. (⇒) Let µ be the mapping mentioned in the definition of a prefix. Set
Aπ = {x′ ∈ Aπ′ | ∃x ∈ Aπ:x′ = µ(x)}. The other defining components of π are
items 3 and 4 of the lemma.
(⇐) Choose µ(x) = µi(x) for every x ∈ Aµ where µi is the isomorphism from π
to π.

Explanation: This lemma is very similar to lemma 1. Run π is exactly the re-
striction of run π′ to the activities in π.

Now, for a run that is a prefix of another run, we define the set of its contin-
uations.

Definition 7 (Extended run, continuations). An extended run is a run π
together with a set of runs C(P), called its continuations, such that π is a prefix
of each run in C(P).

Note that in general C(P) does not contain all runs with prefix π. Two ex-
tended runs are different if their continuations are different, even if their respec-
tive runs are isomorphic.

Example 6. Figure 4 pictures a process run π (Figure 4(a)), and two differ-
ent continuations: π′ in Figure 4(b) and π′′ in Figure 4(c). Then (π, {π′}) and
(π, {π′′}) are two different extended runs of π.

Isomorphic runs can lead to different states. Definition 7 avoids considering
states of processes. For applying our concept to concrete process definition lan-
guages, we might consider the states reached by runs instead, determining the
possible continuations.

Remark 4. For unlabelled Petri nets the distinction does not occur because iso-
morphic runs lead to identical markings. For labelled Petri nets the problem can
occur.

Definition 8 (Branching Time Specialisation). A process model P ′ is a
branching time specialisation of a process model P if for each extended run π′ of
P ′ with continuation C(P ′) there exists an extended run π of P with continuation
C(P) such that

– π′ ≥ π
– for each run π̃′ ∈ C(P ′) there exists a run π̃ ∈ C(P) such that π̃′ ≥ π̃.

Example 7. The nets in Table 2 can be distinguished using specialisation of
Definition 8, while they could not be with the linear time specialisation of Defi-
nition 5.

In Table 3, the activities are numbered after transitions names. The process
model P ′ has a run π′, consisting only of activity 1 labelled by a. Its set of

118 PNSE’11 – Petri Nets and Software Engineering

continuations C(P ′) contains this run itself and also the run 1 → 2, as given
in the figure. For P , we also have the run π = 1, labelled by a. Its set of
continuations C(P) contains also the run 1 → 4, as given in the figure. So, in
this example, for every continuation in C(P ′) we find an isomorphic continuation
in C(P). Conversely, consider the extended run π consisting only of activity 1
labelled by a in process model P , which is a prefix of both depicted runs. Its
continuations is the set of both runs depicted in the table. So it is possible to
continue with a b-activity and it is also possible to continue with a c-activity.
Now activity 1 (i.e., the run consisting only of this activity) can not be an
associated run of P ′ because it misses a continuation with an activity labelled
with c. Similarly, activity 3 can not be an associated run of P ′ because this one
misses a continuation with an activity labelled with b. Arguing about all possible
runs and continuations of P ′ as above shows that P ′ is a specialisation of P .

P’ P

net

t1

a

t3
a

t2

b

t4
c

t1

a
t2

b

t4
c

runs
1
a

2
b

3
a

4
c

1
a

2
b

1
a

4
c

Table 3. Runs display different activities

We call this concept of specialisation Branching Time Specialisation because,
again, we have that the valid statements (now expressable in Branching Time
Temporal Logic) of the more general process should also hold for the specialised
one.

5 Related Works

Abstraction and refinement have been the subject of numerous researches, and
we just mention some of them here. The goals include to keep the modelling
and reasoning as close as possible to the essence of the system to be developed,
while still taking into account that a concrete representation (also called concrete
implementation) of data should be provided at some later point together with
the way it is related with the abstract data.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 119

Tony Hoare [6] proposed a method to prove program correctness in the con-
text of stepwise refinement where a representation of abstract data is chosen.
Then John Guttag et al. [5] showed how the use of algebraic axiomatizations
can simplify the process of proving the correctness of an implementation of an
abstract data type. A number of works followed in the algebraic specification
field. Now, an explicit data type refinement construct is introduced in program-
ming languages like Scala [10].

As mentioned in the introduction, abstraction was studied for database mod-
elling by John and Diane Smith [9], with the concepts of generalisation and ag-
gregation. These concepts are also part of the object-oriented approaches (e.g.
UML based approaches), or languages.

The same concepts should also be adapted to the modelling of the behaviour
of a system, described by a process, a state-based diagram, etc.

Lee and Wyner [7] define a specialisation concept for dataflow diagrams.
They distinguish minimal execution set semantics in which adding an activity is
a specialisation (as in Table 1), and the maximal execution set semantics which
is the option they choose. So obviously their definition of specialisation differs
from ours.

In [14], they work on specialisation for a variant of Petri net (Workflow
Process Definition). They analyse the approach of van der Aalst and Basten [11]
who identify four types of inheritance of workflows, and propose an extension.

Wang et al. [12] stress that design issues are important, and, in the context of
component-based model-driven development, they present two refinement rela-
tions, a trace-based refinement and a state-based (data) refinement, that provide
different granularity of abstractions. So they combine the data refinement and
the behaviour refinement.

6 Conclusions

Summary

We have presented a very general notion of specialisation and generalisation of
processes which does not stick to a specific process modelling language but can
be applied to all process languages where behaviour can be expressed in terms
of partially ordered activities. Processes with sequential runs are a special case
where all activities in runs are mutually ordered. Specialisation is interpreted as
addition of features, where features can be additional tasks, additional ordering
information, additional information on choices and earlier information on choices.
All these features except the last one can be expressed by a specialisation relation
on runs whereas the last one concerns branching points of process models that
do not appear in runs and hence require a more involved definition based on
runs and their possible continuations.

Specialisation versus Refinement/Generalisation versus Aggregation

One could argue that refinement of a process element is a form of specialisation
because the more detailed view adds information. Conversely, what distinguishes

120 PNSE’11 – Petri Nets and Software Engineering

generalisation and aggregation? According to our definition, specialisation adds
something to a process, whereas refinement replaces something by something
else, which should be more detailed. For example, if a task is added to the
process, then the process is more special and associated activities show up in
its runs. If a task is refined to two subsequent tasks, then the process is more
detailed and the respective activities are refined accordingly in its runs.

Specialisation versus Instantiation

In one of our previous examples we have shown that information about the
decision of choices can be viewed as a particular specialisation. The specialised
process contains less alternatives. If all choices are decided, then the process is
deterministic and contains no alternative at all. In other words, it only has a
single run (remember that our notion of a run captures possible concurrency
so that no additional runs caused by interleaving appear). Depending of the
representation of the process and of its single run, both might look very similar.
However, the run represents an instance of the process (and was an instance of
the original process, too) whereas the process is on a lower meta-level. Whereas
repeated specialisation of processes is possible and always yields new processes,
instantiation of processes decreases the meta-level by one and can only occur
once.

Extensions

It is obvious that there are features, that can be added, which cannot be handled
by our concept so far. One example considers concurrency. Our notion of partially
ordered runs is interpreted in such a way that activities that are not ordered can
occur concurrently or in any order. However, it could be possible to specialise
such a specification by demanding that activities have to occur concurrently
whereas any order would be illegal. This cannot be expressed by our notion
unless we add an additional “concurrent” relation. Other, similar relations are
“not later than” or “at most two of three activities occur concurrently”.

Another extension refers to data. Usually tasks are performed for some or
several data objects. This data does not appear in runs of our processes. For a
combined view of processes and data, and for a combined notion of specialisation,
the process view and the data view have to be integrated. There is an obvious
way to do this integration by carrying over the data attributes from tasks to
activities. Then the mapping between activities constituting our specialisation
relation has to be extended to these data objects; the more general process
handles the more general data.

Representation

In data modelling, generalisation and other abstraction techniques such as ag-
gregation are represented graphically in the model. While this is nicely possible

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 121

for aggregation in process models (see, for example, [2]), we do not see an ele-
gant solution for generalisation in process models. One obvious approach is to
depict additional tasks and additional relations between tasks by means of dif-
ferent symbols (colours or lines, respectively). However, if a single specialisation
considers changes in different parts of a process then it is not obvious to express
that these changes can only occur together.

The Partial Order of Specialisation

Our notion of generalisation and specialisation is not primarily given as a prob-
lem (is x a specialisation of y ?) but as a specification means. However, it is an
interesting question whether the above question is decidable and, in the positive
case, what is the complexity of a decision algorithm or of the problem in general
(i.e., the complexity of the most efficient algorithm).

It is not difficult to see that the specialisation relation between single process
runs is decidable, although any algorithm heavily depends on the data struc-
ture used to represent the respective process runs. Notice that by definition
process runs are finite, i.e., have a finite set of activities. We cannot deal with
isomorphism classes of process runs in algorithms but instead consider arbitrary
representative process runs.

Proposition 1. Given two process runs π and π′ of two process models P and
P ′, it is decidable whether π′ specialises π.

Proof. π′ can only be a specialisation of π if, for each task t, π′ has at least as
many activities labelled by t as π has. This condition is easy to check. Assume
that it holds true.

There are finitely many injective label-preserving mappings from the activ-
ities of π to the activities of π′, and it is not difficult to construct them in
a systematic way. For each pair of activities of π which are in the immediate
precedence relation we check whether the respective target activities are ordered
in π′ (they do not necessarily have to be immediate successors!). If this is true
for at least one mapping, then π′ is a specialisation of π.

Things become more difficult when process models are compared, because
each process model can have infinitely many runs. Since we do not consider
any particular process model, nothing can be said about decidability in general.
Clearly, there is only a chance for decidability of specialisation if a process model
cannot generate infinitely many arbitrary runs.

It is not difficult to prove that “being a specialisation” is a partial order on
process models. Its minimal element is the empty process model which is a (use-
less, though) generalisation of all process models. Using this order one might
ask, for a given set of process models, whether there is a “largest” generalisa-
tion, whether this is unique, and whether it can be constructed algorithmically.
Similarly, it would be interesting to find the “smallest” specialisation of a set of
process models. There are no obvious answers to these questions, and hence the
study of the partial order of specialisation is subject to future work.

122 PNSE’11 – Petri Nets and Software Engineering

References

1. Girish Bhat and Doron Peled. Adding partial orders to linear temporal logic.
Fundamenta Informaticae, 36(1):1–21, 1998.

2. Jörg Desel and Agathe Merceron. Vicinity respecting homomorphisms for ab-
stracting system requirements. Transactions on Petri Nets and Other Models of
Concurrency, 4:1–20, 2010.

3. Ulrich Frank and Bodo Van Laak. A Method for the Multi-Perspective Design of
Versatile E-Business Systems. In Proceedings of the 8th Americas Conference on
Information Systems, pages 621–627, 2002.

4. Jan Grabowski. On partial languages. Fundamenta Informaticae, 4(2):428–498,
1981.

5. John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and
software validation. Commun. ACM, 21(12):1048–1064, 1978.

6. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

7. Jintae Lee and George M. Wyner. Defining specialization for dataflow diagrams.
Information Systems, 28(6):651–671, 2003.

8. Vaughan Pratt. Modelling concurrency with partial orders. Int. Journal of Parallel
Programming, 15:33–71, 1986.

9. John Miles Smith and Diane C. P. Smith. Database abstractions: aggregation and
generalization. ACM Trans. Database Systems, 2(2):105–133, 1977.

10. The Scala Programming Language. http://www.scala-lang.org/.
11. Will M. P. van der Aalst and Twan Basten. Inheritance of workflows: an ap-

proach to tackling problems related to change. Theoretical Computer Science,
270(1-2):125–203, 2002.

12. Zizhen Wang, Hanpin Wang, and Naijun Zhan. Refinement of Models of Software
Components. In Proceedings of SAC‘10, pages 2311–2318, 2010.

13. Workflow Management Coalition. http://www.wfmc.org/.
14. George M. Wyner and Jintae Lee. Applying Specialization to Petri Nets: Impli-

cations for Workflow Design. In Christoph Bussler and Armin Haller, editors,
Business Process Management Workshops, volume 3812, pages 432–443, 2005.

C. Choppy, J. Desel, L. Petrucci: Specialisation and Generalisation of Processes 123

Integrating Verification into the Paose Approach

Marcin Hewelt, Thomas Wagner, and Lawrence Cabac

University of Hamburg, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. The Paose approach to software engineering combines Petri
nets with the paradigm of agent-orientation and utilises the agent
metaphor to structure large software systems and their development.
Up until now the Paose approach only exhibited aspects of verification
in a rudimentary way. This is due to the complexity of the systems to be
verified on the one hand, and the expressiveness of the employed Petri
net formalism of reference nets on the other hand. This contribution
deals with enhancing the tool support for Paose in this regard.
We present how we technically integrate the functionality of LoLA, a so-
phisticated verification tool, into Renew, the development and runtime
environment that backs Paose. Furthermore we sketch how structural
aspects of multi-agent systems developed with the agent framework of
Mulan can be exploited for verification. The results of the integration
are applied in the context of distributed network security for the Herold
research project.

Keywords: Development approach, Petri nets, Petri net tools, verifica-
tion

1 Introduction

In order to successfully tackle the challenges of creating large, complex software
systems, the adoption of a development approach is almost mandatory. Paose
(Petri Net-Based Agent-Oriented Software Engineering, [3]) is a sophisticated
development approach that utilises Petri nets and the multi-agent system (MAS)
metaphor to structure software systems and their development. It has been used
in a variety of projects and has proven to be suitable for developing large and
complex systems with large groups of developers.

One aspect that has, up until now, been largely left out of the Paose ap-
proach is the verification of the resulting software systems. The main challenge in
this regard is posed by the highly expressive nature of the Petri net formalism of
reference nets [12], utilised in Paose. Generally speaking, (low-level) Petri nets
offer a formal and clear way of specifying complex systems, while at the same
time retaining an intuitive and compact graphical representation. This allows
for the use of analysis techniques, which can verify certain properties of a Petri
net specification. Reachability of certain markings, boundedness of places and
liveness of transitions are just some examples of properties that can be verified

for some Petri net classes. Reference nets, however follow the nets-within-nets
paradigm. This allows tokens to be nets themselves and consequently leads to
a nested system of nets. In addition tokens can also refer to Java objects which
can be manipulated using (Java) inscriptions on the transitions. Finally refer-
ence nets employ so-called test arcs, which allow concurrent reading access to
a resource. These features enable us, on the one hand, to use reference nets as
a full-fledged programming language to develop software systems. But on the
other hand classical verification algorithms can no longer be directly applied
to reference net systems. Adaptions and abstractions have to be undertaken in
order to make verification available in the context of Paose. Our current work
constitutes the first steps in this endeavour.

Verification of a software system is especially important, when certain prop-
erties of the system need to be guaranteed after deployment. Aspects, like
deadlock-freeness or boundedness, are often not just simple inconveniences, but
can endanger critical components. This is especially true in the case of the
Herold project [17], which researches the application of agent-orientation in
the domain of distributed network security. In this project we employ the Paose
approach to develop a MAS for the management of network security components
(e.g. firewalls), because a MAS is capable of capturing the distributed nature of
the domain. If the deployed system contained deadlocks or interactions between
agents failed to terminate the result could endanger the entire network under
management by leaving it open to attacks. Because this has to be prevented
under all circumstances, the need for verification support is clear and the inte-
gration of such functionality into Paose becomes a priority.

The goal of the particular research presented in this contribution is to en-
hance the tool support for Paose with regards to verification. The designated
tool for Paose is Renew (Reference net workshop, [13]), which was especially
developed to simulate reference nets, although it is not restricted to this for-
malism. It has served as the build- and run-time environment for many software
systems using reference nets [4, 23].

We have chosen to integrate an existing, external tool for verification, instead
of developing this functionality from scratch. This tool is LoLA (Low Level Net
Analyser, [21]). It provides the desired verification functionality in an efficient
and accessible way. This contribution presents the technical and conceptual en-
hancements to Paose and Renew, especially the integration of LoLA.

Concerning related work, we researched other verification tools prior to
choosing LoLA for the integration. These tools included Netlab (see [8, 18])
and Maria (see [15]). Netlab offers functionality to edit, simulate and anal-
yse place/transition nets. Analysis functions include computation of S- and T-
invariants and the reachability/coverability graphs of a given net. Maria (The
Modular Reachability Analyzer) employs algebraic system nets. For verification
functionality it features reachability analysis and LTL model checking. Both
Netlab and Maria are sophisticated verification tools, which provide extensive
techniques. In the end, we chose LoLA since it provides comprehensive verifica-
tion functionality, is quite efficient and its integration is straight-forward.

M. Hewelt, T. Wagner, L. Cabac: Integrating Verification into PAOSE 125

The paper is structured in the following way. Section 2 discusses the tech-
nical aspects of the integration of LoLA into Renew. Section 3 then discusses,
how this integration can conceptually be used within Paose. Finally Section 4
summarises and concludes the paper.

2 Technical Integration

Renew, the Reference Net Workshop, is a high-level Petri net editor and sim-
ulator created at the University of Hamburg. It is described in [13] and was
developed alongside the reference net formalism [12]. It supports multiple for-
malisms, including the aforementioned reference nets, workflow nets [7, 22] and
place/transition nets. With regards to verification it provides a type and syn-
tax check when editing nets and some effort has been made to support external
verification tools (e.g. [16]).

LoLA, the Low Level Petri Net Analyser, is a verification tool for
place/transition and coloured nets described, for example, in [21]. It is based
on state space exploration exploiting state-of-the-art reduction techniques and
has a high standing in industry and academia, see e.g. [6, 14, 10] for recent ap-
plications. Functionality includes the creation of useful additional information
about nets, such as reachability and coverability graphs, and the verification of
deadlock-freeness, reachability of markings, non-deadness of transitions, state
predicates, CTL formulas and other properties.

In order to use LoLA within the Renew tool, we implemented an export from
Renew nets to the textual net representation that LoLA requires. Figure 1 gives
an example of a simple Renew net and the corresponding textual LoLA net file,
as generated by the presented Renew plugin.

Renew nets consist of an unsorted set of figure objects, each of which rep-
resents one net element1. The figures of a net can be accessed by means of
a Java enumeration, which is processed to generate the representation LoLA
understands. In order to do so, we have to identify the places, the transitions
(together with their pre- and post-set) and the initial marking of the net2. These
are extracted from the Renew net and written into a new file that complies with
the LoLA syntax.

The export of Renew nets is restricted to those concepts that can be ex-
pressed within LoLA. Therefore we employ the following projection, which strips
some semantic information from the reference net. We first need to ignore all in-
scriptions on places, transitions and arcs (type declarations, guards, synchronous
channels, Java code and variables), except for names of places and transitions.

1 Net elements in this context are not only transitions, places and tokens, but every-
thing in the net drawing, including inscriptions, names and comments.

2 We can restrict ourselves to only these three, because, for now, we are only using the
P/T-net functionality of LoLA. However, we continue to work on mapping Renew’s
type declarations to LoLA’s specification format for high-level nets, which allows the
declaration of sorts and operations. These can later on be referred in the verification
requests.

126 PNSE’11 – Petri Nets and Software Engineering

Fig. 1. A Renew net and the corresponding LoLA files.

Then we need to treat object and net tokens (i.e. tokens that represent Java
objects or itself nets) as black tokens, wherever they appear. Finally we need to
replace test arcs (which are bidirectional) with normal arcs leading to and from
the elements involved.

Additionally we have implemented the possibility to annotate verification
tasks inside a Renew net. The corresponding text figures are written into sep-
arate files, since LoLA requires them to be independent from the textual net
representation3.

Verification tasks for LoLA can be defined in two ways in the Renew tool.
They can either be added directly as unconnected text figures, using the LoLA
Syntax (e.g. the “ANALYSE MARKING . . . ” text in Figure 1, which corresponds
to the task of checking if the specified marking is reachable) or, more comfortably,
as a special inscription for the concerning element. For example, the inscription
of the place place1 in Figure 1 stating “ASSERT BOUNDED” is automatically
translated into a verification task to check the boundedness of the place. The
latter is more convenient for the user, since it does not require him to keep track
of the names of the net elements for verification.

3 It is also possible to add some verification tasks directly to the net file. Another
viable alternative is to provide the tasks to LoLA as streams.

M. Hewelt, T. Wagner, L. Cabac: Integrating Verification into PAOSE 127

Providing LoLA functionality with the exported nets from within Renew is
handled by calling LoLA externally and feeding the results back into Renew.
There are other options how to integrate LoLA, however missing insight into the
internal workings of LoLA we were not able to implement them yet. The work
on this is still ongoing.

Now that we have outlined how LoLA was technically integrated into Renew
we can proceed to discuss in which ways the functionality is used. Apart from
simply being able to specify nets and manually exporting and verifying them,
we have decided to provide a more convenient tool set for the Renew user to
access the functionality. Therefore we implemented a plugin for Renew that
offers the described export capabilities and aggregates some of the functionality
offered by LoLA into a graphical view, which makes it comfortably accessible
in the Renew context. The work on this plugin is still ongoing. Some features
have already been implemented while others are considered work-in-progress.

Fig. 2. Screenshot of checklist

On-the-fly check for transitions and places:
The plugin provides the means to check the transitions and places of a net
currently being drawn. It will check if transitions are dead and places are
bounded. Dead transitions and unbounded places will be marked in the net
drawing, so the user can revise the relevant parts of the net.

Net “checklist”:
The plugin offers a kind of checklist for a net. In this checklist the properties
of quasi-liveness, reversibility, deadlock freedom, existence of home mark-
ings and boundedness are displayed. For now, for each of these properties
an indicator is given (either positive or negative), but the checklist can be
extended to supply additional information, such as concrete home markings

128 PNSE’11 – Petri Nets and Software Engineering

or witness paths. In Figure 2 we included a screenshot of the net checklist
that shows the result we obtained for the net on the left.

Reachability/coverability graphs: Work-in-progress
The plugin will provide a window in which the reachability and coverability
graphs of the net currently being drawn are displayed. This creation of the
graphs is initiated manually by the user.

Marking editor: Work-in-progress
The plugin will provide an editor for entering a specific marking for the cur-
rent net. The fields of the editor are updated to display all current places.
The user can enter the tokens of each place and then check the marking
for example for its reachability (from the initial marking or a second mark-
ing input into the plugin window), coverability or status as a home state.
Feedback is immediately given to the user within the plugin window.

CTL formula editor: Work-in-progress
Similar to the marking editor, the plugin will provide the means to input a
CTL formula for the current net, which can then be checked directly from
within Renew.

3 Conceptual Integration into Paose approach

Applying Petri nets for software engineering (SE) is a common practice
(see e.g. [19]). Nonetheless the Paose approach developed at the theoretical
foundations group (TGI) in Hamburg is quite unique, in that it combines Petri
nets with the paradigm of agent-orientation to build software systems. We first
give a short introduction to the Paose approach and then discuss the role of ver-
ification. Finally we show how the results of the technical integration presented
in this paper can be applied to the verification of multi-agent systems (MAS).

3.1 Petri net agents

Paose employs concepts from agent-orientation to structure software systems on
four different levels, which together form the Mulan architecture (Multi-agent
nets, see [20]). Agents are active, goal-oriented and autonomous software com-
ponents that only communicate by means of asynchronous messages. They are
situated in a logical environment, called platform, that allows for agent migra-
tion, facilitates message transport and provides a service registry. The behaviour
of agents is autonomous, so unlike function calls, agents choose how to answer to
a received message (if at all). For the concrete handling of a message the agent
executes a protocol4 from his knowledge base, which constitutes a repository of
known behaviours and data.

Each of the four levels is realised with reference nets, with higher levels
embedding the lower ones as net tokens. In this way a platform contains refer-
ences to agent nets, which, in turn, hold references to protocol nets. Due to the
4 The term does not refer to a communication protocol that encompasses several

agents, but rather stands for a specification of a specific behaviour of an agent.

M. Hewelt, T. Wagner, L. Cabac: Integrating Verification into PAOSE 129

operational semantics of reference nets, a modelled multi-agent system can be
simulated directly.

Being an exhaustive SE-approach Paose also encompasses techniques for the
specification of interactions between agents, for the definition of ontologies and
for the definition of agent roles and knowledge bases, all of which are fully sup-
ported by internally and externally developed tools. A model for the development
process, as well as an agile method and facilities for the automatic generation of
nets and documentation are available. However, we will not go into detail here,
but refer the reader to [2] for a complete, detailed presentation of the Paose
approach.

3.2 Role of Verification

Up until the research presented here, the Paose approach did not include for-
mal verification, but instead relied on the sophisticated type and syntax check-
ing offered by Renew. Because the ontology of a multi-agent application is
transformed into a Java type hierarchy, the Renew tool can provide the devel-
oper with type checking for ontology objects. The same is true for the meta-
ontology describing platforms, agents, services and messages among other Mu-
lan-relevant objects.

An additional feature at least partially fills the role of verification. During the
development process the multi-agent application can be simulated and inspected
thoroughly, and can even be modified on the fly during a simulation run [5]. All
these measures reduce the cost of development, as they make the process less
error-prone.

This contribution addresses the afore-mentioned shortcoming of Paose, by
providing “classical” Petri net verification. However, we tailor the functionality to
the specific context of Paose. Due to the Turing completeness of reference nets
[11] the properties of liveness and boundedness, among others, are undecidable
and thus the problem of general verification has not been tackled before. We have
come to realise that although no general verification can be achieved, interesting
properties can be validated to some degree. To make reference nets suitable
for verification with the LoLA plugin, we employ the projection described in
Section 2, which replaces object and net tokens with black tokens and strips
away certain inscriptions e.g. Java calls.

It needs to be examined what assertions can be made about the original net.
One can observe that if a transition is activated in the original net, it is also
activated in the projection5. On the other hand, if a transition in the projected
net is not activated, it will not be activated under any circumstances in the
original net. So we can conclude that if a deadlock occurs in the projected net,
it also occurs in the original one. The opposite does not hold true however.

5 There is a minor exception to this. In the case where several transitions are con-
nected to the same place with a test arc, they can fire concurrently in the original
net. Because test arcs are replaced by usual arcs, this no longer can happen in the
projected net.

130 PNSE’11 – Petri Nets and Software Engineering

We will now detail how the LoLA plugin can play an important role in
supporting the development of multi-agent systems by utilising the structure of
Mulan nets for verification.

Fig. 3. A Mulan protocol net

3.3 Towards MAS verification

We claim that the reference nets used in the Paose context exhibit some struc-
tural features that make them well suited for verification. For this we have to
take a more detailed look at the utilised net systems. Agent and platform nets
are fixed, this means all agents and platforms share a common structure, while
application specific functionality is added through protocol nets and the knowl-
edge base (and application specific infrastructure). While agent and platform
nets need to be live, it is essential for protocol nets to terminate, i.e. to reach a
terminal state. Some groundwork on this topic has been presented in [9].

Figure 3 illustrates the typical form of a protocol net used in Mulan. Struc-
turally speaking, protocol nets start and end with a transition, which synchro-
nises with the embedding agent net. The initial synchronisation causes the newly
instantiated protocol net to be put on a special place in the agent net, dedicated
for ongoing conversations. Messages an agent receives can be directly passed to
an ongoing conversation, if their type matches the type expected in the protocol
net. The final synchronisation removes the instance of the protocol net from the
conversation place, once it is finished (meaning it reached its terminal state).
In this way, it is essentially a workflow net [22]. Using this perspective the clo-
sure of the workflow net would be provided by the agent, which is capable of
re-instantiating the protocol/workflow.

While a conversation is ongoing, agents send and receive messages in their
corresponding protocol nets that together form the conversation. The platform
net is also involved in the conversation, because it routes the message to its des-
tination. Deadlock-freeness and thus termination can only be verified under the

M. Hewelt, T. Wagner, L. Cabac: Integrating Verification into PAOSE 131

assumption that the communication partners and the message transport service
behave well. On the other hand, stripping the inscriptions from the protocol net,
one can verify deadlock-freeness of the projected protocol net independently of
its environment. Using the LoLA tool in combination with the existing type
check we can enhance verification in cases where alternative behaviours are cho-
sen according to message content (which is the standard case).

Some other verification tasks for multi-agent systems spring to mind and will
be the focus of future work:
– Do agents possess matching protocols so that they can communicate?

Given two, or more, agents this task can determine if they possess matching
protocols. This means that an outgoing message in one agent’s protocol
has to correspond to an incoming message in another agent’s protocol. In
terms of practical implementation this boils down to matching the outgoing
message as a type to the incoming message as a type, possibly by merging
the protocol nets.

– Does an agent have required protocols to be embedded on a platform?
While similar to the previous task, this task is a bit more general. Instead of
explicitly matching a number of agents for communication, this task deter-
mines if an agent possesses the required functionality (i.e. protocols) needed
to be active on a specific platform. This task is more comprehensive and
complex, since it addresses further aspects concerning functionality, not just
communication. In practical terms, more nets have to be matched and cer-
tain assumptions about the content of protocols (for example through type
matching) have to be verified.

– Is the overall communication structure deadlock-free?
Another related task is to check the overall interaction and communication
structure of the multi-agent application for deadlocks. Taking the agent in-
teractions into account we could generate a simplified net version of the
overall communication, assuming that the internal workings of the agents
are correct and do not deadlock. The check would then again be confined
to the messages and their types, but instead of having a particular set of
agents and protocols in the focus, it would examine the overall multi-agent
application.

These last points dealing with the orchestration of protocol nets illustrates
the intimate relation between protocol nets in the Mulan architecture and open
nets of [24]. Open nets are used in the context of service synthesis, composition
and orchestration and are supported by an exhaustive tool suite6 that includes
LoLA. Therefore we started our investigation into verification tools with LoLA
and plan to extend it to other tools from the suite.

4 Conclusion

We have presented a way to make use of an existing tool as a plugin for Renew
and how the Paose approach profits from this integration. The technical real-
6 Available online as open source from http://service-technology.org/.

132 PNSE’11 – Petri Nets and Software Engineering

isation was easily achieved due to the flexible plugin mechanisms provided by
Renew. So far we have used the tool to check for very basic properties, but as
was advocated in Section 3, we are working on applying it to multi-agent sys-
tems. Conceptually we gain enhanced tool support for Paose, making it easier
to develop functioning-as-designed multi-agent applications.

Concerning future work, the efforts of enhancing Renew and Paose with
the help of LoLA are still ongoing. We are looking at further ways of extending
the functionality of the LoLA plugin for Renew and are researching additional
areas of our multi-agent systems for verification, as was outlined in Section 3.3.
As for the technical aspects, a promising avenue of work is to also incorporate
the support for sorts and operations offered by LoLA into the plugin. This will
improve the modelling effort for verification and, in turn, make using LoLA
within Renew more comfortable.

From a practical point of view, we will use the results we have obtained
within the Herold research project7. Herold deals with distributed network
security and the management of network security components (see [1] for more
information). The complex processes within the project, coupled with the critical
nature of the application domain, require the use of verification techniques in
order to ensure correct execution of the produced multi-agent system. The LoLA
plugin will play an invaluable role for the verification aspects of the project.

References

1. Simon Adameit, Tobias Betz, Lawrence Cabac, Florian Hars, Marcin Hewelt,
Michael Köhler-Bußmeier, Daniel Moldt, Dimitri Popov, Jose Quenum, Axel Theil-
mann, Thomas Wagner, Timo Warns, and Lars Wüstenberg. Herold - agent-
oriented, policy-based network security management. In Future Security, 5th Se-
curity Research Conference, Berlin, 2010.

2. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications, volume 5 of
Agent Technology – Theory and Applications. Logos Verlag, Berlin, 2010.

3. Lawrence Cabac, Till Dörges, Michael Duvigneau, Christine Reese, and Matthias
Wester-Ebbinghaus. Application development with Mulan. In Daniel Moldt, Fab-
rice Kordon, Kees van Hee, José-Manuel Colom, and Rémi Bastide, editors, Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE’07), pages 145–159, Siedlce, Poland, June 2007. Akademia Podlaska.

4. Lawrence Cabac, Michael Duvigneau, Michael Köhler, Kolja Lehmann, Daniel
Moldt, Sven Offermann, Jan Ortmann, Christine Reese, Heiko Rölke, and Volker
Tell. PAOSE Settler demo. In First Workshop on High-Level Petri Nets and
Distributed Systems (PNDS) 2005, Vogt-Kölln Str. 30, D-22527 Hamburg, March
2005. University of Hamburg, Department of Computer Science.

5. Lawrence Cabac, Daniel Moldt, and Jan Schlüter. Adding runtime net manipula-
tion features to MulanViewer. In 15. Workshop Algorithmen und Werkzeuge für
Petrinetze, AWPN’08, volume 380 of CEUR Workshop Proceedings, pages 87–92.
Universität Rostock, September 2008.

7 The Herold project is funded by the German Federal Government, through its
Ministry of Education and Research (Grant No. 01BS0901).

M. Hewelt, T. Wagner, L. Cabac: Integrating Verification into PAOSE 133

6. Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to
Petri nets. In Wil M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera,
editors, Proceedings of the Third International Conference on Business Process
Management (BPM 2005), volume 3649 of Lecture Notes in Computer Science,
pages 220–235, Nancy, France, September 2005. Springer-Verlag.

7. Thomas Jacob. Implementierung einer sicheren und rollenbasierten Workflow-
management-Komponente für ein Petrinetzwerkzeug. Diploma thesis, University
of Hamburg, Department of Computer Science, Vogt-Kölln Str. 30, D-22527 Ham-
burg, 2002.

8. Stephan Kleuker. Formale Modelle der Softwareentwicklung. Model-Checking, Ver-
ifikation, Analyse und Simulation. Vieweg+Teubner, Wiesbaden, 2009.

9. Michael Köhler, Daniel Moldt, and Heiko Rölke. Liveness preserving composi-
tion of behaviour protocols for Petri net agents. Report of the research program:
Act in Social Contexts FBI-HH-M-316/02, University of Hamburg, Department of
Computer Science, June 2002.

10. Milos Krstic, Eckhard Grass, and Christian Stahl. Request-driven GALS technique
for wireless communication system. In Proceedings of the 11th IEEE International
Symposium on Asynchronous Circuits and Systems, pages 76–85, Washington, DC,
USA, 2005. IEEE Computer Society.

11. Olaf Kummer. Undecidability in object-oriented Petri nets. Petri Net Newsletter,
59:18–23, 2000.

12. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
13. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Michael Köhler, Daniel Moldt,

and Heiko Rölke. Renew – the Reference Net Workshop. In Eric Veerbeek, editor,
Tool Demonstrations. 24th International Conference on Application and Theory of
Petri Nets (ATPN 2003). International Conference on Business Process Manage-
ment (BPM 2003), pages 99–102. Department of Technology Management, Tech-
nische Universiteit Eindhoven, Beta Research School for Operations Management
and Logistics, June 2003.

14. Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig. Analyzing
BPEL4Chor: Verification and participant synthesis. In Marlon Dumas and Reiko
Heckel, editors, Web Services and Formal Methods, volume 4937 of Lecture Notes
in Computer Science, pages 46–60. Springer-Verlag, 2008.

15. Marko Mäkelä. Maria: Modular reachability analyser for algebraic system nets. In
Proceedings of the 23rd International Conference on Applications and Theory of
Petri Nets, ICATPN ’02, pages 434–444. Springer-Verlag, 2002.

16. Marco Mascheroni, Thomas Wagner, and Lars Wüstenberg. Verifying reference
nets by means of hypernets: A plugin for Renew. In Michael Duvigneau and
Daniel Moldt, editors, Proceedings of the International Workshop on Petri Nets and
Software Engineering, PNSE’10, Braga, Portugal, number FBI-HH-B-294/10 in
Bericht, pages 39–54, Vogt-Kölln Str. 30, D-22527 Hamburg, June 2010. University
of Hamburg, Department of Informatics.

17. Daniel Moldt, Michael Köhler-Bußmeier, Axel Theilmann, Simon Adameit, To-
bias Betz, Lawrence Cabac, Florian Hars, Marcin Hewelt, Dimitri Popov, José
Quenum, Thomas Wagner, Timo Warns, and Lars Wüstenberg. Modelling dis-
tributed network security in a Petri net and agent-based approach. In Jürgen Dix
and Witteveen Cees, editors, Multiagent System Technologies. 8th German Confer-
ence, MATES 2010,Leipzig, Germany, September 27-28, 2010. Proceedings, volume
6251 of Lecture Notes in Artificial Intelligence, pages 209–220, Berlin Heidelberg
New York, September 2010. Springer-Verlag.

134 PNSE’11 – Petri Nets and Software Engineering

18. Philipp Orth and Dirk Abe. Rapid Control Prototyping petrinetzbasierter
Steuerungen mit dem Tool NETLAB. at-Automatisierungstechnik, 54, Issue: 5:222–
227, 2006.

19. Wolfgang Reisig. Petri nets in software engineering. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Applications and Relationships to Other Models
of Concurrency, volume 255 of Lecture Notes in Computer Science, pages 62–96.
Springer, 1987.

20. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

21. Karsten Schmidt. LoLA: A Low Level Analyser. In Mogens Nielsen and Dan
Simpson, editors, Application and Theory of Petri Nets 2000: 21st International
Conference, ICATPN 2000, Aarhus, Denmark, Proceedings, volume 1825 of Lecture
Notes in Computer Science, pages 465–474. Springer-Verlag, June 2000.

22. Wil M. P. van der Aalst. Verification of workflow nets. In Pierre Azéma and
Gianfranco Balbo, editors, ICATPN, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer, 1997.

23. Thomas Wagner. Prototypische Realisierung einer Integration von Agenten und
Workflows. Diploma thesis, University of Hamburg, Department of Informatics,
Vogt-Kölln Str. 30, D-22527 Hamburg, 2009.

24. Karsten Wolf. Does my service have partners? Transactions on Petri Nets and
Other Models of Concurrency, 2:152–171, 2009.

M. Hewelt, T. Wagner, L. Cabac: Integrating Verification into PAOSE 135

Transitions as Transactions ⋆

Shengyuan Wang, Weiyi Wu, Yao Zhang, and Yuan Dong

Department of Computer Science and Technology
Tsinghua University, Beijing, 100084, China

{wwssyy}@tsinghua.edu.cn
http://soft.cs.tsinghua.edu.cn/~wang

Abstract. As newly developed transactional memory technology has
received significant attention as a way to dramatically simplify shared-
memory concurrent programming, user-level transactional concurrent
programming models have become a very interesting topic in the pro-
gramming community. However, the fact is that, in existing transactional
concurrent programming models, user-level mechanisms have not been
well developed. The dilemma is how to make a balance between the
performance and correctness of a program. Explicit concurrency among
cooperative transactions can undoubtedly decrease the rate of conflicts
and improve the performance, but it is harmful to the correctness. In this
paper, a transactional concurrent programming approach, based on Petri
nets, is presented, which can easily specify concurrency among transac-
tions and do not aggravate programmers remarkably in writing correct
transactional concurrent programs. In this approach, a special Petri net
system with transition markings is developed. Although such a Petri
net system is not defined conventionally, it is shown that its behavior
can be simulated through a conventional net, so existing analysis and
verification approaches for usual Petri nets can be applied indirectly.

Key words: Concurrent Programming; Transactional Memory; Petri Nets

1 Introduction

Transactional memory mechanism has recently received significant attention as a
way to dramatically simplify memory-sharing concurrent programming, in which
mutual exclusion and synchronization can be constructed without using any locks
[1]. For convenience,a concurrent programming model based on transactional
memory mechanism is called a transactional concurrent programming model in
this paper.

In existing user-level transactional concurrent programming models, there
are two major solutions. One of them is to use directly some API’s for transac-
tional memory mechanism, which may be implemented by hardware, software or
hybrid. For example, programmers can write transactional concurrent programs
⋆ Supported by the National Natural Science Foundation of China under grant No.

90818019

in Java together with the library DSTM2 [2], or in C together with the library
TL2-x86 [3]. The advantage of this solution is that one can use existing com-
mon languages without changing their compilers, but programmers have to use
non-structural library functions carefully.

Another solution is to extend conventional programming languages with some
transactional features, such as atomic statement-blocks, as in some new lan-
guages Fortress [4], X10 [5], Chapel [6], etc. In this solution, it is easier for
programmers to write correct transactional concurrent programs, however, an
appropriate compiler must be provided.

To develop a user-level transactional concurrent programming mechanisms,
one dilemma is how to make a balance between the performance and correctness
of a program. On the one hand, to write an efficient program in the transac-
tional programming paradigm, it still needs programmers’ wisdom to build the
explicit parallelism among cooperative transactions, in order to decrease the rate
of conflicts. On the other hand, however, explicit parallelism is harmful to the
correctness of a program, while one of the initial intents of the transactional
memory mechanism is to alleviate the burden for a programmer to write con-
current programs.

There have been some contributions in the literature to introduce transac-
tions into existing concurrent programming model. For example, a CCR-based
transactional concurrent programming model was proposed by T. Harris and
K. Fraser [7], and Baek et al extend the API’s of OpenMP [8] to OpenTM [9].
Unfortunately, these approaches still have the usual drawbacks of concurrent
programs, that is, not easy to write and not easy to verify.

As well known, Petri nets [10] are useful tools in the specification and verifi-
cation of concurrent applications. With true concurrency dynamical semantics,
a Petri net system has a good opportunity to become a realistic part of a con-
current program for multi-core or multi-thread architecture. In this paper, we
present informally a transactional concurrent programming mechanism based
on a Petri net, in order to specify concurrency among transactions explicitly
while not to aggravate programmers remarkably in writing correct concurrent
programs.

Fig.1 shows a simple example described in a typical transactional concurrent
program structure, where an atomic statement-block declares a transactional
region, and fork1, fork2, fork3 and cake_c are shared objects among cooperative
transactions.

In the Petri net system shown in Fig.2, to be explained in more details,
each of the transitions declares a transactional region, and fork1, fork2, fork3
and cake_c are shared objects among three cooperative transactions. Since the
accesses of fork1, fork2 , and fork3 will never conflict, the rate of access conflicts
among transactions is decreased, compared to the program in Fig.1.

Extremely, we can protect all shared objects by the Petri net system, cor-
responding to the so-called conservative concurrency control. However, if the
number of shared objects increases dramatically, the net system may get too big
in size. Fortunately, we can leave some shared objects to be protected by the

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 137

int fork1 = 0, fork2 = 0, fork3 = 0;
int cake_c = 12;

thread ph1:
 while (true) {
 atomic {
 read fork1 ;
 read fork2 ;
 write fork1+1 to fork1 ;
 write fork2+1 to fork2 ;
 }
 }

thread ph2:
 while (true) {
 atomic {
 read fork2 ;
 read fork3 ;
 write fork2+1 to fork2 ;
 write fork3+1 to fork3 ;
 if (fork2 mod 10 == 0) {
 read cake_c ;
 write cake_c-1 to cake_c ;
 }
 }
 }

thread ph3:
 while (true) {
 atomic {
 read fork3 ;
 read fork1 ;
 write fork3+1 to fork3 ;
 write fork1+1 to fork1 ;
 if (fork1 mod 20 == 0) {
 read cake_c ;
 write cake_c-1 to cake_c ;
 }
 }
 }

Fig. 1. A simple example of typical transactional concurrent program structure

transactional memory mechanism, if the probability of access conflicts for those
shared objects is not that big. For example, we have not made the accesses to
cake_c protected by the net system in Fig.2.

We call a shared object to be critical or non-critical according to its probabil-
ity of access conflicts. So in the transactional concurrent programming approach
suggested in this paper, programmers are encouraged to implement the pro-
tection of critical shared objects through Petri net systems, and to leave the
non-critical shared objects to be protected automatically by the transactional
memory system. In the example shown in Fig.1 and Fig.2, the shared object
cake_c is less frequently accessed than fork i’s, hence, it is assumed that fork i’s
be critical shared objects among phi’s, and cake_c be the non-critical shared
object among them.

The Petri net model we use is a special colored Petri net model [11], called
resource nets, which guarantee the access consistency for shared objects. The
semantics for a transactional memory mechanism is inspired by the implemen-
tation of DSTM2 [2].

The rest of the paper is organized as follows. In Section 2, we make some
informal interpretation to the Petri net model, resource nets. Further in Section
3, the behavior simulation of a resource net system is discussed. Then in Section
4, the program model is briefly presented. Section 5 shows a sample user-level
transactional concurrent programming tool, where the concept resource nets is
applied. Finally, Section 6 gives some remarks and the future work.

2 The Net Model

As stated above, a transactional concurrent program can access two classes of
shared objects, critical or non-critical ones. We use resource variables to access
critical shared objects, and global variables to access non-critical shared objects.
In the following, the set of resource variables is denoted by VR, and the set of
global variables is denoted by VT .

A resource net system is a special colored Petri net system N = (P,T,A,W,m0,MF),
where

138 PNSE’11 – Petri Nets and Software Engineering

�1: read fork1 ;

 read fork2 ;

 write fork1+1 to fork1 ;

 write fork2+1 to fork2

fk1

�2: read fork2 ;

 read fork3 ;

 write fork2+1 to fork2 ;

 write fork3+1 to fork3 ;

 if (fork2 mod 10 == 0) {

 read cake_c ;

 write cake_c-1 to cake_c ;

 }

�3: read fork3 ;

 read fork1 ;

 write fork3+1 to fork3 ;

 write fork1+1 to fork1 ;

 if (fork1 mod 20 == 0) {

 read cake_c ;

 write cake_c-1 to cake_c ;

 }

fk2

fk3

ph1

ph2 ph3

Memory

cake_c

······

······

fork1

fork2

fork3

······cake_c : 12

MT

fork1 : 0

fork2 : 0

fork3 : 0

MR
Stack

Heap

Fig. 2. A resource net system for Dining Philosophers

– P ⊆ {ρk | k ∈ N}, and T ⊆ {(τk, Ik) | k ∈ N} are the set of places and the
set of transitions respectively.

– A = (P× T) ∪ (T× P) is the set of arcs.
– W : A → {S | S ⊆ VR} is the inscription function.
– m0 ∈ Marking is the initial marking, where Marking =

{m | m : (P ∪ T) → {S | S ⊆ VR}}.
– MF ⊆ Marking is the set of final markings.

A resource net system N = (P,T,A,W,m0,MF) has the following features:

– For each transition (τk, Ik) ∈ T, a command sequence Ik is attached. When a
transition (τk, Ik) is fired, it starts a transaction for the command sequence
Ik. A command in Ik can access shared variables in VR∪VT , and the variables
local to τk.

– A transition can hold a token while its transaction is executing, and the
token does not return to the net system until the computation is committed
or aborted. So we extend the definition of marking with transition markings.

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 139

– It is possible that MF is empty, which is the usual case in conventional Petri
net systems..

It is worth to noting that variables in VR should be disjoined in locations
with each other, which are usually implemented by the compiler.

2.1 An Example

Example 1 Fig.2 shows a transactional concurrent program with VR = { fork1,
fork2,fork3} and VT = { cake_c }. The resource net system N = (P,T,A,W,m0,MF),
where

– P = {fk1, fk2, fk3}.
– T = {tr1, tr2, tr3}, where tr1 = (ph1, I1), tr2 = (ph2, I2), and tr3 =

(ph3, I3), where I1, I2 and I3 are command sequences attached to transi-
tions ph1, ph2, and ph3 respectively, as is illustrated in Fig.2.

– A = {(tr1,fk1), (tr1,fk2), (tr2,fk2), (tr2,fk3), (tr3,fk3), (tr3,fk1), (fk1,tr1),
(fk1, tr3), (fk2, tr2), (fk2, tr1), (fk3, tr3), (fk3, tr2)}.

– W is defined by:
W (fk1, tr1) = W (tr1, fk1) = W (fk1, tr3) = W (tr3, fk1) = {fork1},W (fk2, tr2) =
W (tr2, fk2) = W (fk2, tr1) = W (tr1, fk2) = {fork2},W (fk3, tr2) = W (tr2, fk3) =
W (fk3, tr3) = W (tr3, fk3) = {fork3}.

– m0 ∈ Marking is defined by:
m0(fk1) = {fork1}, m0(fk2) = {fork2}, m0(fk3) = {fork3}, and m0(τ) = ∅
for τ = tr1, tr2, tr3.

– MF = ∅.

2.2 Well-Formed Resource Net Systems

A resource net system N = (P,T,A,W,m0,MF) is well-formed, if

– P ∩ T = ∅.
– ∀ρ ∈ P.∀v1, v2 ∈ m0(ρ).(v1 6= v2), that is, at the initial marking, all tokens

owned by a place are corresponding to different resource variables.
– ∀ρ1, ρ2 ∈ P.∀v1∀v2.(ρ1 6= ρ2∧v1 ∈ m0(ρ1)∧v2 ∈ m0(ρ2) → v1 6= v2), that is,

at the initial marking, tokens owned by different places have disjoint resource
variables.

– ∀τ ∈ T.(m0(τ) = ∅), that is, at the initial marking, every transition contains
no tokens.

– ∀m ∈ MF .∀τ ∈ T.(m(τ) = ∅), that is, at each of final markings, every
transition will not contain any tokens.

– ∀τ ∈ T.∀ρ1, ρ2 ∈ •τ.∀v1∀v2.(ρ1 6= ρ2 ∧ v1 ∈ W (τ, ρ1)∧ v2 ∈ W (τ, ρ2) → v1 6=
v2), that is, all sets of resource variables on the incoming arcs of the same
transition are disjoined with each other.

140 PNSE’11 – Petri Nets and Software Engineering

– ∀τ ∈ T.∀ρ1, ρ2 ∈ τ • .∀v1∀v2.(ρ1 6= ρ2 ∧ v1 ∈ W (ρ1, τ) ∧ v2 ∈ W (ρ2, τ) →
v1 6= v2), that is, all sets of memory blocks on the outgoing arcs of the same
transition are disjoined with each other.

– ∀τ ∈ T.∀ρ ∈ τ • .(W (τ, ρ) ⊆ ⋃
ρ′∈•τ (W ((ρ′, τ))), that is, no extra shared

objects be produced within a transaction associated to each of transitions.
For simplification,in this paper, we don’t consider the dynamic memory al-
location for a shared object within a transaction.

In the above,the pre-set and post-set of a transition τ ∈ T or a place ρ ∈ P
are used, which are defined as usual: •τ = {ρ | (ρ, τ) ∈ A}, τ• = {ρ | (τ, ρ) ∈ A},
•ρ = {τ | (τ, ρ) ∈ A}, and ρ• = {τ | (ρ, τ) ∈ A}.

Example 2 It is easy to show that the resource net system in Example 1 is
well-formed.

2.3 Execution Semantics

To show the execution semantics of a resource net system, we define TranState =
{blocked, active, aborted, committed }, consisting of 4 transaction states of a transition.
At the initial marking, every transition has the state blocked.

Entering a Transition Whenever a transition τ in the resource net system is in
state blocked, and the firing condition for τ is satisfied under the current marking m,
that is, ∀ρ ∈ •τ.(m(ρ) ⊇ W (ρ, τ)), and in the same time, the current marking is not a
final state, that is, m /∈ MF , the system can enter the transition such that a
transaction is started and the transition gets to hold tokens. When it occurs, the
state of the τ will be active.

Execution of a Command Sequence Whenever a transition τ in the resource
net system is in state active, and the next command in its remained command
sequence is c, the transition can make a progress by executing the command c. We
need several separate rules respectively for several cases:

(1) If c reads or writes to a global variable which has been written most recently
by some other transition but τ , a read/write confliction occurs, and τ will be in the
state aborted.

(2) If the execution of c has no read/write confliction and c has no write operation
to any global variables, the transition will keep in state active.

(3) If the execution of c has no read/write confliction and c has a write operation
to some global variable x, the transition will keep in state active, while the system
will record τ to be the transition that most recently written to x.

Ready to Commit a Transaction Whenever a transition τ in the resource net
system is in state active, and there is no next command in its remained command
sequence, the system can make a progress to change the state of τ from active to
committed, meaning that the transaction associated to τ is ready to commit.

Committing a Transaction Whenever a transition τ in the resource net system is
in state committed, the system can make a progress to commit the transaction
associated to τ , changing the state of τ from committed to blocked.

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 141

Aborting a Transaction Whenever a transition τ in the resource net system is in
state aborted, the system can make a progress to return tokens to places in the pre-set
of τ , changing the state of τ from aborted to blocked.

Let N = (P,T,A,W,m0,MF) be a well-formed resource net system, it is easy to
show that for any reachable marking m from the initial marking m0, the following two
properties are satisfied

– ∀x ∈ P ∪ T.∀v1, v2 ∈ m(x).(v1 6= v2),that is, at the marking m, all tokens owned
by a place or a transition are corresponding to different resource variables.

– ∀x1, x2 ∈ P ∪ T.∀v1∀v2.(x1 6= x2 ∧ v1 ∈ m(x1) ∧ v2 ∈ m(x2) → v1 6= v2), that is,
at the marking m, all tokens owned by different places or transitions have disjoint
resource variables.

Example 3 Since the resource net system N = (P,T,A,W,m0,MF) in Example 1
is well-formed. So the above two properties will keep in a well-formed program state
during its execution.

3 Behavior Simulation of a Resource Net System

In this section, it will be shown that a well-formed resource net system N can be
reduced to an usual colored Petri net system desugar(N) so that the behavior of N
can be simulated by desugar(N), which can be analyzed and verified by using existing
approaches in the Petri net community.

The transformation from N to desugar(N) is called desugaring. Before and after
desugaring, the change of net structure can be illustrated by Fig.3.

……

……

(a)

……

……

(b)

enter

m m

m …… m

commit

rollback

Fig. 3. Net structure before and after desugaring

Example 4 Consider the well-formed resource net system N = (P,T,A,W,m0,MF)
in Example 1. desugar(N) = (P′,T′,A′,W ′,m′

0,M
′
F) can be depicted in Fig.4, where

142 PNSE’11 – Petri Nets and Software Engineering

fk1fk2

fk3

ph1enter

ph1

ph1rollback

ph1commit

ph2enter

ph2

ph2rollback

ph2commit ph3commit

ph3

ph3rollback

ph3enter

Fig. 4. Example of a desugaring net system

– P′ = {fk1, fk2, fk3, ρph1, ρph2, ρph3}.
– T′ = {ph1enter , ph2enter , ph3enter, ..., ph3commit}
– A′ = {(ph1enter , ρph1), (ph2enter , ρph2), (ph3enter , ρph3),

...,
(fk1, ph1enter), (fk1, ph3enter), ...,
(ph1rollback, fk1), (ph3rollback, fk1), ...,
(ph1commit, fk1), (ph3commit, fk1), ...,
..., (ph3commit, fk3)}.

– The definition of W ′ is illustrated in Table 1 (partly).
– m′

0 is defined by m′
0(ρph1) = m′

0(ρph2) = m′
0(ρph3) = ∅, m′

0(fk1) = {{fork1}},
m′

0(fk2) = {{fork2}}, and m′
0(fk3) = {{fork3}}.

– M ′
F = ∅.

It is not difficult to establish a behavior simulation relation between N and desugar(N),
and show that many behavior properties, including deadlock-freeness, for N can be
verified indirectly by verifying those for desugar(N). For example, it is easy to verify
that the usual Petri net system desugar(N) in Example 4 is deadlock-free, so we can
conclude that the resource net system N is also deadlock-free.

It is worth to noting that the execution semantics can guarantee behaviour consis-
tence between N and desugar(N). For every transition τ in N and ρτ in desugar(N)
as illustrated in Fig.3, we have

– If τ is in state blocked, there no token in ρτ , and τenter is enabled. If τenter fires, τ
will be in state active at the same time.

– If τ is in state active, nether τcommit or τrollback will fire though there exist tokens
in ρτ .

– If τ is in state committed, τcommit is enabled.
– If τ is in state aborted, τrollback is enabled.
– τ is in state active, committed, or aborted, iff there no token in ρτ .

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 143

Table 1. W ′ : A′ → {L | L ⊆ 2Label}

if a = then W ′(a) =
(ph1enter , ρph1) {{fork1}, {fork2}}
(ph2enter , ρph2) {{fork2}, {fork3}}
(ph3enter , ρph3) {{fork3}, {fork1}}
... ...
(fk1, ph1enter) {{fork1}}
(fk1, ph3enter) {{fork1}}
... ...
(ph1rollback, fk1) {{fork1}}
(ph3rollback, fk1) {{fork1}}
... ...
(ph1commit, fk1) {{fork1}}
(ph3commit, fk1) {{fork1}}
... ...
(ph3commit, fk3) {{fork3}}

For the sake of limited space, in this paper, we have not formally defined the
desugaring and the behavior simulation relation.

4 The Program Model

In the transactional concurrent programming approach of this paper, a program con-
sists of a set of Petri net systems, which are protected parts in the system, and a set of
unprotected threads which contains an initial thread identified root and other unpro-
tected threads. Resource variables can only be accessed within protected parts. At the
beginning, the thread root is initialized to execute at the level which we call top level.

A set of Petri net systems can spawn outside a Petri net system, initialized with
new allocated resource variables or their references. When a transition in a Petri net
system is fired, it becomes a (transactional) transition thread, which will eventually
commit, or rollback due to conflicts to access the shared memory.

An unprotected thread except for the thread root can be spawned outside a Petri
net system.

The program ends if all the Petri net systems achieve one of their final states, and
in the same time all the unprotected threads execute to the end.

5 A sample user-level transactional concurrent
programming tool

A sample user-level transactional concurrent programming tool has been developing in
our lab, based on available software sources, DSTM2 [2], PNK [13] and GJC [14]. In
the programming model of this sample programming tool, a program consists of a set
of Petri net systems, corresponding to resource net systems in this paper, and other
part written in Java Language.

A simple visual IDE for this programming model has been developing.

144 PNSE’11 – Petri Nets and Software Engineering

Fig. 5. A basic editing view

Editors In the IDE, each of the elements of a program can be visually edited. Fig.5
shows a basic editing view. A editor for a Petri net system is similar to that provided
in PNK source, but some modifications to add code editing area, to make the code
editing to be the main input area, and to integrate with associate compilation
operations.

Fig. 6. A visual Petri net system

A visually edited Petri net system will be automatically translated to some code
to be fed to the compiler. It actually completes a class inherited from a class PetriNet
for the programmer, where PetriNet is the class encapsulated for a special Petri net

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 145

virtual machine. For example, for the Petri net system in Fig.6, the result class will be
the one in Fig.7.

package base_directory.pnml.compile;

public class PNTest extends PetriNet{

 public PNTest(Object objectSource) {

 super(objectSource);

 this.AddTransition("t1","code", "f1");

 this.AddTransition("t2","code", "f2");

 this.AddTransition("t3","code", "f3");

 this.AddPlace("p1", "a,b", "marking");

 this.AddPlace("p2", "", "marking");

 this.AddArc("p1", "t1", "a", "inscription");

 this.AddArc("t1", "p2", "a", "inscription");

 this.AddArc("p1", "t2", "b", "inscription");

 this.AddArc("t2", "p2", "b", "inscription");

 this.AddArc("p2", "t3", "a,b", "inscription");

 }

}

Fig. 7. Class for a Petri net system

Associate Compilation The associate compilation makes the static check of a
Petri net system, then associates its code with all other parts of opened codes and
compiles them together with each other. At the early time of the compilation, the
Petri net system is translated into its internal form as the Petri net virtual machine
instructions, which then is added to its specific class.

Variables corresponding to transaction memory blocks and resource memory blocks
are declared with the modifiers global and resource respectively. Besides, the code for
each transition of a Petri net system is defined by a specific member function with the
modifier petrinet. In the associate compilation, the lexical, syntactical, and semantical
analysis associate to the modifiers global, resource and petrinet has been processed
carefully.

The compiler has been implemented based on GJC [14], a open Java compiler
released by Sun, and kept the original logic of GJC unchanged.

The statical semantic check for a Petri net system is corresponding to the definition
of a well-formed resource net system in Section 2.2.

STM Integration The transactional memory support is based on DSTM2 [2], with
each piece of transition code automatically trisected by invoking provided STM APIs.
Hence the variable with modifier Global can be protected by the transactional
memory system.

In order to integrate DSTM2’s API, we need to make some modification to GJC.
We need to change the type of every variable with modifier Global to a wrapper class
with a factory. Also we need to change every reference of those variables and every
left-value consisted of those variables to corresponding DSTM2’s APIs.

146 PNSE’11 – Petri Nets and Software Engineering

Fig.8 illustrates how to transact a global variable in our implementation. Currently
we only support basic types or simple “copyable” types.

@atomic interface _T {
T getValue ();
void setValue (T value);

}
Factory<_T> factory_T =

Thread.makeFactory(_T.class);
global T a; _T _a = factory_T.create();
a = x; _a.setValue(x);
x = a; x = _a.getValue();

Fig. 8. Transactional global variables

Petri Net Virtual Machine As stated above, a Petri net system is finally
translated to some class inherited from a class PetriNet, which encapsulates interfaces
for a special Petri net virtual machine. The Petri net virtual machine is now simply
designed with the following instructions:

– AddTransition (name,code)
– AddPlace (name,resource)
– AddArc (Source, Target, Inscription)
– Start ()
– Join ()

where AddTransition, AddPlace, and AddArc are used to construct a Petri net
system, and Start and Join used for scheduling the execution of a Petri net system.

Fig.9 shows an example to start the Petri net system defined in Fig.6 or Fig.7. One
possible execution result will be "a=1 a=1 b=3", and another possible result is "a=0
a=1 b=3", as is illustrated in Fig.10.

Fig.11 and Fig.12 illustrate the integration of a simple Petri net transition simulator
and DSTM routine. The left routine in Fig.11 simulate a Petri net transition to do
something, and the right part is the DSTM routine to do the same task. Fig. 12
integrates the functions of two routines in Fig.11, getting a so-called PNTM routine.

The Petri net virtual machine can be implemented on any architecture you like,
especially, it will be helpful if the target architecture can efficiently support concurrent
programming, such as a CMP system. Until now, we have just implemented the Petri
net virtual machine based on JVM.

The latest stable version of source code, in which the invoking of STM API’s in
DSTM2 has not been packaged, can be downloaded at the URL:
http://soft.cs.tsinghua.edu.cn/~wang/projects/NSFC90818019/software/pntm.rar

We are making a research plan to extend the virtual machine and its implementation
based on some reconfigurable simulator for multi-core architectures such that some
basic performance analysis could be made.

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 147

package base_directory.pnml.compile;

public class Test {

 private resource int a =0;

 private resource int b =0;

 public static void main(String[] args) {

 Test t= new Test();

 new PNTest(t).start();

 }

 public petrinet void f1() {

 a=1;

 }

 public petrinet void f2() {

 System.out.print("a="+a);

 b=3;

 }

 public petrinet void f3() {

 System.out.print("a="+a);

 System.out.print("b="+b);

 a=4;

 b=5;

 }

}

Fig. 9. Example for starting a Petri net system

Fig. 10. Two different executions on the simple virtual machine

6 Remarks and Future Work

The paper presents an approach to integrate a Petri net system with a transitional
memory mechanism, which has currently been applied to the implementation of a user-
level transactional concurrent programming tool in our lab. There is few formalism
to play such a role as we have known so far. There exist researches based on Petri
nets to model atomic or transactional threads, however the net system is not a part
of the program. For example, an approach to check causal atomicity is proposed by
modeling programs using Petri Nets [12]. At some extent, concurrent programming
models based on Petri nets, such as OPN [15], CLOWN [16], COO [17], CO-OPN/2
[18], and Elementary Object Nets [19] may be extended to support various transaction
semantics with the conservative concurrency control.

We observed that the integration of Petri nets with transactional memory can bring
benefits to both side, which is the motivation of the paper. On the one hand, with

148 PNSE’11 – Petri Nets and Software Engineering

TestAndConsumeToken();
DoThings();
ProduceToken();

Thread.onCommit(new Runnable() {
public void run () {
Commit();

}
});
Thread.onAbort(new Runnable() {

public void run () {
Abort();

}
});
Thread.doIt(new Callable<Void>() {

public Void call ()
throws Exception {

DoThings();
}

});
PN-Transition routine DSTM routine

Fig. 11. Petri net transition and DSTM routines

Thread.onCommit(new Runnable() {
public void run () {
ProduceToken();

}
});
Thread.onAbort(new Runnable() {
public void run () {
ReturnToken();

}
});
TestAndConsumeToken();
Thread.doIt(new Callable<Void>() {
public Void call ()

throws Exception {
DoThings();

}
});

Fig. 12. PNTM routine

transactional memory, a finer granularity of concurrency can be achieved in a Petri
net system, and the scale of the net model can be controlled flexibly. On the other
hand, with a Petri net system, the concurrency among cooperative transactions can be
built explicitly, which can undoubtedly decrease the rate of conflicts and improve the
performance, while the analysis and verification capability of a Petri net model can be
inherited.

The main idea in a resource net system, the net system presented in the paper,
is to classify shared resources in two classes: (1) resources such that the access policy
is driven by the net structure, so that mutual exclusion is guaranteed; (2) resources

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 149

whose access policy is driven by a transactional memory model, with possible conflicts,
resolved by a commit-rollback protocol.

That is, our approach advocates the methodology that critical objects shared among
concurrent transactions will be protected through a resource net system, while non-
critical shared objects be left protected automatically by the transactional memory
system. Thus the net system can be designed flexibly to keep a moderate size and in a
finer granularity than usual net system.

It is shown that the behavior of a well-formed resource net system can be simu-
lated by its desugar net system, which can be analyzed and verified by using existing
approaches in the Petri net community. Behavior properties for a well-formed resource
net system, such as deadlock-freeness, can be verified indirectly by verifying those for
its desugaring net system. For example, INA tool [20] can be directly integrated into
our programming tool being developed, as has been done in PNK.

A practical user-level transactional concurrent programming tool, based on DSTM2
[2], PNK [13] and GJC [14], has been developing in our lab. The version so far is not
suitable to make a performance analysis because the target virtual machine on which a
program with Petri net structures runs is implemented simply based on JVM. We are
making a plan to extend the virtual machine and its implementation such that some
basic performance analysis could be made.

Certainly, the approach could be extended to other formalisms as well. Furthermore,
how to decide critical or non-critical shared objects, we believe, would become an
interesting area in software design methodology.

References

1. Tim Harris, et al., Transactional Memory: An Overview, IEEE Micro, vol. 27, no.
3, Pages 8-29, 2007.

2. Maurice Herlihy, Victor Luchangco, Mark Moir, A Flexible Framework for Imple-
menting Software Transactional Memory, In Preceedings of OOPSLA’06, Pages
253-262, 2006.

3. TL2-x86, Stanford Transactional Applications for Multi-Processing,
http://stamp.stanford.edu/.

4. E. Allen et al., The Fortress Language Specification, Sun Microsystems, 2005.
5. P. Charles et al, X10: An Object-Oriented Approach to Non-Uniform Cluster Com-

puting, Proc. 20th Ann. ACM SIGPLAN Conf Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA05), ACM Press, pp. 519-538,
2005.

6. Chapel Specification 0.4, Cray Inc., 2005; http://chapel.cs.washington.edu/Specification.pdf.
7. Tim Harris, Keir Fraser, Language Support for Lightweight Transactions, OOP-

SLA’03, October 26-30, 2003.
8. The OpenMP API specification for parallel programming. URL:

http://openmp.org.
9. Baek W., Minh C. C., Trautmann M., Kozyrakis C., and Olukotun K., The

OpenTM Transactional Application Programming Interface, In PACT’07: Proceed-
ings of the 16th international conference on Parallel architectures and compilation
techniques, Washington, DC, USA: IEEE Computer Society, pp. 376-387, 2007.

10. W. Reisig, Petri Nets, EATCS Monagraphs on Theoretical Computer Science,
Springer Verlag, 1985.

150 PNSE’11 – Petri Nets and Software Engineering

11. K.Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume 1, EATCS Monographs in Computer Science, Springer verlag, 1992.

12. Azadeh Farzan, P. Madhusudan,Causal Atomicity. In Proceedings of Computer
Aided Verification (CAV) 2006, Lecture Notes in Computer Science, volume 4144:
315-328, 2006.

13. Ekkart Kindler, Michael Weber, The Petri Net Kernel: An infrastructure for build-
ing Petri net tools, International Journal on Software Tools for Technology Transfer
(STTT), Vol 3, No.: 486-497, 2001. PNK available at : http://www2.informatik.hu-
berlin.de/top/pnk/.

14. GJC available at : http://www.sun.com/software/communitysource/j2se
/java2/download.xml

15. C.A. Lakos, Object-Oriented Modelling with Object Petri Nets, Concurrent
Object-Oriented Programming and Petri Nets, G. Agha, F.D. Cindio, and G.
Rozenberg (eds.), Lecture Notes in Computer Science 2001, Springer-Verlag, pages
1-37, 2001.

16. E.Batiston, A.Chizzoni, Fiorella De Cindo, CLOWN as a Testbed for Concurrent
Object-Oriented Concepts, Concurrent Object-Oriented Programming and Petri
Nets, G. Agha, F.D. Cindio, and G. Rozenberg (eds.), Lecture Notes in Computer
Science 2001, Springer-Verlag, pages 131-163, 2001.

17. C.Sibertin-Blanc, CoOperative Objects: Principles, Use and Implementation, Con-
current Object-Oriented Programming and Petri Nets, G. Agha, F.D. Cindio, and
G. Rozenberg (eds.), Lecture Notes in Computer Science 2001, Springer-Verlag,
pages 216-246, 2001.

18. O. Biberstein, D. Buchs, N. Guelfi, Object-Oriented Nets with Algebraic Speci-
fications: The CO-OPN/2 Formalism, Concurrent Object-Oriented Programming
and Petri Nets, G. Agha, F.D. Cindio, and G. Rozenberg (eds.), Lecture Notes in
Computer Science 2001, Springer-Verlag, pages 73-130, 2001.

19. R.Valk. Petri Nets as Token Objects An Introduction to Elementary Object Nets.
Proceedings of 19th International Conference on the Application and Theory of
Petri Nets, LNCS 1420, Springer-Verlag, 1998.

20. INA:Integrated Net Analyzer, at http://www.informatik.hu-
berlin.de/lehrstuehle/automaten/ina.

S. Wang, W. Wu, Y. Zhang and Y. Dong: Transitions as Transactions 151

A Component Framework where Port
Compatibility Implies Weak Termination

Debjyoti Bera, Kees M. van Hee, Michiel van Osch, and
Jan Martijn van der Werf

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
{d.bera, k.m.v.hee, m.p.w.j.van.osch, j.m.e.m.v.d.werf}@tue.nl

Abstract. The design and verification of an asynchronous communi-
cating system can be very complex. In this paper we focus on weak
termination: in each reachable state, the system has the option to even-
tually terminate. We present a component framework and construction
method that guarantees weak termination. In the framework, commu-
nication between components is modeled by portnets, a special class of
workflow nets. A basic component defines the orchestration of the port-
nets. For weak termination, the orchestration should accord to each of
the portnets. A composite component is built from basic components
that offer some service via a portnet. We provide sufficient conditions
to guarantee weak termination for composite components. Furthermore,
we present a refinement-based construction procedure to derive a weakly
terminating composite from an architectural diagram of the system.

1 Introduction

The class of asynchronous communicating systems encompasses a wide range
of software systems that include information systems, embedded systems, grid
computing systems, etc. The distributed nature and growing complexity of these
systems warrant the need for a component based development (CBD) approach
with support for formal analysis techniques. The central idea in the design of such
systems involves the construction of complex systems by assembling components
while guaranteeing certain properties.

Over the past years, different formal models supporting component based
development have been proposed, like Cadena [8] and SaveCCM [5]. Many of
these techniques provide a model to specify the components and their compo-
sition while relying on state space based explorations to verify the correctness
of the design. State space based explorations are generally time consuming and
do not scale well to the complexities of real world models. For this reason we
construct a framework to guarantee correctness properties by construction. We
focus on one property: weak termination.

The weak termination property states that in each reachable state of the
system, the system always has the possibility to reach a final state. General-
ized soundness [10] is a generalization of weak termination for workflow nets.

A class of generalized sound workflow nets is the class of ST-nets [10] which
are constructed by successive refinements of state machines and acyclic marked
graphs [6].

Components are loosely coupled. As a consequence, their composition in-
troduces a high degree of concurrency, and thus a state space explosion. In [2]
a sufficient condition is presented to pairwise verify weak termination for tree
structured compositions. For a subclass of compositions of pairs of components,
called ATIS-nets, this condition is implied by their structure [11]. ATIS-nets are
constructed from pairs of acyclic marked graphs and isomorphic state machines,
and the simultaneous refinement of pairs of places [15].

In this paper, we present a component framework to construct a network of
asynchronously communicating components that guarantees weak termination.
The framework supports a best practice in communication protocol design: com-
munication between two components is first modeled as a state machine. Then,
each transition is assigned to one of the components, such that if any two tran-
sitions are in conflict, these transitions are designated to the same component.
Then, the state machine is duplicated for each of the components. If a transition
is assigned to that component, it sends a message; the corresponding transition
of the other component receives this message. Such a net is called a portnet. In
this way, a component consists of a set of portnets defining its behavior with
the environment. A component needs to orchestrate all its portnets, such that
for each component it communicates with, it acts as the corresponding portnet.
This requirement is similar to the condition imposed by choreography standards
like WS-CDL [12]. A Component may be either basic or composite. A basic com-
ponent provides a service via a portnet. In order to do so, it consumes from other
components. In a composition, we allow more than one component to consume
a service from another component. Such a composition is a directed graph with
edges representing dependency relationships between basic components. If the
composition is acyclic, it is a composite component.

The orchestration of a component may nest portnets. To resemble this in
the architecture, we introduce a simple architectural diagram. Furthermore, we
study the behavior of an arbitrary composition of components and give sufficient
conditions to guarantee weak termination. We also present a construction proce-
dure based on the rules of [14] and [9] to derive a weakly terminating composition
of components.

2 Preliminaries

Let S be a set. We denote the powerset by P(S). A bag over some set S is a
function m : N→ S, where N = {0, 1, 2, . . .} denotes the set of natural numbers.
For s ∈ S, m(s) denotes the number of occurrences of s in m. We enumerate
bags with square brackets, e.g. the bag m = [a2, b3] has an element a occurring
twice and element b occurring thrice and all other elements have multiplicity
zero. The set of all bags over S is denoted by B(S). We write [] for an empty
bag and we use + and − for the sum of two bags and =, <,>,≤,≥ to element

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 153

wise compare bags, which are defined in the standard way. A set can be seen as
a multiset in which each element of the set occurs exactly once.

A Petri net is a tuple N = (P, T, F), where P is the set of places; T is the set
of transitions such that P∩T = ∅ and F is the flow relation F ⊆ (P×T)∪(T×P).
We refer to elements from P ∪ T as nodes and elements from F as arcs. We
denote the places of net N by PN , transitions as TN and similarly for other
elements of the tuple. If the context is clear, we omit N in the subscript. We
define the preset of a node n as •

N n = {m|(m,n) ∈ F} and the postset as
m•N = {n|(m,n) ∈ F}. We lift the notion of a preset and postset to sets:
•
N S = ∪s∈S •

N s and S•N = ∪s∈Ss•N for some set S ⊆ (P ∪ T). If the context is
clear, the subscript is omitted. A path ν in a Petri net N of length n ∈ N is a
function ν : 1, . . . , n→ (P∪T) such that (ν(i), ν(i+1)) ∈ F for all 1 ≤ i < n. We
denote a path of length n by ν = 〈x1, . . . , xn〉 where xi = ν(i) for all q ≤ i ≤ n.
The set of all paths of a Petri net N is called the path space and denoted by
PS(N). Two Petri nets N and M are disjoint if (PN ∪ TN) ∩ (PM ∪ TM) = ∅.
They are isomorphic, denoted by N ∼=ψ M if and only if a bijective function
ψ : PN ∪ TN → PM ∪ TM exists such that PM = ψ(PN), TM = ψ(TN) and
∀(x, y) ∈ FN ⇔ (ψ(x), ψ(y)) ∈ FM . We write N ∼= M if a bijective function ψ
exists such that N ∼=ψ M . The state of a Petri net N = (P, T, F) is determined
by its marking which represents the distribution of tokens over places of the
net. A marking m of a Petri net N is a bag over its places P , i.e., m ∈ B(P). A
transition t ∈ T is enabled in m if and only if •t ≤ m. An enabled transition may
fire which results in a new marking m′ = m− •t+ t•, denoted by m t−→ m′. We
define the set of reachable markings of a Petri net N with marking m inductively
by R(m) = {m} ∪⋃

m
t−→m′ R(m′). We define the net system of a Petri net N

as a 3-tuple M = (N,m0,mf), where m0 ∈ B(PN) is the initial marking and
mf ∈ B(PN) is the final marking. The weak termination property for a net
system M states that ∀m ∈ R(N,m0) : mf ∈ R(N,m), i.e. for all reachable
markings from the initial marking the final marking is reachable. If a marking
does not enable any transition in the net, it is called a dead marking. A place is
called safe in a net system (N,m0,mf) if ∀m ∈ R(N,m0),m(p) ≤ 1. Let N =
(P, T, F) be a Petri net. Net N is a workflow net (WFN) if there exists exactly
one place i ∈ P with •i = ∅, called the initial place, one place f ∈ P with f• = ∅,
called the final place, and all nodes n ∈ P ∪ T are on a path from i to f . The
closure of a workflow net N is a net closure(N) = (P, T ∪{t̄}, F ∪{(t̄, i), (f, t̄)})
such that t̄ /∈ T and •i = f• = {t̄}. A WFN N weakly terminates if its net
system (N, [i], [f]) weakly terminates. Note that in [10] this property is called
1-Soundness. For an overview of soundness, see [1]. Net N is a state machine
(S-net) [6] if and only if ∀t ∈ T : |•t| = |t•| = 1. In a state machine, a place p is
called a split if p• > 1. Likewise, it is a join if •p > 1. Net N is a marked graph
(T-net) [6] if and only if ∀p ∈ P : |•p| = |p•| = 1. A workflow net that is also
a state machine is called an S-WFN. If it is both a workflow net and a marked
graph, it is called a T-WFN. The class of ST-nets were introduced in [10]. These
nets allow both concurrency and choice. Note that the class of T-nets used in
[10] has transitions as the initial and final nodes of the net. We extend such a

154 PNSE’11 – Petri Nets and Software Engineering

net to our definition of a T-WFN by adding one initial and one final place. The
class of ST-nets that we will use in this paper includes the class of S-nets, T-nets
and nets obtained after arbitrary successive refinement of places [10] within an
ST-net by either an S-WFN or a T-WFN.

3 Component Framework

In this section, we introduce a compositional framework to describe component
based systems built of components that are cyclic in their execution and react to
inputs from their environment. The main concept of this framework is the notion
of a component. A component may be basic or composite. A basic component
provides a service and may in turn may use the services offered by other basic
components. The interfaces of a basic component are modeled as a portnet. A
portnet describes a communication protocol. Such a protocol describes all pos-
sible sequences of messages that may be exchanged during a service negotiation.
A basic component is a closed ST-net providing some service by means of a
sell side portnet and consuming services using buy side portnets from compo-
nents that have a compatible sell side portnet. The sell side portnet of a basic
component encapsulates all of its buy side portnets. Furthermore, we allow buy
side portnets to be nested. A composite component is the composition of a set
of pairwise composable basic components such that their dependency graph is
acyclic.

A component is modeled as a Petri net. An activity within such a component
is modeled by a transition. We distinguish between two types of places, namely
internal places and interface places. An interface place is either an input place
for one component or an output place for another component. An input place
has an empty preset and an output place has an empty postset. All other places
of a component are referred to as internal places. Tokens residing at interface
places represent messages, otherwise they are simply state markers. Transitions
are either internal transitions or interface transitions. An internal transition has
no interface places in its preset and postset, whereas an interface transition has
some interface places in its preset (then it is called a receive transition) or its
postset (then it is called a send transition), but never in both.

3.1 Formalization

Our component framework is based on open Petri nets (OPN) which are a sub-
class of classical Petri nets. OPN are ideal to model communicating systems.
This is because they have a distinguished set of interface places that represent
the interfaces of the net. A direct consequence of the interaction of an OPN
with its environment results in tokens being exchanged between these places.
Furthermore, we add structural constraints to derive subclasses of an OPN. A
subworkflow net is a OWN that is a subnet of an OPN.

Definition 1 (Open Petri net, subworkflow net). An open Petri net (OPN)
is defined as N = (P, I,O, T, F, i, f), where (1) P is the set of internal places;

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 155

(2) I is the set of input places with •I = ∅; (3) O is the set of output places
with O• = ∅; (4) T is the set of transitions; (5) the sets P , I, O and T are
pairwise disjoint; (6) i ⊆ P is the set of initial places; (7) f ⊆ P is the set of
final places; (8) ∀t ∈ T : •t ∩ I 6= ∅ ⇒ t• ∩ O = ∅ ∧ t• ∩ O 6= ∅ ⇒ •t ∩ I = ∅;
and ((P ∪ I ∪ O, T, F), i, f) is the net system. We refer to the set I ∪ O as
the interface places of the net. The skeleton of N is a Petri net defined as
skeleton(N) = (P, T, F ′), where F ′ = F ∩ ((P × T) ∪ (T × P)). The skeleton
system is defined as (P, T, F ′, i, f).

If skeleton(N) is a WFN then N is called a open workflow net (OWN). If
skeleton(N) is a S-WFN then N is called a state machine open workflow net
(S-OWN). If skeleton(N) is a T-WFN then N is called a marked graph open
workflow net (T-OWN). If skeleton(N) is a ST-net then N is called a ST open
workflow net (ST-OWN).

Let N be an OPN and M be a OWN. We say that M is a subworkflow
net of N denoted by M v N if and only if PM ⊆ PN , TM ⊆ TN , FM ⊆ FN ,
IM ⊆ IN , OM ⊆ ON , •

N (TM ∪OM ∪ PM \ {iM})∪(TM ∪ IM ∪ PM \ {fM})•N ⊆
(TM ∪ PM ∪ IM ∪OM).

The transitions of an open Petri net are distinguished into three categories
depending on the direction of communication, namely send, receive and internal.
A send transition contains an output place in its postset. A receive transition
has an input place in its preset. A transition that does not send or receive is
called an internal transition.

Definition 2 (Direction of communication). The direction of communica-
tion of a transition with respect to a place in an open Petri net N is a function
λ : T → {send, receive, τ} defined as λ(t) = send ⇔ t• ∩ O 6= ∅ ∧ •t ∩ I = ∅;
λ(t) = receive⇔ •t ∩ I 6= ∅ ∧ t• ∩O = ∅ and λ(t) = τ , otherwise, for all t ∈ T .
We call a transition t ∈ T a communicating transition if and only if λ(t) 6= τ .

The refinement of safe places in a Petri net is a well known refinement step
and has been described in various contexts [10]. We present here the refinement
of a safe place within an OPN by an ST-OWN.

Definition 3 (Place refinement and net reduction). Given an OPN N
and an OWN M such that N and M are disjoint, a safe place p ∈ PN \ {n |
iN (n) = fN (n) = 0} can be refined by M , resulting in an OPN N ′ = N �pM =
(P, I,O, T, F, i, f) with P = (PN \ {p}) ∪ PM , I = IN ∪ IM , O = ON ∪ OM ,
T = TN∪TM , F = (FN \((•p×{p})∪({p}×p•)))∪FM∪(•p×{iM})∪({fM}×p•),
i = iN , f = fN . We define the reduction of net N ′ by the subworkflow net M by
reduce(N ′,M) = N if and only if N ′ = N �pM .

An OPN N is said to be reducible to another open Petri net N ′ if and only
if successive applications of the reduce operation on net N results in the net N ′.
Note that we restrict the definition to reductions only by the class of ST-net,
since this is the inherent structure of all nets in this component framework. Note
that this relation is a preorder.

156 PNSE’11 – Petri Nets and Software Engineering

Definition 4 (Reducible nets). Consider two OPN’s N and N ′. We say N
is reducible to N ′ denoted by N N ′ if and only if N = N ′ ∨ ∃M : M is a
ST-OWN ∧ (M 6= N) ∧ (M v N) ∧ reduce(N,M) N ′.

Unlike in an OPN, interfaces in our component framework are more than just
a set of interface places acting as message buffers. An interface is determined by a
Petri net with a distinguished set of interface places, called the portnet. A portnet
defines the communication protocol which specifies all acceptable sequences of
messages that are permitted to be exchanged over the portnet.

A portnet is an S-OWN with structural constraints on the relation between
transitions and interface places and paths through it. In a portnet, each interface
place is connected to exactly one transition, and each transition is connected to
exactly one interface place. Secondly, a portnet must satisfy the leg property. A
path in a portnet is called a leg if it is a path from a split to a join. We also
consider the initial place as a split and the final place as a join. The leg property
requires every leg in a portnet to have at least two transitions with different
directions of communication. Lastly, a portnet must satisfy the choice property,
which requires all transitions belonging to the postset of a place to have the
same direction of communication.

Definition 5 (Portnet). A portnet C is a S-OWN such that

– ∀t ∈ T : |(•t ∪ t•) ∩ (I ∪O)| = 1;
– ∀x ∈ I ∪O : |•x ∪ x•| = 1;
– (Leg property) ∀β = 〈p1, t1...tn−1, pn〉 ∈ PS(C) : (|p1•| > 1 ∨ p1 = iN) ∧

(|•pn| > 1 ∨ pn = fN) : ∃t, t′ ∈ β : λ(t) 6= λ(t′).
– (Choice property) ∀t1, t2 ∈ T : •t1 ∩ •t2 6= ∅ ⇒ λ(t1) = λ(t2).

We distinguish between two types of portnets: A sell side portnet advertises
a service and needs a startup message and terminates after sending a result
message. A buy side portnet consumes a service by sending a startup message
and terminates after receiving the result message.

Definition 6 (Portnet types). Consider a portnet C. We call Portnet C a sell
side portnet denoted by sell(C) if and only if ∀t ∈ iC• : λ(t) = receive ∧ ∀t ∈
•fC : λ(t) = send and we call Portnet C a buy side portnet denoted by buy(C)
if and only if ∀t ∈ iC• : λ(t) = send ∧ ∀t ∈ •fC : λ(t) = receive.

Note that ¬sell(C)⇔ buy(C). A component is an OPN with a set of portnets.
Every communicating transition in a component belongs to a portnet. Further-
more, every portnet of a component is either already a subworkflow net or there
exists a subworkflow net that can be reduced to the corresponding portnet.

Definition 7 (Component). A component is a pair (N,Γ) where N is an
OPN and Γ is a set of portnets, such that:

– ∀t ∈ TN : λ(t) 6= τ ⇒ ∃C ∈ Γ : t ∈ TC
– ∀C ∈ Γ : ∃N ′ : N ′ is an OWN : N ′ v N ∧N ′ C

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 157

The set of all sell side portnets of a component is defined as: sellside((N,Γ)) =
{C ∈ Γ | sell(C)} and the set of all buy side portnets of a component is defined
as: buyside((N,Γ)) = {C ∈ Γ | buy(C)}.

Lemma 8 (Preservation of weak termination). Consider two OPN’s N
and M such that N M . Then N is weakly terminating if and only if M is
weakly terminating.

Portnets of a component may be nested in each other.

Definition 9 (Nested portnets). Consider a component (N,Γ) and two port-
nets C1, C2 ∈ Γ . We say portnet C2 is nested in portnet C1 denoted by C2CN C1

if and only if ∃M1,M2 : M2 vM1 v N ∧M1 C1 ∧M2 C2.

Two portnets are said to be compatible if their skeletons are isomorphic.
Furthermore, the set of input places of one portnet must match the set of output
places of the other portnet while preserving the relation with their associated
transitions. Note that a portnet is not compatible with itself.

Definition 10 (Compatible portnets). Portnets C1 and C2 are compatible
with respect to some bijective function φ : (PC1

∪ TC1
∪ IC1

∪ OC1
) → (PC2

∪
TC2 ∪ IC2 ∪OC2), denoted by C1 ,φ C2 if and only if :

– skeleton(C1) ∼=φ skeleton(C2),
– OC2

= φ(IC1
), IC2

= φ(OC1
),

– ∀x ∈ IC1 , t ∈ TC1 : (x, t) ∈ FC1 ⇔ (φ(t), φ(x)) ∈ FC2 ,
– ∀x ∈ OC1 , t ∈ TC1 : (t, x) ∈ FC1 ⇔ (φ(x), φ(t)) ∈ FC2

We write C1 , C2 if a bijective function φ exists such that C1 ,φ C2.

Basic components are the building blocks of this component framework. The
Petri net structure of a basic component is modeled as an ST-OWN with a
closure transition. A basic component has one sell side portnet by means of
which it provides a service. The sell side portnet may have zero or more nested
buy side portnets. Furthermore, each interface place belongs to a unique portnet.

Definition 11 (Basic component). A component B = (N,Γ) is a basic com-
ponent if and only if |iN | = |fN | = 1, N is the closure of an ST-OWN and the
following conditions are met:

– ∀x ∈ IN ∪ON ,∃!C ∈ Γ : x ∈ IC ∪OC ;
– ∃C ∈ Γ : iC = iN ∧ fC = fN ∧ sellside(B) = {C}.

Corollary 12. Consider a basic component B = (N,Γ) and a portnet C ∈ Γ :
sell(C). Then N closure(C).

Note that the closure transition allows the basic component to handle more
than one service request. Fig. 1 gives an example of a basic component M =
(N,Γ), where Γ = {S1, B1, B2} and S1 is a sell side portnet. The sell side port-
net has two nested buy side portnets: B1CN S1 and B2CN S1. Net N contains a

158 PNSE’11 – Petri Nets and Software Engineering

Fig. 1. A basic component

subworkflow net with initial place q and final place q′. This subworkflow net can
be reduced by nets B1 and B2. We refer to the resulting net as an orchestration
net. Such a net provides the logic behind the order of invocation of the different
buy side portnets within a basic component.

Two components are said to be composable if and only if the only set of
nodes they share are interface places and if this set is not empty, then either
they have compatible portnets or they have identical buy side portnets. Note
that we require unique sell side portnets.

Definition 13 (Composable components). Two components X = (N,ΓN)
and Y = (M,ΓM) are composable denoted by composable(X,Y) if and only if

– (PN ∪ IN ∪ON ∪ TN) ∩ (PM ∪ IM ∪OM ∪ TM) = (ON ∪ IN) ∩ (OM ∪ IM);
– ∀C1∈ΓN , C2∈ΓM : ((OC2 ∩ IC1) ∪ (OC1 ∩ IC2) 6= ∅ ⇒ C1 , C2) ∧

((IC1 ∩ IC2) ∪ (OC1 ∩OC2) 6= ∅ ⇒ C1
∼= C2 ∧ buy(C1)).

A composition of a set of pairwise composable components is almost a pair-
wise union of the tuples of this set, except that the interface places belonging to
pairs of compatible portnets, now become the internal places of this composition.
Furthermore, the set of portnets of this composition is the set of all incompatible
portnets. We extend the composition operation to portnets by treating portnets
as components. This is possible in the following way: Consider a portnet C, then
this portnet is also a component (C, {C}).
Definition 14 (Composition of components). The composition of a set S
of pairwise composable components is denoted by comp(S) = (N,Γ), where N =
(PN , IN , ON , TN , FN , iN , fN) such that

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 159

Fig. 2. Architecture diagram

– PN = (
⋃

(X,Γ ′)∈S PX) ∪ (
⋃

(X,Γ ′)∈S IX ∩
⋃

(X,Γ ′)∈S OX),
– IN =

⋃
(X,Γ ′)∈S IX \

⋃
(X,Γ ′)∈S OX , ON =

⋃
(X,Γ ′)∈S OX \

⋃
(X,Γ ′)∈S IX ,

– TN =
⋃

(X,Γ ′)∈S TX , FN =
⋃

(X,Γ ′)∈S FX ,
– iN =

⋃
(X,Γ ′)∈S iX , fN =

⋃
(X,Γ ′)∈S fX , and

– Γ = {C ∈ ⋃
(X,Γ ′)∈S Γ

′|∀C ′ ∈ ⋃
(X,Γ ′)∈S Γ

′ : ¬(C , C ′)}.

Corollary 15. The composition of a set of pairwise composable components is
again a component.

Note that the composition of one basic component is in fact the basic component
itself. Furthermore, comp(S1 ∪ S2) 6= comp(S1 ∪ {comp(S2)}), where S1 and S2

are sets of pairwise composable basic components.

3.2 Architectural Diagram

We now present a graphical notation to represent a composition of components
as an architectural diagram of the system. The diagram abstracts away from the
underlying control flow and focuses on the relationships between components and
the relationships between the portnets of a component. Components are depicted
by a rounded rectangle. The portnets of a basic component are represented by
a square. All entities are labeled. The dependency relation between a pair of
portnets belonging to different components is represented by a directed arrow
indicating the direction of communication initiation, i.e. from a buy side portnet
to a sell side portnet. A buy side portnet may have at most one outgoing directed
edge while a sell side portnet may have zero or more incoming directed edges. The
sell side portnet with zero incoming directed edges becomes the portnet of the
composition. The portnets of the composition are represented by extending the
portnet with a dotted line to the boundary of the composition. By the structure
of a component, we know that all the buy side portnets of a basic component
are nested within the sell side portnet. Furthermore, a buy side portnet may
nest one or more buy side portnets. We represent the nesting of portnets by a

160 PNSE’11 – Petri Nets and Software Engineering

dotted directed edge leading from the child to its parent. Note that the Service
Component Architecture assembly diagram [3] notation is similar but does not
consider nested portnets. We present an architecture diagram of a navigation
system in Fig. 2.

4 Behavior

In this section, we study the behavior of a composition of components. In par-
ticular, we are interested in weak termination of components, which we define
on the skeleton system of the component.

Definition 16 (Weak termination of a component). A component N is
weakly terminating if its skeleton system weakly terminates.

To prove weak termination for an arbitrary composition of components we
first show that the composition of a sell side portnet with a set of compatible
buy side portnets is weakly terminating. The crux of the proof relies on both the
leg property and the choice property. These properties ensure that every choice
and loop is properly communicated to the other compatible portnet, and once
the choice to provide a service to a buy side portnet has been made no other
buy side portnet can influence the service negotiation. The proof of the following
theorem can be found in [4].

Theorem 17. Let A,B1, ..., Bk be portnets such that sell(A) and Bi , A for
all 1 ≤ i ≤ k, then comp({closure(A), B1, ..., Bk}) weakly terminates.

Weak termination for an arbitrary composition of portnets is not sufficient
to guarantee weak termination for an arbitrary composition of components. To
guarantee weak termination for a composition of components, we require the
graph of the composition to be acyclic. This is because a cycle indicates a dead-
lock in the composition. In our framework, we call an acyclic composition of
pairwise composable basic components a composite component. Note that we
will use the shorthand D instead of D = (N,Γ), D′ instead of D′ = (N ′, Γ ′)
and so on, to denote a component without explicitly labeling the tuples. We first
introduce the notion of a partner for a buy side portnet in a component, which
is the component that provides the compatible sell side portnet.

Definition 18 (Partner). For a non-empty set S of composable basic compo-
nents, and the set B consisting of all buy-side portnets of the components of S,
we define the function partner : S × B 9 S by ∀D,D′ ∈ S, ∀C ∈ B : D′ =
partner(D,C)⇔ ∃C ′ ∈ Γ ′ : sell(C ′) ∧ C , C ′.

Definition 19 (Acyclic composition, composite component). Consider a
set of S of pairwise composable basic components. Let R ⊆ S×S be the relation
such that ∀D,D′ ∈ S : (D,D′) ∈ R ⇒ ∃C ∈ Γ : D′ = partner(D,C). The
composition is a composite component if and only if the transitive closure R∗ is
irreflexive.

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 161

The result on weakly terminating composition of portnets in conjunction
with Lemma 8 allows us to prove that an arbitrary composite component weakly
terminates. Both the proof and an example of a deadlock in a cyclic composition
can be found in [4].

Theorem 20. A composite component weakly terminates.

5 Construction Method

This section presents a construction method that derives a composition of basic
components from an architectural diagram and ensures that the derived composi-
tion is weakly terminating. The construction method is based on place refinement
and composition as defined in the previous sections.

The construction method starts with an architecture diagram of a composite
component, like the one depicted in Fig. 2. To construct a basic component
we require the three ingredients, namely a sell side portnet, a set of buy side
portnets and a set of orchestration nets (ST-WFN). An orchestration net is
used to elaborate the activities of a basic component by being able to introduce
internal activities, concurrency and choice in a structured way. Furthermore,
the places introduced by an orchestration net, may be refined with buy side
portnets during construction, thereby allowing us to model both the choice of
service invocations and concurrency in service invocations.

First, for each basic component in the diagram, design the sell side portnet.
Next, for each basic component in the diagram, derive all its buy side portnets
from existing compatible sell side portnets. Note that a buy side portnet may
be derived from a sell side portnet by changing the direction of communication
associated with each transition in the corresponding sell side portnet. Lastly, for
each basic component in the diagram, design the necessary orchestration nets
that will be required during the construction.

We may now convert all the sell side portnets into a basic component by
introducing the closure transition. For each basic component, the architecture
diagram gives the order of nesting of its portnets. Using this information, we
may now start designing the control flow of a basic component by successive
refinements of an existing internal place with either an orchestration net or a
buy side portnet, until all the buy side portnets of the basic component have
been added in the right order of nesting and the desired basic component has
been constructed.

Construction method

1. Design an architecture diagram for an acyclic composition of basic compo-
nents using the techniques of Sec. 3.

2. Design all the portnets and orchestration nets that we will need for this
composition.

3. For each node in this architecture diagram select the corresponding sell side
portnet and apply the closure operation.

162 PNSE’11 – Petri Nets and Software Engineering

Fig. 3. Refinement rules to generate portnets and orchestration nets

4. For each basic component, repeat the following steps until in each basic
component all the buy side portnets have been added in the right order of
nesting, and the desired orchestration has been constructed:
(a) If an orchestration needs to be added first, then choose an internal place

and refine with the right orchestration net;
(b) Otherwise, choose an internal place and refine with a buy side portnet

in the order defined by the architectural diagram;
5. Compose the set of basic component using the composition operation.

Theorem 21. The construction method always results in a composite compo-
nent that weakly terminates.

5.1 Construction of Orchestration Nets and Portnets

For the construction of portnets, we extend the Jackson refinement rules R0,
R1, R2, and R3 with interface places as depicted in Fig. 3. Note that rule R0 is
a special case of the refinement rule of Def. 3. Rule R0′ and R0′′ extend rule R0
such that the refined transition can have either the communication direction send
or receive. The extensions of rule R3 maintains the leg property by only adding
loops with different directions of communication. Similarly, Rule R2, which adds
a choice to the net is extended such that the choice property is maintained. Rule
R1 is extended to allow two way communication.

The construction of an orchestration net starts with a single place. By apply-
ing the refinement rules of [9], we obtain larger nets that are guaranteed to be
weakly terminating. We limit ourselves by applying the Jackson refinement rules
R0, R1, R2, R3, R4 such that the result remains an ST-net. The construction of
a portnet starts with the choice of the sell side portnet or buy side portnet. A sell

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 163

side portnet is obtained by the sequence of refinements: R0;R1;R1′. A buy side
portnet is obtained by the sequence of refinements: R0;R1;R1′′. We may now
further elaborate these portnets by arbitrary applications of the refinement rules
R0;R0′, R0;R0′′, R1;R1′, R1;R1′′, R2;R2′, R2;R2′′, R3;R3′, R3;R3′′, while
ensuring that the structure of the portnet remains a S-OWN by not allowing
for place duplication (rule R4). Note that the choice of the place to apply the
refinement sequence R3;R3′ or R3;R3′′ must be such that the newly introduced
legs do not violate the leg property.

Theorem 22. The refinement rules for portnets preserve a portnet.

6 The Control Flow of an Autonomous Mobile Robot

We will model the control flow of the navigation system on a mobile robot.
The software system comprises of four main components: The user interface,
the navigation system, the platform controller and the laser scan controller. The
robot perceives its environment by means of a planar laser scanner. The laser
scan controller provides the latest scan as a service. The platform controller is a
composite component and provides two services (a) to set a desired velocity (b)
queries on the latest odometry. The navigation system is capable of creating a
map of its environment and localizing itself on this map using the current laser
scan and odometry services. Furthermore, the navigation system can accept a
waypoint and generate a sequence of velocity commands that drive the plat-
form to this waypoint while avoiding obstacles. The user interface at the remote
location allows an operator to visualize this map and give waypoint to the navi-
gation system. While a waypoint is in progress an operator receives feedback on
the progress of this goal. Once the robot has reached its waypoint, the operator
is notified. An architecture of the system is presented in Fig. 2.

The navigation system is a composite component comprising of the navi-
gation manager and planning. The latter is again a composite component and
comprises of the global planner, the local planner and the mapping and local-
ization system. The mapping and localization system is capable of generating a
map and localizing itself using the services offered by the laser scan controller
and platform controller. The global planner accepts a map and a waypoint goal
and generates a global plan (trajectory) from the robot’s current location to the
waypoint goal. The local planner accepts a map and a global plan and gener-
ates a collision free sequence of velocity commands that drive the robot to the
desired waypoint goal. The local planner generates these sequence of velocity
commands in a loop until the destination is reached or a valid plan could not
be found. In each cycle, the local planner makes use of the mapping and lo-
calization system to check its current location and generates feedback on the
progress of this goal. If the destination has arrived then this is notified and the
planner terminates. If at any moment, a valid velocity command could not be
found then this situation is notified and the planner terminates. The naviga-
tion manager provides the waypoint navigation as a service to the user interface
by orchestrating the components of the navigation system in the right order.

164 PNSE’11 – Petri Nets and Software Engineering

Fig. 4. Basic component: Navigation Manager

The Fig. 4 presents five portents and one orchestration net. From the archi-
tecture diagram in Fig. 2, we know portnet P5 is nested in P12 and all other
buy side portnets are nested in the sell side portnet P4. We may now apply
the construction method to derive the navigation manager in the following way:
(((closure(P4)�r2 O1)�r4 P11)�r5 P13)�r1 (P12�r3 P5).

7 Conclusions

In this paper, we introduced a compositional component framework and a con-
struction method to design the control flow of a network of components, while
guaranteeing weak termination. The two main concepts of this framework are
portnet and basic component. A portnet models the interface of a basic compo-
nent as a state machine which describes the communication protocol underlying
a service negotiation. A basic component provides a service by orchestrating
its portnets in the right way. The weak termination property was then investi-
gated by first considering compositions of portnets. It turns out that any pair of
compatible portnets that satisfy the leg property and the choice property always
weakly terminate. Furthermore, we prove that an acyclic composition of basic
components also known as a composite component weakly terminates.

In [7, 13], the authors focus on constructing deadlock free systems using la-
beled transition systems, i.e., each component is a state machine, which after
composition guarantee deadlock freedom. On the other hand, Petri nets offer a
natural way to make formal models of the control flow of a software system. The

D. Bera et al.: Framework where Port Compatibility Implies Weak Termination 165

Petri net based construction method provides a structured way to design these
control flows and guarantee weak termination by construction. In this way they
can focus more on the design of each component without having to worry about
deadlocks that could be introduced by a composition of components. The design-
ers of software systems can use the guiding principles defined by the construction
method during system design .

References

1. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, et al. Soundness of
workflow nets: classification, decidability, and analysis. Formal Aspects of Com-
puting, 23(3):333–363, 2011.

2. W.M.P. van der Aalst, K.M. van Hee, P. Massuthe, N. Sidorova, and J.M.E.M. van
der Werf. Compositional Service Trees. In ICATPN 2009, volume 5606 of LNCS,
pages 283–302. Springer, 2009.

3. M. Beisiegel et al. Service Component Architecture - Assembly Model Specifica-
tion, SCA Version 1.00, 2007.

4. D. Bera, K.M. van Hee, M.P.W.J. van Osch, and J.M.E.M van der Werf. A Compo-
nent Framework where Port Compatibility Implies Weak Termination. Technical
Report CSR 11-08, Technische Universiteit Eindhoven, 2011.

5. J. Carlson, J. Hakansson, and P. Pettersson. SaveCCM: An Analysable Component
Model for Real-Time Systems. Electronic Notes in Theoretical Computer Science,
160(1):127 – 140, 2006.

6. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1995.

7. G. Gossler and J. Sifakis. Component-based construction of deadlock-free systems.
In FSTTCS 2003, volume 2914 of LNCS, pages 420–433. Springer, 2003.

8. J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Cadena: An Integrated
Development, Analysis, and Verification Environment for Componentbased Sys-
tems. In ICSE 2003, page 160. IEEE Press, 2003.

9. K.M. van Hee, A.J.H. Hidders, G.J.P.M. Houben, J. Paredaens, and P.A.P. Thiran.
On the relationship between workflow models and document types. Information
Systems, 34(1):178–208, 2009.

10. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of
Workflow Nets in the Stepwise Refinement Approach. In ICATPN 2003, volume
2679 of LNCS, pages 337–356. Springer, 2003.

11. K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf. Construction of asyn-
chronous communicating systems: Weak termination guaranteed! In Software Com-
position, volume 6144 of LNCS, pages 106–121. Springer, 2010.

12. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C.
Barreto. Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/ws-cdl-10/, November 2005.

13. K. Klai, S. Tata, and J. Desel. Symbolic Abstraction and Deadlock-Freeness Ver-
ification of Inter-enterprise Processes. In Business Process Management, volume
5701 of LNCS, pages 294–309. Springer, 2009.

14. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

15. J.M.E.M. van der Werf. Compositional design and verification of component-based
information systems. PhD thesis, Technische Universiteit Eindhoven, 2011.

166 PNSE’11 – Petri Nets and Software Engineering

Improving the Development Tool Chain
in the Context of Petri Net-Based

Software Development

Tobias Betz, Lawrence Cabac, and Matthias Güttler

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{2betz,cabac,3guettle}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI

Abstract. Modern, collaborative software development projects are
highly supported by a variety of tools. Aside from the pure code de-
velopment that is nowadays well supported by integrated development
environments (IDEs) such as Eclipse, also other activities receive increas-
ing attention in the matter of tool support. Recent improvements in tool
support for source code management (SCM), process management and
documentation management are driven by the changing demands of in-
creasing distribution and agility of development projects. Moreover, the
integration of tool support systems into integrated project management
environments (IPMEs) increase the usefulness of each emerging tool sup-
port, especially for agile approaches. The Petri net-based agent-oriented
software engineering (Paose) is highly influenced by agile methods and
combines the agile concepts with aspects from model driven develop-
ment. We have achieved increased efficiency by the adoption of IPMEs
into the Paose development approach. However, the introduced tool set
integration lacks in support for the model driven part of Paose, i.e. the
tool integration for graphical (model-based) source code is missing. In
this work we present an approach for an appropriate tool support of
agile methods and model driven development. As a prototypical imple-
mentation of the concepts we present a Web service-based framework
and plugin-based extension for Redmine as representative of open source
IPMEs, which is currently in use in the context of the Paose approach.

Keywords: Renew, integrated project management, Paose, model-
driven development, Redmine

1 Introduction

The history of software development shows a continuous increase of complexity in
several aspects of the development process [1, p.10]. Furthermore, the increasing
relevance of software in general and the higher demand in quality and speed con-
tribute to the complexity of procedure. In comparison to conventional software

development, today’s modern development requires more flexible approaches to
manage the given circumstances. In fact, project managers have to deal with
distributed teams and software systems, concurrently working developers and
fast and sporadic changes of demands.

Therefore we need even more adequate tools in order to keep the development
process under control and to handle the different requirements in a satisfyingly
and efficient manner. In the usual software development process, there are a lot
of well-established tools in use, such as integrated development environments
(IDEs) to support technical aspects of programming and project management
tools, assisting developers and mainly superintendents in organizational matters.
The centralized or distributed storage of source code is also well supported by
various source code management (SCM) tools such as Subversion1 or Git2.

In contrast to the classical software development, the agent-oriented software
development faces developers and project managers with some new aspects of
tasks and therefore with some new fields to support, possibly even with an ex-
tended tool chain. One main reason for this is the self-organized and autonomous
character of agents, which we also adopted into the organization of the devel-
opment team [4]. This adoption goes well with the agile methods, which highly
influenced the evolution of the Paose approach. Another reason is the model
driven development based on Petri nets. In the Paose approach, we do not only
operate with plain text files as source code, we also work with a graphical repre-
sentation of Petri nets as source code to accomplish our targets of development.
In contrast to the conventional model-driven development, in which the models
are used to generate the executable source code, the Paose approach directly
uses the models (Petri nets) as source code.

With this work we present an approach to improve the developers tool chain
in context of the Petri net-based agent-oriented software development. For that
reason, we advance the development process through adjusted and new tools,
which fill the gap of partially unsupported tasks. Additionally, our focus lies on
the adequate integration of these tools in our existent tool chain to advance the
integrated project management environment (IPME). In Section 2 we investi-
gate the developers’ tasks, especially in context of the agent-oriented and agile
procedure of development. Furthermore, we point out the deficits of the exis-
tent tool chain and additionally work out some possible supporting measures.
We decided to primarily improve the topic of source code management within
the Petri net-based development through an extended tool set. Section 3 de-
scribes these tools with regard to the architecture, realization and integration.
We also present our prototypical implementation, which allows to include visual
representations of any diagram type / net, available in the Renew tool set (see
http://www.renew.de), in an IPME. This includes the simple displaying of di-
agrams / nets as well as the presentation of visual differences between versions
available in the SCM.

1 Apache Subversion, Enterprise-class centralized version control for the masses
(http://subversion.apache.org)

2 Git, distributed version control system (http://git-scm.com)

168 PNSE’11 – Petri Nets and Software Engineering

In the final conclusion we summarize our results of investigation and discuss
the achieved benefits through our enhancement in the development tool chain.

2 Developer Tasks in Context of Paose

The process of software development consists of many different activities and
phases we traverse during the specification, implementation, verification and
deployment of software artifacts [13]. Figure 1 shows the various tasks a developer
has to deal with. Besides the pure writing of source code, there are more tasks
to focus on. Primarily, the definition of development tasks and their timing is
essential concerning the planning and definition of pending work. These activities
are supported by ticketing systems or bug trackers, which are widely applied
in common tool chains of software development projects. Not only the current
implementation phase is supported by tickets, it is also part of the software
artifact specification within the meaning of agile methods.

Figure 1. The developer’s tasks and the supporting tools.

While communication is a prerequisite for the proper planning and coordina-
tion inside the development team3, this activity gets more relevant within dis-
tributed teams and concurrently working developers. The terms self-organization
and responsibility are outstanding in agent-oriented development [4,6], as well
as in applied agile approaches [3]. Regular teamwork is already well supported

3 In this context, we refer to development teams as individuals, who take part in the
process of development and subsumes programmers, managers and contributors to
the project.

T. Betz, L. Cabac, M. Güttler: Improving the Tool Chain for Paose 169

by various communication platforms, but often less efficient than desired, es-
pecially in the context of agent-oriented software development4. Proper change
notification in distributed planning is a complex task, regarding what Petrie et
al. [11] investigated in this matter, and still not satisfactorily solved for mod-
ern, collaborative software development environments. In the context of agent
oriented software development, especially the autonomous and self-organized as-
pect is predominant and consequently communication and coordination within
the team becomes more important.

Furthermore, the source code management plays a significant role sharing
resources within the development team. Regarding textually represented source
code, a wide variety of tools exists to support the developer [9]. We already men-
tioned SCM tools like Subversion and Git. For graphically represented source
code or models, on which the Petri net-based agent-oriented software develop-
ment is based on, however, there is a lack of supporting tools to manage and
visualize source code or changes made to it [9]. Finally one of the most useful
features of modern SCM tools is the possibility to reveal differences between
arbitrary revisions (versions) of the source code. This insufficiency within the
Petri net-based development is a problem in order to accomplish the required
information exchange and also the change notification between the developers
of a (distributed) team, as mentioned before. Regarding Schipper et al. [12], a
major concern is the depiction of changes in graphical models in a graphical way.
We will present an appropriate solution for this missing feature in the following
section.

Documentation is another task a developer is faced with. In agile approaches
this task is less expensive, because running software has a higher value as com-
prehensive documentation if we follow the agile manifest [2]. However, apart
from this, documentation is always a task to manage. Some IPMEs already sup-
port integrated documentation in the form of wikis for example. But also the
documentation inside the source code is a part of the entire documentation and
should be supported in some form by the integrated documentation system or
the IPMEs as well. An IPME with integrated SCM and possibility to write and
permanently save additional documentation fulfills this task sufficiently.

Finally, developers make use of a lot of tools. We aim at the integration of
all used tools in the existent and usual tool chain and further connect these
tools together. This means that developers are able to link the various contents
and results of the tools’ usages. More precisely, we target the linking of source
code with task definitions, documentation and discussed topics relevant to the
concrete realization. Additionally, the exchange of information between the tools
should be realized as an automatic process embedded into the usual workflow.
The result of this is an integrated project management environment, being able
to handle many tasks belonging to different phases and areas of the complete
development process and finally to make this information available through a
single interface.

4 Note that in Paose the agent-oriented paradigm is also applied to the development
team and to the development process.

170 PNSE’11 – Petri Nets and Software Engineering

The free available open source project management tools Redmine5 and Trac6

support many of these needs out of the box and also provide a notification system
via e-mail transparently embedded in the usual workflow. One missing feature,
the possibility to view and compare graphical source code in a visual manner
inside the IPME, is realized through our extension of the tool chain and will be
presented in the following section.

3 Web Service-Based Tool Integration

In the previous section, we pointed out the requirement of a tool to visualize and
compare graphical source code, particularly in context of Petri net-based devel-
opment. This section deals with the architecture, implementation and integration
of the outlined draft for such a tool, that fits perfectly into the distributed nature
of agent-oriented software development, our existing tool chain and development
workflow.

3.1 Architecture of the Tool Set

Due to the plugin-based design of the most project management tools, in our case
Redmine, it is possible to improve the functionality of the IPME with respect to
the integration of Petri nets and also other models such as sequence diagrams,
class diagrams, etc. For this purpose, we provide an extension, which enables
the IPME to (1) render net files in a graphical manner instead of showing the
corresponding text representation and (2) compare two revisions of the same
net file by highlighting their differences. The implementation of this extension is
divided into two functional components. The first is designed as a Web service,
which offers the capability to compute images of submitted nets that depict the
requested functionality of the extension (detailed description in Section 3.3). The
second component is located in the IPME as a plugin called Redmine Renew
Plugin and integrates the functionality offered by the Web service into the web-
based user interface (as described in Section 3.5). This is realized by extending
the existing code view mechanisms so that net files supported by Renew (*.rnw,
*.aip, *.draw, *.pnml, etc.) will be forwarded and handled by the corresponding
Web service.

Each component of the tool chain can be assembled and hosted in a com-
pletely distributed environment, as depicted in Figure 2, or centralized on one
host. The IPME is hosted on a web server that offers developers, managers and
designers an easy access using a simple Web browser. Source code repositories
are located on file servers and will be integrated into the environment with the
help of the build-in source code management (SCM) connectors. The major
workload of the net integration is done by the export server, which hosts the
two Web services (Image Net Export and Image Net Diff).

5 Redmine, A flexible project management web application (http://www.redmine.org)
6 Trac, Integrated SCM & Project Management (http://trac.edgewall.org)

T. Betz, L. Cabac, M. Güttler: Improving the Tool Chain for Paose 171

Figure 2. Web Service-based extension of the distributed tool chain environment.

3.2 Export and ImageNetDiff

Conversion of diagram / net representation into image representations is pro-
vided by two plugins available for Renew. The Export plugin is part of the
distribution of Renew and makes use of the powerful Freehep libraries (see
http://www.freehep.org/). It was first included in version 2.1 of Renew. The
Export agent makes use of the PNG (Portable Network Graphics) export format,
which is displayed directly in a Web browser.

The ImageNetDiff plugin for Renew is available as on optional plugin and
allows producing a visual diff of two diagrams or nets. As the name suggests, the
visual diff is represented as an image (compare with [7]) and is in fact produced
through a comparison of two images, which are the result of an export operation.
The functionality is available in Renew from the GUI or as command line
argument, i.e. comparing two opened nets (or diagrams) as well as using the
functionality in scripts is possible. Additionally, the comparison of a checked-
out copy of a net against the revision base in a Subversion repository is directly
supported. With the integration of the ImageNetDiff functionality in the IPME
the comparison of arbitrary version in a repository is also easily possible. Instead
of executing a diff on the textual representation and mapping the results back
to the Petri net or diagram we make heavy use of the graphical (analogue)
representation of the diagram. Thus the diff procedure in our implementation
is not a semantic (or syntactic) diff but a purely visual one. On the one hand,
this approach holds some disadvantage. Direct editing of nets on the basis of
the diff representation is not possible and also our tool set does not support
automatic merges. On the other hand, we can also derive some advantages from
this approach. The implementation is very simple. In many relevant cases this

172 PNSE’11 – Petri Nets and Software Engineering

approach shows the desired results. The results integrate directly into the Web-
based applications. Note also, that the diff images are only transitional objects
during the development of models / source code. For the means of comparison,
they are only useful at the moment of creation. Once the desired information is
found, e.g. the error is located, the diff object is deleted.

3.3 Web Service Implementation

Both services (Image Net Export Service and Image Net Diff Service) used in
the Redmine Renew Plugin are realized as RESTful Web services [10]. This ap-
proach offers a high interoperability and simplifies the integration of services in
distributed environments. The current implementation of the Export Server (see
Figure 2) is based on Mulan/Capa [8]: a Petri net-based multi-agent frame-
work. Thus, the functionality of both services is provided by an agent (called
Export agent), which is able to offer its services as Web services. This is possible
with the help of the Mulan WebGateway agent, which is acting between the ex-
port agent and the invoking Web client, in our case the Redmine Renew Plugin.
As depicted in Figure 3 the WebGateway agent has two communication interfaces
and is able to communicate on the right hand side with agents over FIPA-ACL7

messages. On the left hand side the interface is implemented by a Jetty8 Web
server and is able to handle HTTP and WebSocket9 connections. Besides the
capability to register and manage agent Web services, the major purpose of the
WebGateway is to translate incoming Web client messages to FIPA-ACL mes-
sages and vice versa. During agent service registration at the WebGateway, each
service can submit a service representation in terms of ordinary JSP10 Web sites.
These sites serve as web-based service invocation applications and are available
by opening the associated service URL in a Web browser.

To fulfill the desired behavior of the export agent services (Image Net Ex-
port Service and Image Net Diff Service), the implementation makes use of the
Renew Export and ImageNetDiff plugins (mentioned in Section 3.2), which are
available due to the fact that the Mulan multi-agent framework uses Renew
as a runtime engine.

3.4 Redmine Renew Plugin Implementation

The current prototype of the Redmine Renew Plugin implements two differ-
ent features, export and diff, which both work with source code files from the
connected repository, as described in Section 3.1.

The visualization of a single net file is a relatively simple task and thus fairly
simple to implement. The plugin has to fetch the net file from the repository
and post the content of this file to the Web service to get a visual representation

7 FIPA ACL: http://fipa.org/specs/fipa00061/SC00061G.html
8 Jetty Web server: http://www.eclipse.org/jetty/
9 W3C WebSocket API: http://dev.w3.org/html5/websockets/

10 Java Server Page (JSP): http://www.oracle.com/technetwork/java/javaee/jsp/

T. Betz, L. Cabac, M. Güttler: Improving the Tool Chain for Paose 173

WebGateway

Agent
WS

Client

Web Service Registry

Web

Service

Agent

Service

Register Register

HTTP/WebSocket FIPA-ACL

Inform/Request Inform/Request

ResponseResponse

Inform/Request

Response

Inform/Request

Response

Figure 3. WebGateway Architecture.

of the net as result. This result, the received PNG image, will be shown to the
user, embedded inside the repository view of Redmine (compare with Figure 4, in
which a diff image is shown, which is explained in Section 3.5). The comparison
of two revisions of the same net file from the repository does not make a big
effort, too. In this case, the plugin has to fetch the two different revisions of the
net file and post its contents to the Web service to receive the image with the
highlighted differences.

However, the case of comparing two complete changesets11 is a complex task
with regard to the technical aspect. This is firstly, because a changeset might
contain graphical and textual source code changes, therefore the plugin has to
decide for every file separately, if it will use the image net diff algorithm or the
build-in textual one12. Secondly, the type of change can be one of the following
for every single file in the changeset: addition, modification, deletion, duplication,
moving or renaming. As a consequence, there are a lot of possible cases to take
into account e.g. if we add a net file in one changeset, remove this file in the
next one and after that we add a file with the same name but different contents
again. Then, the complete history of changes made to this file name has to
receive attention in order to decide which revisions should be compared. Another
complex sequence of operations arises, when a file becomes renamed or moved.
In this case the plugin has to fetch the previously named file and the current
one in order to compare the changes, what results in a supplementary request
to the repository.

11 A changeset contains all changes, which were made in an atomic commit and contains
multiple files in the majority of cases.

12 The repository itself (i.e. Subversion) does not make any difference between file types
and returns a single unified diff file for all changes made in a changeset. Therefore
the Redmine Renew Plugin has to split this unified diff into separate parts, whereby
every part contains the changes made to a single file.

174 PNSE’11 – Petri Nets and Software Engineering

3.5 Integration into the Existing Tool Chain

In the Paose approach we use project management tools that are already well-
established in agile development approaches. By their usage, we directly apply
the advantages of these tools to the agent-oriented development and benefit from
the tight linking of source code with developer tasks and documentation, as re-
quested within Section 2. Beyond that, we extend these tools with plugins ac-
cording to the needs of the Petri net-based agent-oriented software development,
which result from the model-driven nature of the Petri net-based development,
as described in Section 3.1.

Figure 4. Redmine ImageNetDiff plugin in use.

Figure 4 shows a screenshot of the web-based IPME Redmine. The image
shows the repository view extended by the Redmine Renew Plugin in diff mode.
Inside the content area in the center, it shows the differences of two revisions
(i.e. revisions 9296 and 9538) of a Petri net from the connected Subversion
repository. The colored areas describe changed parts of the Petri net, whereby

T. Betz, L. Cabac, M. Güttler: Improving the Tool Chain for Paose 175

green13 signifies added parts and red deleted parts, while the light-gray areas
signify unchanged parts. The plugin integrates into the IMPE in a transparent
way, without the need of changing anything in the general workflow. Addition-
ally, the presentation of both, textual and graphical source code, is embedded
into our IMPE homogeneously. The just described screenshot shows only one
possible use of the plugin. There is also the ability to compare other graphical
resources, such as use case diagrams or agent interaction protocols, which both
were introduced to the Paose approach [5].

A demonstration of the new tool integrated into the IMPE Redmine is acces-
sible under https://paose.informatik.uni-hamburg.de/redmine/. The con-
nected Subversion repository contains some examples, which were developed in
the context of the P*AOSE student project at the University of Hamburg. The
presented IPME allows public users to access the source code, to visualize and
to compare different versions.14

In Section 2 we described the developer tasks and discussed the need for tool
support for the comparison of graphical source code (i.e. in our case Petri nets)
and other diagrams in a visual way. The possibilities offered by our presented
extensions especially support the developers in communication aspects and the
exchange of information. Furthermore, reviewing and refactoring of code, for
instance in order to discover and eliminate some bugs, are simplified, because
the simple access to a visualization of the graphical source code is integrated
into the applied IPME. Besides that, project leaders and other participants can
inform themselves straightforwardly about the progress of development without
the need of an IDE and thus also derive benefits from the integrated tool set.

A typical use case for the net diff inside the IPME is a session of finding
the differences during a debugging session. However, one very useful simple use
case is examining, whether changes were made in a model. For instance marginal
changes in the layout (e.g. changing the z-order of elements) can result in repos-
itory check-ins. Also if changes from for example version A to version B are
reverted in version C the control of absence of differences between version A and
C and the easy access to this information is of great advantage.

4 Conclusion

In this work we investigated the development process in Petri net-based agent-
oriented software development concerning the improvements of tool support.
After outlining developer tasks and gaps in tool support, we introduced an exten-
sion to the tool set to accommodate the source code management of graphically
represented source code, embedded into the widely used open source project
management tool Redmine.

13 A black and white print shows only light-gray parts and black net elements and
inscriptions. With the exception of the comments (in square brackets) only additions
have been made in the presented diff.

14 Additionally the Web service-based functionality of diagram export and diagram
image diff can be accessed manually via an included Web interface.

176 PNSE’11 – Petri Nets and Software Engineering

With the introduction of our extended tool chain in the context of the
P*AOSE projects at the University of Hamburg, which follow the Paose ap-
proach, we improved various aspects of the developers’ tasks. First of all, of
course we supported the possibility to observe graphical source code and com-
pare it concerning its different versions. Supplementary, we improved the speed
of development through this feature, in respect of the possibility to visually com-
pare model-based source code (i.e. in our case Petri nets) and other diagrams
directly and effortlessly in an integrated environment for the project manage-
ment and planning (IPME), which is closely linked to the SCM. Furthermore
the presented tool integration supports the communication of the developers.
Information exchange through source code changes between the developers gets
easier than before and performs thereby the requirements delineated in Section 2.
Finally, we come to the conclusion that our presented extended tool chain is one
substantial step to improve the development of Petri net-based agent-oriented
software. The gap between text-based and model-based source code – as well as
other design models – is thus further closed in regard to the handling of these
documents during development, reviewing, documentation and refactoring. The
presented approach could easily be adapted to support other development ap-
proaches that make use of graphical representations (e.g. UML diagrams) during
development.

References

1. Helmut Balzert. Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements
Engineering. Spektrum Akademischer Verlag, 3. aufl. edition, 2009.

2. Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. The agile manifesto. http://agilemanifesto.org.

3. W.G. Bleek and H. Wolf. Agile Softwareentwicklung: Werte, Konzepte und Meth-
oden. dpunkt, Heidelberg, 2008.

4. Lawrence Cabac. Multi-agent system: A guiding metaphor for the organization
of software development projects. In Paolo Petta, editor, Proceedings of the Fifth
German Conference on Multiagent System Technologies, volume 4687 of Lecture
Notes in Computer Science, pages 1–12, Leipzig, Germany, 2007. Springer-Verlag.

5. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications, volume 5 of
Agent Technology – Theory and Applications. Logos Verlag, Berlin, 2010.

6. Lawrence Cabac, Till Dörges, Michael Duvigneau, Christine Reese, and Matthias
Wester-Ebbinghaus. Application development with Mulan. In Daniel Moldt, Fab-
rice Kordon, Kees van Hee, José-Manuel Colom, and Rémi Bastide, editors, Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE’07), pages 145–159, Siedlce, Poland, June 2007. Akademia Podlaska.

7. Lawrence Cabac and Jan Schlüter. ImageNetDiff: A visual aid to support the
discovery of differences in Petri nets. In 15. Workshop Algorithmen und Werkzeuge
für Petrinetze, AWPN’08, volume 380 of CEUR Workshop Proceedings, pages 93–
98. Universität Rostock, September 2008.

8. Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Concurrent architecture
for a multi-agent platform. In Fausto Giunchiglia, James Odell, and Gerhard

T. Betz, L. Cabac, M. Güttler: Improving the Tool Chain for Paose 177

Weiß, editors, Agent-Oriented Software Engineering. 3rd International Workshop,
AOSE 2002, Bologna. Proceedings, pages 147–159. ACM Press, July 2002.

9. Akhil Mehra, John Grundy, and John Hosking. A generic approach to support-
ing diagram differencing and merging for collaborative design. In Proceedings of
the 20th IEEE/ACM international Conference on Automated software engineering,
ASE ’05, pages 204–213, New York, NY, USA, 2005. ACM.

10. Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. “big” web services: making the right architectural decision. In Proceeding of
the 17th international conference on World Wide Web, WWW ’08, pages 805–814,
New York, NY, USA, 2008. ACM.

11. C. Petrie, S. Goldmann, and A. Raquet. Agent-based project management. Arti-
ficial intelligence today, pages 339–363, 1999.

12. Arne Schipper, Hauke Fuhrmann, and Reinhard von Hanxleden. Visual comparison
of graphical models. Engineering of Complex Computer Systems, IEEE Interna-
tional Conference on, 0:335–340, 2009.

13. Trung Hung VO. Software development process. Available at:
http://cnx.org/content/m14619/1.2/, July 2007.

178 PNSE’11 – Petri Nets and Software Engineering

On the use of Pragmatics for Model-based
Development of Protocol Software

Kent Inge Fagerland Simonsen1,2

1 Department of Computer Engineering, Bergen University College, Norway
kifs@hib.no

2 DTU Informatics, Technical University of Denmark, Denmark
kisi@imm.dtu.dk

Abstract. Protocol software is important for much of the computer
based infrastructure deployed today, and will remain so for the foresee-
able future. With current modelling techniques for communication pro-
tocols, important properties are modelled and verified. However, most
implementations are being done by hand even if good formal models
exist. This paper discusses some of the challenges in modelling and auto-
matically generating software for protocols. The challenges are discussed
using the Kao-Chow authentication protocol as a running example by
outlining an approach for generating protocol software for different plat-
forms based upon Coloured Petri Nets (CPN). The basic idea of the
approach is to annotate the CPN models with pragmatics which can be
used in a code generator when mapping the constructs of the CPN model
onto the target platform.

1 Introduction

Much work has been done to model and verify protocols using a wide range of
formalisms [8]. Petri nets [23] and Coloured Petri Nets (CPNs) [13,14] in partic-
ular are widely used formal modelling languages for behavioural modelling and
verification of industrial-sized protocols [7]. There exist, however, relatively few
examples [16, 17, 21] where CPN models have been used as a basis for automat-
ically obtaining implementations of the modelled protocols.

This paper describes challenges with automatically generating code from pro-
tocol models and proposes some avenues for solving them. A concept of prag-
matics is introduced for protocol models which holds information useful for gen-
erating an implementation. This paper also proposes the use of separate models
to describe the configuration and platform for protocol software. This allows the
protocol models to be at a high level of abstraction while specific implementa-
tions can be derived using configuration and platform models.

Figure 1 illustrates our approach to generating protocol software. The Proto-
col Model is a model in a language that is not yet fully designed, but it could be
based on CPN or another High Level Petri Net (HLPN) language. The Config-
uration Model contains information on which design choices should be made for
the implementation of the protocol. For example, the configuration can contain

information on exactly which underlying network layer service to use for com-
munication between protocol entities. The Platform Model is intended to contain
information on how operations should be implemented on the specific platform in
question. For example the details on what is needed to set up and transmit mes-
sages over the User Datagram Protocol (UDP) [9] or the Transmission Control
Protocol (TCP) [10]. The Protocol Model, together with a Configuration Model
and Platform Model is fed into a Generator in order to obtain an implementation
of the protocol. Finding a good separation between the Protocol, Configuration
and Platform Models is one of the important challenges in this approach.

The evaluation of our approach will be based on the software we are able
to generate using our approach. If we are able to generate software for a wide
range of protocols with high quality, this will be considered a success. We will
also evaluate the confidence we can gain that the generated software maintains
the properties of the Protocol Model.

Protocol Model

Configuration Model

G
e
n
e
r
a
t
o
r

Platform Model

Code

Fig. 1: Protocol software generation approach.

In order to include information that will help with code generation, we in-
troduce the concepts of pragmatics and scope to the Protocol Model. Pragmatics
assign special behaviour and meaning to model elements. This means that we
are able to differentiate between transitions, places and data according to their
function in the protocol. In the protocol models, pragmatics are encapsulated in
« and ». We will provide more details on these pragmatics in the following.

This paper is structured as follows. Section 2 focuses on elements that are
missing from CPNs in order to model and generate code for protocols. This
section also introduces the Kao-Chow (KC) authentication protocol [15] which
is used as a running example throughout this paper. The concepts of pragmatics
and scope are also introduced in this section. Section 3 discusses the need for
configuration and platform models and identifies some elements that should be
contained in those models. Finally, Section 4 discusses future work and identify
criteria for evaluating our approach to model based development of protocol
software. The reader is assumed to be familiar with the basic concepts of CPNs.

180 PNSE’11 – Petri Nets and Software Engineering

2 Protocol Model

To illustrate our approach we use the KC protocol. KC is a protocol that makes
it possible for two entities, A and B, to authenticate each other using uncertified
symmetric key 3 cryptography and an authentication server, S. The authentica-
tion server is assumed to have pre-shared keys with each of the authenticating
entities. Listing 1 shows the basic sequence of messages exchanged in KC using
Alice and Bob notation [20]. First some entity, A, wants to authenticate with an-
other entity, B. To this end, A sends its and Bs identity together with a nonce4,
Na, to the authentication server, S (1). S then generates a session key, Kab, for
use between A and B. This session key and A and B’s identities, together with
A’s nonce is encrypted with the pre-shared key, Kbs, between B and S. S also
creates a copy of the same data encrypted with the pre-shared key, Kas, between
A and S and sends both copies to B (2). B then sends the part of the message
it got from S encrypted with the key, Kas, shared by A and S to A together
with As nonce encrypted with the session key, Kab, and a new nonce Nb (3).
Finally, A responds to B with B’s nonce, Nb, encrypted with the session key,
Kab, (4). A considers B to be authenticated when the nonce, Na, it receives from
A encrypted with Kab is identical to the Na which A created at the beginning
of the exchange. Similarly, B considers A to be authenticated when B receives
its nonce, Nb, encrypted with Kab from A.

Listing 1: Kao-Chow message sequece from [24]

1 . A −> S : A, B, Na
2 . S −> B: {A, B, Na , Kab}Kas , {A, B, Na , Kab}Kbs
3 . B −> A: {A, B, Na , Kab}Kas , {Na}Kab , Nb
4 . A −> B: {Nb}Kab

CPNs and other types of Petri Nets are widely used and have a well docu-
mented capability for modelling and verifying protocols and aiding in the imple-
mentation of protocol software [1,7]. Our approach is to use HLPNs, and CPNs
in particular, as a starting point for modelling protocols.

The top page of a CPN model of KC is shown in Fig. 2. Here the participants,
A, B and Server, in the protocol are modelled as substitution transitions on the
top level module. The places make it explicit that A send messages to Server,
Server send messages to B, and that A and B send messages to each other.

Another effort to model KC using Petri Nets is presented in [3]. In this paper
KC is first defined in the Security Protocol Language [6] and then translated
into S-nets [4]. KC is also modelled using several different tools and languages
in [5].

3 Uncertified keys are keys that are not accompanied with information such as proof
of who is the keys owner and issuer and how the key should be used.

4 A nonce is a number or bit-string that is used only once.

K.I. Fagerland Simonsen: Use of Pragmatics for MBD of Protocol Software 181

<<entity>>

<<entity>> <<entity>>

A
<<entity>>

A

B
<<entity>>

B

Server
<<entity>>

Server

B to A
<<channel>>

Message

A to B
<<channel>>

Message

S to B
<<channel>>

Message

A to S
<<channel>>

Message

Server

BA

Fig. 2: Top level module of the Kao-Chow model.

2.1 Scope Pragmatics

Implicit in the KC model is information about different protocol entities that
have different roles. Our approach is to make this information more explicit is
to add the entity pragmatic to substitution transitions that indicate that the
module is an entity in the protocol. In this approach, the top level of a model
typically consists only of substitution transitions and network nodes, which is
the case in the KC model in Fig. 2.

An alternate approach could be to tag all model elements that are part of
the same protocol entity or to encompass all elements inside some form of field
that delimits the entities from each other. One problem with this approach is
that since several parties can exist on the same module some elements may
interact without going through a network node. On one hand this could make
models more error-prone. On the other hand such back-channels may be used
to represent out of band communication that is relevant to the protocol and not
properly network traffic. Since such out of band traffic could also be represented
by non-network nodes in the top level anyway, this is not a strong argument
against the chosen approach as explained in the previous paragraph.

2.2 Communication Channel Places

Network places, which have the channel pragmatic, represent the network and
firing adjacent transitions corresponds to sending some data over the network.
The sender and recipients are identified by the transitions on either side of
the network places. Pragmatics on network places could, for example, include
constraints on the network channel which corresponds to the assumptions made
on the network used by the protocol. Such assumptions could be that package
are guaranteed to arrive in order without duplicates, as TCP channels guarantee,
or that there are no such guarantees, as is the case with UDP. Another example
may be a constraint indicating that the channel is secure from an attacker being
able to read the data which is provided by the Transport Layer Security (TLS)

182 PNSE’11 – Petri Nets and Software Engineering

protocol [11]. How the communication channel should be initialized and used
specifically should be specified in the configuration and platform models.

2.3 API Pragmatics

Figures 3 and 4 show the two modules for the A entity in the KC model. The
behaviour of A is somewhat complex despite the simplicity of the protocol, be-
cause many steps are taken for each message. In the figures, pragmatics have
been added to several elements in the model. Figure 3 shows how the protocol is
initiated by placing a token on the place Init at the top of the figure. The token
contains the addresses for A and B. These addresses are then combined with a
nonce from the place Nonce and put on the place A to S which represent sending
the message to the authentication server. At the same time, a copy of the nonce
is placed on the WaitAuthenticate place. This place represents a state where A
is waiting for a response from B.

When a message is placed on the place B to A, the transitions on the sub-
module associated with the Authenticate substitution transition become enabled.
This submodule is shown in Fig. 4. Here the transition Receive Authentication
(when enabled) stores As original Nonce and Bs Nonce in StoreA and StoreB, and
then places a token on the Wait Decrypt place. Then the Decrypt Key transition
can use the key in the place Key Store to decrypt the session key and nonce. The
Authenticate transition is now able to perform the actual authentication of B. In
the KC protocol, the authentication involves simply to check that the stored and
the received and decrypted nonces are identical. The model does not explicitly
show what should be done if the nonces are not the same. In practice, this would
typically cause an error to be raised and the protocol would terminate. This is
left out of the model in this paper for simplicity. Assuming that the authenti-
cation step is successful, Bs nonce is encrypted with the session key, which is
generated by the authentication server and stored at the place Session Key Store,
at the Encrypt Nonce transition, and finally put on the A to B place.

In the upper part of Fig. 3 there is a transition with the API pragmatic. This
pragmatic symbolizes an entry point where the outside environment can interact
with the protocol software. For target languages in the object-oriented paradigm
this would typically be translated into a method with public access. In the KC
example, the API pragmatic is the starting point of the protocol. It is given
the name kcAuthenticate and takes two arguments; toAddr and fromAddr.
Listing 2 shows an example of how the API transition could be translated into
the signature of a Java method.

Listing 2: API method signature

pub l i c vo id kcAuthent ica te (Id fromAddr , Id toAddr)

2.4 Operation Pragmatics

The operation pragmatic means the implementation should performing an oper-
ation such as printing data to the screen or calling a system library when this

K.I. Fagerland Simonsen: Use of Pragmatics for MBD of Protocol Software 183

<<creator(origin: A)>>

<<creator(origin: A)>>

nonceA

nonceA init(fromAddr,toAddr,nonceA)

(fromAddr,toAddr)

(fromAddr,toAddr)

nonceA

(fromAddr, toAddr)

Generate Nonce
<<operation(name=generateNonce)>>

Authenticate

Authenticate

<<API(name="authenticateKC" params="fromAddr, toAddr")>>

WaitGenerate

IDPair

Key
Store

Kas

KEY

WaitAuthenticate

NONCE

Nonce
<<transient>>

Na

NONCE

Init
<<transient>>

1`(A,B)

IDPair

Session Key
Store

KEY

A to S

Out
Message

B to A

In
Message

A to B

Out
Message

Out

In

Out

Authenticate

Fig. 3: Module A of Kao-Chow model.

184 PNSE’11 – Petri Nets and Software Engineering

<<creator(origin: A)>>

<<creator(origin: A)>>

<<enc(key: key)>>

<<creator(origin: A)>>

<<enc(key: key)>>

<<enc(key: key)>>
<<enc(key: Kas>>

<<enc(key: Kas>>

<<enc(key:Kas)>>

nonceA

nonceA

nonceA

nonceA

non(nonceB)

key

nonceB
u

u

key

key

nonceA

sk(A,B,nonceA,key)

resp(
 ((Kas, sk(A,B,nonceA,key))),
 (key, nonceA) ,
 nonceB
)

nonceB

sk(A,B,nonceA,key)

Kas

Encrypt Nonce
<<operation(name="encryptNonce")>>

Receive
Authentication

Authenticate
<<operation(name="authenticate")>>

Decrypt Key
<<operation(name="decryptKey")>>

StoreA1

NONCE

A to B

Out
Message

WaitEncrypt

UNIT

WaitAuthenticate

In
NONCE

Session Key
Store

Out
KEY

StoreA2

NONCE

StoreB

NONCE

Wait
Decrypt

PACKAGE

Key
Store

I/O

Kas

KEY

B to A

In
Message

In

I/O

Out

In

Out

Fig. 4: Module Authenticate of Kao-Chow model.

K.I. Fagerland Simonsen: Use of Pragmatics for MBD of Protocol Software 185

pragmatic is encountered. Operation pragmatics are typically attached to tran-
sitions. The specific code that results from an operation in the Protocol Model
is defined by the configuration and platform models.

In the KC protocol for entity A, there are four operation pragmatics. These
are to generate a nonce (Generate Nonce in 3), encrypt (Encrypt Nonce in 4), de-
crypt (Decrypt Key in 4) and authenticate (Authenticate in 4). These pragmatics
help to make explicit what operations are to be done for the transition with this
pragmatic. Also it makes it possible for the Generator (see Fig. 1) to know how
to generate code for these transitions, even if they are not modelled at the same
level of detail as the implementation.

In an implementation, the Encrypt Nonce operation in the lower part of Fig-
ure 4 could be translated into what is shown in listing 3 on the Java platform
where the encrypt method is already defined.

Listing 3: Encryption operation

St r ing nonceReply = serverNonce . nonce . toSt r ing () ;
nonceReply = encrypt (nonceReply . bytes , s e s s ionKey) ;

2.5 Transient Entities

Two places with the transient pragmatic are present in Figure 3. Model elements
with the transient pragmatics are elements that are not considered by the gen-
erator, but may be useful for other uses of the model such as simulation and
verification. The transient places in Figure 3 provide an initial state in the model
which is necessary for simulation of the CPN model.

2.6 Data Pragmatics

In Fig. 4 several pieces of data have an enc pragmatic, for example on the arc
between the Wait Decrypt place and the Decrypt Key transition in the middle
of the figure. This pragmatic indicates that the data is encrypted with a given
key. Encrypted data should only be used (read or manipulated) in transitions
where the encryption key is available. In the KC example, encrypted data is only
available after passing through a transition with a decryption operation where
the correct key is available.

The enc pragmatic as shown here only takes symmetric encryption schemes
into account. However, extending the pragmatic to also be able to model asym-
metric encryption should be relatively simple. The enc pragmatic is an example
of a domain specific pragmatic which is specific to the area of security protocols.

3 Configuration and Platform Models

Pragmatics in the model bring the model closer to an implementation by adding
information that is useful for generating an implementation. Still the model

186 PNSE’11 – Petri Nets and Software Engineering

is too abstract to generate code without making many assumptions about de-
sign choices and the underlying platform. We propose to use configuration and
platform models to provide information so that the generator can generate an
implementation.

The configuration model contains information about how to implement the
protocol. It is likely to be highly dependent on both the protocol model and the
platform model. It therefore seems possible that configuration models will not
be reusable for other protocols or platforms. A typical design choice that will
be represented in the configuration model is the choice of underlying network
service to be used for communication between protocol entities. For example if for
a protocol that has no constraints on the network layer service, a configuration
would be whether to use UDP or TCP for the implementation.

The platform model should hold specific implementation details. In the ex-
ample with the underlying network layer service, the platform model would hold
information on how to set up, send and receive messages over UDP and TCP.
The platform models are general in the sense that a platform model can be used
to generate implementations of several protocols for the specific platform. In
order to achieve this, the platform models, of course, need to support a wide
range of features for different protocols and configurations.

Separating the configuration and platform models in this way makes it pos-
sible to reuse the models. Protocol models can be reused for different platforms
and configurations. Platform models can also be reused to create protocol soft-
ware for different protocols with different configurations for a specific platform.

4 Discussion

This paper has discussed some initial ideas for generating protocol software from
models in a general way by annotating the model with pragmatics and adding
configuration and platform information. This paper has also introduced a few
specific pragmatics for protocol models that are exemplified by a model of the
KC protocol. The list of pragmatics is by no means exhaustive, but provides
a starting point for creating the first generation of technologies for protocol
software modelling and generation using our approach. Additional information
to be specified in configuration and platform models has also been introduced
and argued for.

4.1 Related Work

In [19] a method for annotating CPNs is described. This method makes it possible
to add auxiliary information to tokens in CPNs in layers of annotations. This
approach is similar to the pragmatics presented in this paper in that both add
information to CPNs. The approaches are different in that the pragmatics are
added directly to the CPNs whereas the annotations in [19] are created and
maintained separate from the underlying CPN model. Another difference is that

K.I. Fagerland Simonsen: Use of Pragmatics for MBD of Protocol Software 187

the annotations are only concerned with tokens, while pragmatics can be added
to places and transitions as well.

In [18] a restricted version of CPNs, called Colored Control Flow Nets (CCFN),
are used to generate Java programs. This is done by first translating the CCFN
to an intermediate model called a Annotated Java Workflow Net (AJWN) which
is annotated by Java snippets derived from arc inscriptions in the corresponding
CCFN.

In [17] a subclass of CPNs called Process-Partitioned CPNs (PP-CPNs) is in-
troduced and used to automatically generate an implementation of the Dynamic
MANET On-demand (DYMO) [12] routing protocol. The approach in [12] to
generate code is to first translate the PP-CPN model into a control flow graph.
The control flow graph is then used to construct an abstract syntax tree (AST)
for an intermediate language which in turn is used to generate the AST of the tar-
get language. One difference to our approach is that in [17] information about
the target platform and how translate model concepts to target language is
contained in the generator instead of configuration and platform models. The
method of [17] also defines a new subclass of CPNs instead of extending CPNs
with annotations such as the pragmatics described here.

The notion of using different models for different layers of abstraction is also
present in the Model Driven Architecture (MDA) [22] methodology of software
engineering. In MDA three models are defined for a system. A Computation
Independent Model (CIM) defines what a system is supposed to do and roughly
corresponds to the protocol model as described in this paper. A Platform Inde-
pendent Model (PIM) describes behaviour and structure of a system indepen-
dent of the platform it is implemented on and a Platform Specific Model (PSM)
combines the information in the PIM with all the details that are needed to
generate an implementation of the system for the specified platform. The PIM
and PSM are quite different from the configuration and platform models in this
paper which do not include information on the software system itself, but rather
design choices and how to implement these choices on the target platform for
the given protocol model.

4.2 Future work

In the near future, we plan to use the KC model and manually simulate the code
generation and then compare the implementation that is obtained through this
simulation to an implementation that we have already created independently
from the model. After that we will produce the first set of tools to automatically
generate protocol software from HLPNs using the concepts of pragmatics and
scope discussed in this paper as well as configuration and platform models.

Code generation will be done by model transformations. A significant chal-
lenge will be to gain confidence in the output of the generator. Formal verification
of the generator will likely not be possible, but it is critical that we can maintain
a high degree of confidence in the generated software. One technique that can be
used to validate both the generator and the software it produces it to generate
test suits based on the state space of the protocol code. Another technique is

188 PNSE’11 – Petri Nets and Software Engineering

to rigorously test and examine several generated protocol implementations from
several different protocol domains.

The protocol model itself should be verifiable. One approach to verifying
protocols using CPNs has been described in [2]. We will study whether this and
other approaches are applicable to protocol models with pragmatics as described
in this paper. We will also look into how pragmatics can be used to help verify
more properties about a protocol such as verifying that secret data is never
places on a network channel in plain text and that the correct keys are always
present to decrypt encrypted data.

References

1. Jonathan Billington, Michel Diaz, and Grzegorz Rozenberg, editors. Application
of Petri Nets to Communication Networks, Advances in Petri Nets, volume 1605
of Lecture Notes in Computer Science. Springer, 1999.

2. Jonathan Billington, Guy Edward Gallasch, and Bing Han. A coloured petri net
approach to protocol verification. In Lectures on Concurrency and Petri Nets,
pages 210–290, 2003.

3. Roland Bouroulet, Raymond R. Devillers, Hanna Klaudel, Elisabeth Pelz, and
Franck Pommereau. Modeling and analysis of security protocols using role based
specifications and petri nets. In Kees M. van Hee and Rüdiger Valk, editors, Petri
Nets, volume 5062 of Lecture Notes in Computer Science, pages 72–91. Springer,
2008.

4. Roland Bouroulet, Hanna Klaudel, and Elisabeth Pelz. A semantics of security
protocol language (spl) using a class of composable high-level petri nets. In ACSD,
pages 99–110. IEEE Computer Society, 2004.

5. Manuel Cheminod, Ivan Cibrario Bertolotti, Luca Durante, Riccardo Sisto, and
Adriano Valenzano. Tools for cryptographic protocols analysis: A technical and
experimental comparison. Computer Standards & Interfaces, 31(5):954–961, 2009.

6. Federico Crazzolara and Glynn Winskel. Events in security protocols. In ACM
Conference on Computer and Communications Security, pages 96–105, 2001.

7. CPnets – Industrial Use.
http://cs.au.dk/cpnets/industrial-use/.

8. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall In-
ternational Editions, 1991.

9. Internet Engineering Task Force. RFC768: User Datagram Protocol, August 1980.
http://tools.ietf.org/html/rfc768.

10. Internet Engineering Task Force. RFC793: Transmission Controll Protocol,
September 1981. http://tools.ietf.org/html/rfc793.

11. Internet Engineering Task Force. RFC5246: The Transport Layer Security (TLS)
Protocol, Version 1.2, August 2008. http://tools.ietf.org/html/rfc5246.

12. Internet Engineering Task Force. Dynamic MANET On-demand (DYMO) Routing,
July 2010. http://datatracker.ietf.org/doc/draft-ietf-manet-dymo/.

13. K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Validation
of Concurrent Systems. Springer, 2009.

14. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools
for Modelling and Validation of Concurrent Systems. International Journal on
Software Tools for Technology Transfer (STTT), 9(3-4):213–254, 2007.

K.I. Fagerland Simonsen: Use of Pragmatics for MBD of Protocol Software 189

15. I-Lung Kao and Randy Chow. An efficient and secure authentication protocol
using uncertified keys. Operating Systems Review, 29(3):14–21, 1995.

16. L.M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G.E. Gallasch. Model-
based Development of COAST. STTT, 10(1):5–14, 2007.

17. L.M. Kristensen and M. Westergaard. Automatic structure-based code generation
from coloured petri nets: A proof of concept. In Proc. of Int. Workshop on Formal
Methods for Industrial Critical Systems, volume 6371 of Lecture Notes in Computer
Science, pages 215–230. Springer, 2010.

18. K. B. Lassen and S. Tjell. Translating colored control flow nets into readable java
via annotated java workflow nets. In Proc. 8th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools (CPN 2007), pages 39–58, 2007.

19. B. Lindstrøm and L. Wells. Annotating coloured petri nets. In Proc. of the Fourth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
pages 39–58, 2002.

20. Sebastian Mödersheim. Algebraic properties in alice and bob notation. In ARES,
pages 433–440. IEEE Computer Society, 2009.

21. K.H. Mortensen. Automatic Code Generation Method Based on Coloured Petri
Net Models Applied on an Access Control System. In Proc. of ATPN’00, volume
1825 of LNCS, pages 367–386. Springer, 2000.

22. OMG Model Driven Architecture. Web Site. http://www.omg.org/mda/.
23. W. Reisig. Petri Nets - An Introduction, volume 4 of EATCS Monographs on

Theoretical Computer Science. Springer-Verlag, 1985.
24. Security Protocols Open Repository. Kao chow authentication v.1. http://www.

lsv.ens-cachan.fr/Software/spore/kaoChow1.html.

190 PNSE’11 – Petri Nets and Software Engineering

Part IV

Poster Abstracts

A Goal Based Approach on top of Petri Nets

Nejm Saadallah and Benoit Daireaux

IRIS 4068 Stavanger Norway nejm.saadallah@iris.no , IRIS 4068 Stavanger Norway
benoit.daireaux@iris.no

Abstract. This poster presents ongoing work and mainly proposes a
way to model goals on a Petri net model. We consider that the basic
functioning of many machines can be captured in a Petri net model, while
the environment where the machine is deployed is often too complex to
be modelled in Petri nets. We handle the influence of the environment
on the choice of operations by the so-called external agents, and show
how these agent’s goals could be studied before real deployment.

Keywords: Control System, Agents, Supervisory Control, Petri Net,
Model building

1 Problem Formulation

The basic idea of our approach is to use Petri nets [6] to model the dynamic of
machines [1, 3, 5, 4], regardless of the environments in which they are deployed,
and use the notion of agents’goals to model the influences of the environments
on the machine’s behaviour. Our approach is motivated by two facts. The first
fact is that basic functioning of many machines can be captured in a Petri net
model. The second fact is that the environments in which a given machine is
deployed are often hard to model within Petri nets. In contrast with synchronous
Petri nets [2] which include sensory data into transition firing rules, we consider
sensory data as inputs to external agents that need to interact with the machine.

Fig. 1. Actions are chosen ac-
cording to a logic control that
is captured using the concept
of control interpreted Petri nets.
The machine commands affect
the surrounding environment,
which is reflected in sensory
data. An external agent could
be a software or human agent
continuously analyses sensory
data, and triggers actions.

In this work we are interested in finding a systematic approach for studying
the behaviour of agents, based on their respective goals. Given a set of agents
acting on a machine that is modelled in Petri net, how can we classify the
behaviour of these agents? To the system designer, this approach is intended to
give an understanding of the system prior to its implementation. Modelling the
execution policy, that is, how the interaction between the agents and the Petri
net model could be implemented is not addressed in this paper, but is shortly
discussed in Section 3.

2 Modelling Goals

Fig. 2. Shows a simple elevator en-
hanced with 5 agents. Light mainte-
nance agent will trigger every period
of time to check whether the light lamp
is still working or not. Elevator dis-
abling agent will trigger if there is a
fire in the building and no person in
the elevator, to keep the door closed.
Goods delivery agent moves the el-
evator to the floor 0. VIP agent re-
quests the elevator to be at the third
floor with the door open. Air con-
ditioning agent, when triggered the
door of the elevator stays open for a
period of time.

The five agents shown in Figure 2, are categorised according to four relations
as illustrated in Table 1. The four relations are defined as follows:
Distinctly Inclusive goals: We say that a goal ga distinctly includes gb if by
achieving ga, gb is also achieved.
Mutually Inclusive goals: We say that two goals ga and gb are mutually
inclusive if ga distinctly includes gb, and gb distinctly includes ga.
Partially Inclusive goals: We say that ga partially include gb, when only some
markings that achieve ga also achieve gb but not all of them.
Mutually Exclusive goals: We say that two goals ga and gb are mutually
exclusive when they can not be achieved together.

3 Conclusion and Future Work

In this paper we have addressed some aspects that are related to machines de-
ployed in complex environments. We believe that the basic functioning of many

194 PNSE’11 – Petri Nets and Software Engineering

Table 1. Summary of the relations between the five goals of Figure 2

Goals Mutual Mutual Distinct Partial
Exclusion Inclusion Inclusion Inclusion

Light maintenance g1 g4, g5 g2 g2 g3 via M1

Elevator disabling g2 g4, g5 g1 g1 g3 via M1

Goods delivery g3 g4 No No g5 via M0, g1
and g2 via M1

VIP g4 g1,g2,g3 No g5 No
Air conditioning g5 g1,g2 No No g3 via M0, g4

via M7

machines can be captured in a Petri net model, while the environments where
the machines are deployed are often too complex to model in Petri nets. We con-
sider that the influence of the environment on the machine is handled by agents,
and raise the the following question: how agents acting on a machine can be cat-
egorised? We answer the question by introducing four properties, and use these
properties to analyse some behavioural aspects, prior to system implementation
as illustrated in Table 1.

We focused on the off-line analyses of agents acting on a machine, but we
have not studied the on-line problematic, in other words the execution policy.
When several agents are involved, which one should have the priority to execute?
Another interesting question would be to find the set of necessary agents that
guaranty some safety levels. To be more precise, could we provide a Petri net
modelled machine with a set of safety agents, such that even in the presence of
other faulty agents, the system guaranties the specified safety level? We believe
that this work could be done within the Petri net formalism, and will be the
subject of our future efforts.

References

1. Christos G. Cassandras and Stephane Lafortune. Introduction to discrete event
systems. 2006.

2. René David and Hassane Alla. Discrete, Continuous, and Hybrid Petri Nets.
Springer, 1 edition, November 2004.

3. B. Hrz and M. C. Zhou. Modeling and Control of Discrete-event Dynamic Systems:
with Petri Nets and Other Tools. Springer Publishing Company, Incorporated, 2nd
edition, 2007.

4. Vedran Kordic, editor. Petri Net, Theory and Applications. I-Tech Education and
Publishing, 2007.

5. Tadao Murata. Petri nets: Properties, analysis and applications. pages 541–580,
April 1989. NewsletterInfo: 33Published as Proceedings of the IEEE, volume 77,
number 4.

6. Carl Adam Petri. Communication with automata. PhD thesis, Univ. Hamburg,
1966.

N. Saadallah and B. Daireaux: A Goal Based Approach on top of Petri Nets 195

PNTM – Integration of Petri Nets and
Transactional Memory

Weiyi Wu, Yao Zhang, Shengyuan Wang, and Yuan Dong

Department of Computer Science and Technology , Tsinghua University, Beijing,
100084, China

w1w2y3@gmail.com wwssyy@tsinghua.edu.cn

PNTM demonstrates a new concurrent programming model, providing explicit
concurrency among cooperative transactions with correctness. It integrates a
special Petri net and transactional memory, and improves the performance of
transactions by decreasing the rate of conflicts. The GUI part of PNTM
environment is based on PNK [1], the compiler is a modified GJC [2], and the
runtime is based on DSTM2 [3].

Editor The IDE provides a simple GUI with a code editor and a net editor.
The editor for Petri net system is modified from PNK. All elements can have
extra fields and be edited visually. The extra fields such as resources in places
and code in transitions all correspond special variables and functions in the
code, as in Table 1.

Table 1. Extra fields in Petri nets’ elements and corresponding elements in code

code in transition petrinet function name
resource in place resource variable
inscription in arc resource variable

Virtual Machine The code editor can compile code along with Petri nets.
Before compilation, the Petri nets are interpreted to internal representation for
static check. In order to guarantee correctness at the level of Petri nets, the
Petri net must meet constraints below:

1. All resources must have different names.
2. One resource should appear at no more than one place at any time.
3. The input arcs to one transition should have no common resource.
4. The output arcs from one transition should have no common resource. Be-

sides, the resources in output arcs must be the subset of resources in input
arcs.

After checking the correctness at the level of Petri nets, the editor will append
a piece of code for building Petri Net simulator at runtime. Hence the simulator
is created and initialized at runtime. The runtime provide 5 APIs as below:

1. AddTransition(transition, code) adds transition.
2. AddPlace(place, resource) adds place.
3. AddArc(source, target, inscription) adds arc.
4. Start() starts simulation.
5. Join() terminates simulation.

The runtime is a Petri nets VM using DSTM2. The first 3 API can build
up a simulator of a Petri net and the last 2 API control the simulator. The
simulator allocate a DSTM2 Thread for every transition in the net. The Threads
are all waiting for notification. Only notified Thread can consume resources,
call function and produce new resources. A global lock is used to protect all
resources in order to make manipulation on resources atomic and prevent dead-
lock. Some optimizations accelerate the check-and-consume process. Hence the
overhead is relatively low. When the transition consumes resources and is ready
to fire, corresponding petrinet function is called using reflection. If all global
variables protected by STM successfully commit, the transition will produce new
resources. Otherwise the transition will revert all state and return consumed
resources.

Compilation At the early stage of compilation, the compiler will recognize
and mark new keyword petrinet, resource, global. The global variables
need to transform to instances of pre-defined interfaces in order to meet
requirement of DSTM2’s APIs. For example, equivalent code to transformed
“global int a;” is shown in Table 2. AInt refers to “Atomic Integer”.

Table 2. Equivalent code to transformed code

original code equivalent code pre-defined interface

global int a;
AInt a =
factory_AInt.create();

@atomic interface AInt {
int getValue ();
void setValue (int value);
}
Factory<AInt> factory_AInt =
Thread.makeFactory(AInt.class);

After AST is built, the compiler will check the semantic correctness. The
functions with petrinet modifier and Petri nets themselves should meet con-
straints below:

1. petrinet function must have function body.
2. petrinet function should have no parameter.
3. Only resource, global and local variables can be used in a petrinet func-

tion.
4. Only petrinet function can be called in transition.
5. Resources in incoming arcs of a transition must be a superset of all resource

variable used in corresponding petrinet function.

W. Wu, Y. Zhang, S. Wang, Y. Dong: Petri Nets and Transactional Memory 197

In addition, all references of global variables and all left-values consisted
of global variables must be transformed to proper getter and setter in order
to meet requirement of DSTM2’s API. Equivalent code to getter and setter is
shown in Table 3.

Table 3. Equivalent code to getter and setter

transform type original code equivalent code
initializer global int a = 0; ...;a.setValue(0);
reference x = a + 1; x = a.getValue() + 1;
left-value a = x + 1; a.setValue(x + 1);
self-operation a++; a.setValue(a.getValue() + 1);

The rest of compilation is the same with GJC.

Future Work We are making efforts to some basic performance evaluation.

References

1. INA:Integrated Net Analyzer, at http://www.informatik.hu-
berlin.de/lehrstuehle/automaten/ina.

2. GJC available at : http://www.sun.com/software/communitysource/j2se
3. Maurice Herlihy, Victor Luchangco, Mark Moir, A Flexible Framework for Imple-

menting Software Transactional Memory, In Preceedings of OOPSLA’06, Pages 253-
262, 2006.

198 PNSE’11 – Petri Nets and Software Engineering

	Frontmatter
	Title
	Publication/Copyright
	Preface
	Contents

	Part I Invited Talks
	Unfolding Models of Asynchronous Systems: Applications to Analysis and Synthesis
	Victor Khomenko
	Design, Modelling and Analysis of a Workflow Reconfiguration
	Manuel Mazzara, Faisal Abouzaid, Nicola Dragon and Anirban Bhattacharyya

	Part II Long Presentations
	Efficient Implementation of Prioritized Transitions for High-level Petri Nets
	Michael Westergaard and H.M.W. (Eric) Verbeek
	Modelling Local and Global Behaviour: Petri Nets and Event Coordination
	Ekkart Kindler
	Towards Verifying Parallel Algorithms and Programs using Coloured Petri Nets
	Michael Westergaard
	Bounded Model Checking Approaches for Verification of Distributed Time Petri Nets
	Artur Meski, Agata Półrola, Wojciech Penczek, Bozena Wozna-Szczesniak and Andrzej Zbrzezny
	Extending PNML Scope: the Prioritised Petri Nets Experience
	Lom-Messan Hillah, Fabrice Kordon, Charles Lakos and Laure Petrucci

	Part III Short Presentations
	Specialisation and Generalisation of Processes
	Christine Choppy, Jörg Desel and Laure Petrucci
	Integrating Verification into the PAOSE Approach
	Marcin Hewelt, Thomas Wagner and Lawrence Cabac
	Transitions as Transactions
	Shengyuan Wang, Weiyi Wu, Yao Zhang and Yuan Dong
	A Component Framework where Port Compatibility Implies Weak Termination
	Debjyoti Bera, Kees M. van Hee, Michiel van Osch and Jan Martijn van der Werf
	Improving the Development Tool Chain in the Context of Petri Net-Based Software Development
	Tobias Betz, Lawrence Cabac and Matthias Güttler
	On the use of Pragmatics for Model-based Development of Protocol Software
	Kent Inge Fagerland Simonsen

	Part IV Poster Abstracts
	A Goal Based Approach on top of Petri Nets
	Nejm Saadallah and Benoit Daireaux
	PNTM – Integration of Petri Nets and Transactional Memory
	Weiyi Wu, Yao Zhang, Shengyuan Wang and Yuan Dong

