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Preface

These proceedings contain the nine peer-reviewed contributions accepted for the Second

International Workshop on Biological Processes & Petri Nets (BioPPN 2011), held as a

satellite event of PETRI NETS 2011, in Newcastle, UK, on June 20, 2011. This work-

shop has been organised as a communication platform for researchers interested in the

application of Petri nets in the broad field of integrative biology.

Integrative biology aims at deciphering essential biological processes that are driven by

complex mechanisms, involving miscellaneous interacting molecular compounds. In this

context, the need for appropriate mathematical and computational modelling tools is widely

advocated. Petri nets have proved their usefulness for the modelling, analysis, and simula-

tion of a diversity of biological networks, covering qualitative, stochastic, continuous and

hybrid models. The deployment of Petri nets to study biological applications has not only

generated original models, but has also motivated fundamental research.

We received two types of contributions: research papers and work-in-progress papers. All

papers have been reviewed by four to six reviewers coming from or being recommended

by the workshop’s Program Committee. The list of reviewers comprises 30 professionals

of the field. The nine accepted papers (with an acceptance rate of 82%) involve 41 authors

coming from 9 different countries. In summary, the workshop proceedings enclose theo-

retical contributions as well as biological applications, demonstrating the interdisciplinary

nature of the topic.

The workshop was complemented by an invited talk Systems Biology in Supercomputing
Environment given by Satoru Miyano from Human Genome Center, Institute of Medical

Science at the University of Tokyo in Japan.

As the hosting conference was originally planned to take place in Japan, it was an explicit

goal of our workshop to promote the communication between Europe and Asia. We are es-

pecially glad that three papers from Japanese authors made it into the workshop. We would

like to express our sympathy with the Japanese people and do hope that the precautions by

the Steering committee will turn out to be overprotecting ones.

For more details see the workshop’s website

http://www-dssz.informatik.tu-cottbus.de/BME/BioPPN2011.

June 2011 Monika Heiner and Hiroshi Matsuno
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Optimal Control of Asynchronous Boolean
Networks Modeled by Petri Nets

Koichi Kobayashi and Kunihiko Hiraishi

Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
Tel:+81-761-51-1282, Fax:+81-761-51-1149

{k-kobaya,hira}@jaist.ac.jp

Abstract. A Boolean network model is one of the models of gene reg-
ulatory networks, and is widely used in analysis and control. Although
a Boolean network is a class of discrete-time nonlinear systems and ex-
presses the synchronous behavior, it is important to consider the asyn-
chronous behavior. In this paper, using a Petri net, a new modeling
method of asynchronous Boolean networks with control inputs is pro-
posed. Furthermore, the optimal control problem of Petri nets expressing
asynchronous Boolean networks is formulated, and a solution method is
proposed. The proposed approach provides us a new control method of
gene regulatory networks.

1 Introduction

In recent years, there have been a lot of studies on modeling, analysis, and
control of gene regulatory networks in both the control community and the the-
oretical biology community. Gene regulatory networks are in general expressed
by ordinary/partial differential equations with high nonlinearity and high di-
mensionality. In order to deal with such a system, it is important to consider a
simple model, and various models such as Bayesian networks, Boolean networks,
hybrid systems (piecewise affine models), and Petri nets have been developed so
far (see e.g., [14]). In control problems, Boolean networks and hybrid systems are
frequently used [1, 3, 4, 17, 18]. However, in the hybrid systems-based approach,
a class of gene regulatory networks are limited to low-dimensional systems, be-
cause the computation time to solve the control problem is too long. In Boolean
networks, dynamics such as interactions between genes are expressed by Boolean
functions [15]. Although there is a criticism that a Boolean network is too simple
as a model of gene regulatory networks, this model can be relatively applied to
large-scale systems. Furthermore, since the behavior of gene regulatory networks
is probabilistic by the effects of noise, a probabilistic Boolean network (PBN)
has been proposed in [20].

Although a Boolean network is a class of discrete-time nonlinear systems and
expresses the synchronous behavior, it is important to consider the asynchronous
behavior. Asynchronous Boolean networks have been proposed in [12, 22]. In
[12], we assume that the updating time of the concentration level of each gene
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is given in advance. In [22], asynchronous Boolean networks are modeled by
non-deterministic dynamical systems. Furthermore, the asynchronous behavior
is expressed as the probabilistic behavior. However, in these two methods, the
asynchronous behavior is not directly modeled.

On the other hand, a Petri net is well known as a model expressing the asyn-
chronous behavior [25]. A Petri net is a class of directed bipartite graphs, in
which the nodes represent transitions and places. The methods to express asyn-
chronous Boolean networks as Petri nets have been proposed in [8, 21]. However,
in these methods, the control input is not considered, and these methods can-
not be directly applied to the control problem. The control input in biological
networks has the following significance. For example, the value of the control
input expresses whether a stimulus is given to a cell. Then the control input is
designed to obtain the state trajectory that transits from the initial state to the
desired one. So the control input can represent the current status of therapeutic
interventions, which are realized by radiation, chemotherapy, and so on. In order
to develop gene therapy technologies (see e.g., [16, 19]) in future, it is important
to consider control methods of Boolean networks.

Thus in this paper, the optimal control problem of asynchronous Boolean
networks modeled by Petri nets is discussed. First, based on the method proposed
in [8] and the notation of external input places [13, 23], we propose a new method
to transform asynchronous Boolean networks with control inputs into Petri nets
with external input places. Furthermore, the obtained Petri net is transformed
into a logical dynamical system, which is a class of linear systems with binary
states and binary inputs. Next, the optimal control problem is formulated, and
the biological significance is also discussed by using a simple example. Finally,
the solution method of the optimal control problem is proposed. In the proposed
solution method, the optimal control problem is reduced to an integer linear
programming (ILP) problem. The proposed approach provides us a new control
method of gene regulatory networks.

This paper is organized as follows. In Section 2, synchronous Boolean net-
works and asynchronous Boolean networks are introduced. In Section 3, Petri
nets expressing asynchronous Boolean networks are derived. In Section 4, we
explain the method to transform the obtained Petri net into a logical dynamical
system. In Section 5, the optimal control problem is formulated, and in Section
6, a solution method is proposed. In Section 7, we conclude this paper.
Notation: Let R denote the set of real numbers. Let {0, 1}m×n denote the set
of m× n matrices, which consists of elements 0 and 1. For the finite set M , let
|M | denote the number of elements. Let In and 0m×n denote the n× n identity
matrix and the m × n zero matrix, respectively. For simplicity of notation, we
sometimes use the symbol 0 instead of 0m×n, and the symbol I instead of In.
For a matrix M , let MT denote the transpose of M .

2 Synchronous/Asynchronous Boolean Networks

First, we explain synchronous Boolean networks (SBNs).

8



Consider the following SBN:

x(k + 1) = fa(x(k)) (1)

where x ∈ {0, 1}n is the state (e.g., the concentration of genes), k = 0, 1, 2, . . .
is the discrete time. fa : {0, 1}n → {0, 1}n is a given Boolean function with
logical operators such as AND (∧), OR (∨), and NOT (¬). Since the SBN (1) is
deterministic, x(k + 1) is uniquely determined for a given x(k).

To consider the control problems, we add the control input to the SBN (1)
as follows:

x(k + 1) = f(x(k), u(k)) (2)

where u ∈ {0, 1}m is the control input, i.e., the value of u (e.g., the concentration
of genes) can be arbitrarily given, and f : {0, 1}n × {0, 1}m → {0, 1}n is a given
Boolean function. The i-th element of the state x, the i-th element of the control
input u and the i-th element of the Boolean function f are denoted by xi, ui

and fi, respectively. Also in the SBN (2), x(k + 1) is uniquely determined for
given x(k) and u(k).

Next, we explain asynchronous Boolean networks (ABNs). Some methods
for expressing ABNs have proposed so far [12, 22]. In this section, we explain
a method in [22] for expressing ABNs as nondeterministic systems. A Petri
net-based approach will be explained in Section 3. In the case that ABNs are
expressed as nondeterministic systems, the behavior of ABNs is obtained by the
union of the behaviors of the following n SBNs:

Σi :

{
xi(k + 1) = fi(x(k), u(k)),
xj(k + 1) = xj(k), ∀j ∈ {1, 2, . . . , n} \ {i}, (3)

where i = 1, 2, . . . , n.
We show an example of SBNs and ABNs.

Example 1. As a simple example, consider the following SBN of an apoptosis
network [9]: ⎧⎨

⎩
x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x2(k) ∨ u(k)

(4)

where the concentration level (high or low) of the inhibitor of apoptosis proteins
(IAP) is denoted by x1, the concentration level of the active caspase 3 (C3a)
by x2, and the concentration level of the active caspase 8 (C8a) by x3. The
concentration level of the tumor necrosis factor (TNF, a stimulus) is denoted by
u, and is regarded as the control input.

In the case of synchronous Boolean dynamics, state transitions can be com-
puted by directly using (4). For example, for x(0) = [ 1 1 1 ]T and u(k) = 0,
we obtain x(1) = [ 0 0 1 ]T . By computing the transition from each state, we
obtain the state transition diagram in Fig. 1 (left). In Fig. 1 (left), the number
assigned to each node denotes x1, x2, x3 (elements of the state),

9



Fig. 1. (Left) State transition diagram of (4) and u(k) = 0, (Right) State transition
diagram of (5), (6), (7) and u(k) = 0.

In the case of asynchronous Boolean dynamics, we consider the following
three SBNs

Σ1 :

⎧⎨
⎩

x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = x2(k),
x3(k + 1) = x3(k),

(5)

Σ2 :

⎧⎨
⎩

x1(k + 1) = x1(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x3(k)

(6)

Σ3 :

⎧⎨
⎩

x1(k + 1) = x1(k),
x2(k + 1) = x2(k),
x3(k + 1) = x2(k) ∨ u(k)

(7)

State transitions can be computed by using (5), (6), (7). For example, for x(0) =
[ 1 1 1 ]T and u(k) = 0, we obtain x(1) = {[ 0 1 1 ]T , [ 1 0 1 ]T , [ 1 1 1 ]T }.
In a similar way, by computing the transition from each state, we obtain the
state transition diagram in Fig. 1 (right).

Comparing the left figure with the right figure in Fig. 1, we see that a part
of behaviors is clearly different. ��

In this paper, ABNs are modeled by Petri nets, not multiple SBNs. By us-
ing Petri nets, we can consider several situations. For example, although each
xi is independently activated in (3), activation of combinations of xi can be
considered.

3 Transformation of Boolean Networks into Petri Nets

Using each Boolean function fi in the SBN (2), consider to express an ABN
as a Petri net. Based on a complementary-place transformation, a Petri net

10



expressing an ABN has been proposed in [8], but the control input has not been
considered. In this paper, as an extension of the method in [8], we propose a
modeling method of a Petri net expressing an ABN with the control input.

First, some notations are prepared. By I(j), j = 1, 2, . . . , n, denote the state
and the control input included in the Boolean function fj . In the example of (4),
we obtain I(1) = {x2, u}, I(2) = {x1, x3}, and I(3) = {x2, u}. Next, we define
a logical parameter Kj(X) ∈ {0, 1}, X ⊆ I(j), j = 1, 2, . . . , n. If the value of
each element included in X is ‘1’, and the value of the other element is ‘0’, then
either Kj(X) = 1 or Kj(X) = 0 is determined. In the example of (4), we obtain

K1(∅) = 0, K1({x2}) = 0, K1({u}) = 1, K1({x2, u}) = 0,

K2(∅) = 0, K2({x1}) = 0, K2({x3}) = 1, K2({x1, x3}) = 0,

K3(∅) = 0, K3({x2}) = 1, K3({u}) = 1, K3({x2, u}) = 1.

Next, consider to derive a Petri net expressing Boolean networks. In the
derived Petri net, the number of places is given as 2(n+m), that is, for each xi

in (2), two places xi and xi are prepared. In a similar way, for each ui in (2),
two places ui and ui are prepared. xi and ui are called complementary places
[8]. The number of transitions is given as

∑n
i=1 2

|I(i)|. In the example of (4),
the number of transitions is given as 22 + 22 + 22 = 12. From the property of
Boolean networks, the following assumptions are made.

Assumption 1 The maximum number of tokens in each place is equal to 1.

Assumption 2 A sum of the number of tokens in xi (ui) and that in xi (ui)
is equal to 1.

In addition, suppose that ui and ui are given as an external input place [13,
23]. In ui and ui, a token is arbitrary generated, but the above two assumptions
must be satisfied.

Under the above preparations, we define a Petri net expressing an ABN. In
[8], the Petri net expressing an ABN without the control input is defined. The
following definition gives the Petri net expressing an ABN with the control input,
and is an extension of the definition in [8].

Definition 1. For a given SBN (2), the Petri net expressing an ABN is defined
as follows:

Nc = (P ∪ Pc, T, Pre, Post) (8)

where

• P = {x1, x1, x2, x2, . . . , xn, xn} is the set of places,
• Pc = {u1, u1, u2, u2, . . . , um, um} is the set of external input places,
• T = {txi,X , i = 1, 2, . . . , n,X ⊆ I(i)} is the set of transitions,
• Pre : (P ∪ Pc) × T → {0, 1} is the mapping defining arcs between places
and transitions,
• Post : T ×P → {0, 1} is the mapping defining arcs between transitions and
transitions.

11



The functions Pre and Post are defined as follows:

(i) Case of xi �∈ I(i) (xi is not a self-regulator): For a given transition txi,X ,
the following terms are defined (all the other terms are equal to zero):

Pre(xi, txi,X) = Post(txi,X , xi) = 1−Ki(X),

P re(xi, txi,X) = Post(txi,X , xi) = 1−Ki(X),

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ X,

Pre(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ I(i)−X,

Pre(uj , txi,X) = 1, ∀uj ∈ X,

Pre(uj , txi,X) = 1, ∀uj ∈ I(i)−X.

(ii) Case of xi ∈ I(i) (xi is a self-regulator): Consider a given transition txi,X .

if xi ∈ X, then only the case of Ki(X) = 0 is considered. Therefore, the following
terms are defined:

Pre(xi, txi,X) = Post(txi,X , xj) = 1,

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ X, xj �= xi,

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ I(i)−X,

Pre(uj , txi,X) = 1, ∀uj ∈ X,

Pre(uj , txi,X) = 1, ∀uj ∈ I(i)−X.

if xi �∈ X, then only the case of Ki(X) = 1 is considered. Therefore, the following
terms are defined:

Pre(xi, txi,X) = Post(txi,X , xj) = 1,

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ X,

Pre(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ I(i)−X, xj �= xi,

P re(uj , txi,X) = 1, ∀uj ∈ I(i)−X,

Pre(uj , txi,X) = 1, ∀uj ∈ X.

In the above definition, a sum of the number of tokens in ui and that in ūi

becomes zero by firing some transition. In this case, to satisfy Assumption 1 and
Assumption 2, a token is generated in either ui or ūi.

We show a simple example.

Example 2. Consider the following simple SBN:

{
x1(k + 1) = x2(k),
x2(k + 1) = u(k)

(9)

From x1(k + 1) = x2(k), we obtain K1(∅) = 0 and K1({x2}) = 1. In a similar
way, from x1(k + 1) = u(k), we obtain K2(∅) = 0 and K1({u}) = 1. Then
we consider four transitions tx1,∅, tx1,{x2}, tx2,∅, and tx2,{u}. We denote these

12



Fig. 2. Petri net expressing an ABN

transitions by tx1
, tx1,x2

, tx2
, and tx2,u, respectively. Then we obtain the Petri

net in Fig. 2. In addition, Pre and Post in (8) are obtained as follows:

Pre =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tx1
tx1,x2

tx2
tx2,u

x1 1 0 0 0
x̄1 0 1 0 0
x2 0 1 1 0
x̄2 1 0 0 1
u 0 0 0 1
ū 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Post =

⎡
⎢⎢⎢⎢⎣

x1 x̄1 x2 x̄2

tx1
0 1 0 1

tx1,x2
1 0 1 0

tx2
0 0 0 1

tx2,u 0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

Suppose that one token is included in place x̄1, x̄2, and u. Then the transition
tx2,u may fire. If the transition tx2,u fire, then one token is moved from x̄2 and u
to x2. A pair of x2 and x̄2 satisfies Assumption 1 and Assumption 2, but a pair
of u and ū does not satisfy Assumption 2. So one token must be added in either
u and ū with fire. ��

4 Transformation of Petri Nets into Logical Dynamical
Systems

To consider the optimal control problem, it is desirable to transform a Petri net
(8) into some linear form. In this section, based on a framework on modeling of
hybrid dynamical systems [5], logical dynamical systems expressing Petri nets
are derived.

Logical dynamical systems are given as a pair of linear state equations and
linear inequality constraints with binary state variables and binary control input
variables. A general form of logical dynamical systems is defined as follows.

Definition 2. A logical dynamical system is given as

x(k + 1) = Ax(k) +Bv(k), (10)

Cx(k) +Dv(k) ≤ E (11)

where x(k) ∈ {0, 1}nd is the state variable, and v(k) ∈ {0, 1}md is the input
variable including auxiliary variables,
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In modeling of hybrid dynamical systems, a mixed logical dynamical (MLD)
system [5] is well known. The MLD system can be derived by replacing x(k) ∈
{0, 1}nd and v(k) ∈ {0, 1}md in (10), (11) with x(k) ∈ Rnc × {0, 1}nd and
v(k) ∈ Rmc ×{0, 1}md . Since a Petri net is a class of discrete event systems, the
MLD system is not used, and the logical dynamical system (10), (11) is used.

Let us consider to transform the Petri net (8) into the logical dynamical
system (10), (11). Some notations are prepared. By xi(k), x̄i(k), ui(k), ūi(k) ∈
{0, 1}, denote existence or non-existence of a token in place xi, x̄i, ui, ūi ∈ {0, 1}
at time k. k may be regarded as the k-th firing in a firing sequence. Since
xi(k), x̄i(k), ui(k), ūi(k) are binary variables, Assumption 1 satisfies. To satisfy
Assumption 2, xi(k) + x̄i(k) = 1 and ui(k) + ūi(k) = 1 are imposed. Next, by
txi,Xj

(k) ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , 2|I(i)|, denote fire in the transition
txi,Xj

. If txi,Xj
(k) = 1, then the transition txi,Xj

fires at time k. Otherwise, txi,Xj

does not fire. By using these notations, Petri nets (8) is transformed into logical
dynamical systems.

First, a simple example is shown.

Example 3. Consider the Petri net in Fig. 2. From the property of fire, we obtain
the following system expressing the Petri net in Fig. 2:

x1(k + 1) = tx1,x2
(k)x̄1(k)x2(k) + (1− tx1,x2

(k))x1(k)

−tx1
(k)x1(k)x̄2(k), (12)

x̄1(k + 1) = tx1
(k)x1(k)x̄2(k) + (1− tx1

(k))x̄1(k)

−tx1,x2
(k)x̄1(k)x2(k), (13)

x2(k + 1) = tx1,x2
(k)x̄1(k)x2(k) + tx2,u(k)x̄2(k)u(k)

+(1− tx1,x2
(k)− tx2,u(k))x2(k)− tx2

(k)x2(k)ū(k), (14)

x̄2(k + 1) = tx1
(k)x1(k)x̄2(k) + tx2

(k)x2(k)ū(k)

+(1− tx1
(k)− tx2

(k))x̄2(k)

−tx1
(k)x1(k)x̄2(k)− tx2,u(k)x̄2(k)u(k). (15)

If the number of firing transitions at each time is limited to 1, then the inequality
condition

tx1
(k) + tx1,x2

(k) + tx2
(k) + tx2,u(k) ≤ 1 (16)

is imposed. Then x1(k), x̄1(k), x2(k), x̄2(k) ∈ {0, 1}, x1(k) + x̄1(k) = 1, and
x2(k) + x̄2(k) = 1 hold thanks to the condition (16), u(k), ū(k) ∈ {0, 1}, u(k) +
ū(k) = 1, and the initial condition x1(0), x̄1(0), x2(0), x̄2(0) ∈ {0, 1}, x1(0) +
x̄1(0) = 1, x2(0) + x̄2(0) = 1. The system (12)–(15) is a nonlinear system,
and can be linearized by using Lemma 1 in Appendix A. For example, z1(k) =
tx1,x2

(k)x̄1(k)x2(k) is equivalent to

tx1,x2
(k) + x̄1(k) + x2(k)− z1(k) ≤ 2,

−tx1,x2
(k)− x̄1(k)− x2(k) + 3z1(k) ≤ 0.

By applying Lemma 1 to the other terms, we can obtain the logical dynamical
system expressing the Petri net in Fig. 2. ��
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From this example, we see that the Petri net (8) can be expressed by the
logical dynamical system (10), (11). Furthermore, when the Petri net (8) is
expressed by the logical dynamical system (10), (11), variables x, v are given as

x(k) = [ x1(k) x̄1(k) x2(k) x̄2(k) · · · xn(k) x̄n(k) ]
T
,

v(k) = [ U(k) T (k) Z(k) ]
T
,

U(k) = [ u1(k) ū1(k) u2(k) ū2(k) · · · um(k) ūm(k) ]
T
,

T (k) =
[
tx1,X1

(k) · · · tx1,X2|I(1)| (k) · · · txn,X1
(k) · · · txn,X2|I(n)| (k)

]T
where Z(k) is a auxiliary binary variable obtained by applying Lemma 1. Ma-
trices/vectors A,B,C,D,E in (10), (11) can be derived from Pre, Post in the
Petri net (8) and Lemma 1.

Remark 1. One of the simple methods for modeling of ABNs is to express ABNs
as switched systems with 2n subsystems. 2n subsystems are derived by all com-
binations of Boolean functions f1, f2, . . . , fn in (2). In the case of (9) in Example
2, the following 2n = 4 subsystems:

Σ1 : x1(k + 1) = x1(k), x2(k + 1) = x2(k),

Σ2 : x1(k + 1) = x2(k), x2(k + 1) = x2(k),

Σ3 : x1(k + 1) = x1(k), x2(k + 1) = u(k),

Σ4 : x1(k + 1) = x2(k), x2(k + 1) = u(k)

are obtained. From these subsystems, we can obtain the following system ex-
pressing an ABN:

x1(k + 1) = (δ1(k) + δ3(k))x1(k) + (1− δ1(k)− δ3(k))x2(k), (17)

x2(k + 1) = (δ1(k) + δ2(k))x2(k) + (1− δ1(k)− δ2(k))u(k) (18)

where δ1(k), δ2(k), δ3(k) are binary variables satisfying δ1(k)+δ2(k)+δ3(k) ≤ 1,
and correspond to Σ1, Σ2, Σ3, respectively. Furthermore, z1 := δ1x1, z2 := δ3x1,
z3 := δ1x2, z4 := δ3x2, z5 := δ2x2, z6 := δ1u, and z7 := δ2u are defined, and
Lemma 1 is applied to z1, z2, . . . , z7. Thus we can obtain the logical dynamical
system (10), (11). This method is called here a direct approach.

Comparing (17), (18) with (12)–(15), we see that the system (17), (18) is
simpler than the system (12)–(15). However, for general cases, this fact does
not hold. Here, we focus on the dimension of binary variables to switch Boolean
functions. In (12)–(15), this dimension corresponds to the dimension of binary
variables assigned to transitions, and is given as 4. In (17), (18), this dimen-
sion is given as 3. In general, in the direct approach, the dimension of binary
variables to switch Boolean functions is given as 2n − 1. In the proposed Petri
net-based approach, this dimension, i.e., |T (k)| is given as

∑n
i=1 2

|I(i)|. In real
gene regulatory networks, it is well known that |I(i)| is relatively smaller than
n (see e.g., [2]). For example, in the case of n = 10 and |I(i)| = 3, 2n− 1 = 1023
and

∑n
i=1 2

|I(i)| = 80 are obtained. Thus, in modeling of real gene regulatory
networks, it is not appropriate to use the direct approach, and the proposed
Petri net-based method provides us a simpler modeling method of ABNs. ��
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5 Optimal Control Problem

For the logical dynamical system (10), (11) expressing the Petri net (8), consider
the following optimal control problem.

Problem 1. For the logical dynamical system (10), (11) expressing the Petri net
(8), suppose that the initial state x(0) = x0 satisfying Assumption 1 is given.
Then find an input sequence v(0), v(1), . . . , v(N − 1) minimizing the linear cost
function

J =

N−1∑
k=0

{Qx(k) +Rv(k)}+Qfx(N) (19)

where Q,Qf ∈ R1×nd , R ∈ R1×md are weighting vectors whose element is a
non-negative real number.

For simplicity of discussion, a linear function with respect to x and u is con-
sidered as a cost function, but a quadratic cost function may be used. In addition,
using the offset vector xd ∈ {0, 1}nd and vd ∈ {0, 1}md , x(k) and v(k) may be
replaced to x̂(k) := x(k)−xd and v̂(k) := v(k)−vd. Then it is necessary that the

cost function (19) is also replaced to J =
∑N−1

i=0 {Q|x̂(i)|+R|v̂(i)|}+Qf |x̂(N)|.
In addition, N must be determined according to a given biological network. Al-
though a longer N is desirable, the computation time to solve Problem 1 must
be also considered. For a small N , Problem 1 may be repeatedly solved at each
time. This policy is well known as model predictive control [6].

In Problem 1, we assume that an input sequence v(0), v(1), . . . , v(N − 1) is
arbitrarily determined. However, there is a possibility that a given biological
system does not satisfy this assumption. Then suppose that some candidates of
input sequences are given. In Problem 1, the optimal input sequence minimizing
the cost function (19) is selected among the set of the candidates B ⊆ {0, 1}mdN .
This extension is easy. In this sense, Problem 1 can be applied to optimal control
of asynchronous Boolean networks such that the updating time of each state is
given in advance [12]. Of course, this problem can also be applied to optimal
control of SBNs. Thus Problem 1 includes several situations.

Next, we show an example for setting weighting vectors from the biological
viewpoint.

Example 4. Consider the Boolean network expressing an apoptosis network in
Example 1 again. From (4), we obtain the Petri net (8) with 6 places, 2 exter-
nal input places, and 12 transitions. In addition, from the obtained Petri net,
we obtain the logical dynamical system (10), (11). For the obtained logical dy-
namical system, we consider to find a control strategy such that a stimulus is
not applied as much as possible, and cell survival is achieved. u(k) = 0 implies
that a stimulus is not applied to the system, and x1(k) = 1, x2(k) = 0 express
cell survival [9]. Then as one of appropriate cost functions, we can consider the
following cost function

J =
N−1∑
k=0

{10|x1(k)− 1|+ 10|x2(k)− 0|+ u(k)}
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+100|x1(N)− 1|+ 100|x2(N)− 0|.

By the appropriate coordinate transformation, this cost function can be rewrit-
ten as the form of (19). See also [10–12] for biological examples on the optimal
control problems. ��

6 Reduction to an Integer Linear Programming Problem

Finally, let us consider to reduce Problem 1 to an integer linear programming
(ILP) problem.

Problem 1 can be rewritten by using (10), (11). First, by using

x(k) = Akx0 +

k∑
i=1

Ai−1Bv(k − i)

obtained from the state equation (10), we obtain

x̄ = Āx0 + B̄v̄ (20)

where x̄ := [ xT (0) xT (1) · · · xT (N) ]T , v̄ := [ vT (0) vT (1) · · · vT (N −1) ]T

and

Ā :=

⎡
⎢⎢⎢⎢⎢⎣

Ind

A
A2

...
AN

⎤
⎥⎥⎥⎥⎥⎦
, B̄ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0nd×md
0 · · · 0

B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
AN−1B · · · AB B

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, from the linear inequality (11), we obtain

C̄x̄+ D̄v̄ ≤ Ē (21)

where

C̄ := [ block-diag(C,C, . . . , C) 0 ] ,

D̄ := block-diag(D,D, . . . ,D),

Ē :=
[
ET ET · · · ET

]T
.

Next, the cost function (19) can also be rewritten as

J = Q̄x̄+ R̄v̄ (22)

where Q̄ := [ Q · · · Q Qf ] and R̄ := [ R · · · R ]. By substituting (20) into
(21) and (22), we obtain the following theorem.
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Theorem 1. Problem 1 is equivalent to the following ILP problem.

Problem A:

find v̄ ∈ {0, 1}mdN ,

min (R̄+ Q̄B̄)v̄ + Q̄Āx0,

subject to

[
C̄B̄ + C̄
−L̄W̄

]
v̄ ≤

[
Ē − C̄Āx0

−ln ρ

]
.

Problem A can be solved by using a suitable ILP solver such as IBM ILOG
CPLEX Optimizer [24].

7 Conclusion

In this paper, we have discussed optimal control of asynchronous Boolean net-
works with control inputs. First, we have proposed a method to transform
Boolean networks with control inputs into Petri net with external input places.
Next, after the obtained Petri net is transformed into a logical dynamical sys-
tem, the optimal control problem has been formulated. This problem is a general
formulation including several biological situations. Finally, the optimal control
problem has been reduced to an integer linear programming problem. The pro-
posed approach will be effective for control of several biological systems modeled
by Boolean networks.

One of the future works is to apply the proposed approach to biological
Boolean networks. From the practical viewpoint, an extension to probabilistic
Boolean networks is also important. In addition, for large-scale Boolean net-
works, the computation time to solve the problem will be long. So it is signifi-
cant to consider to reduce the computation time to solve the problem. Then one
of methods to overcome this difficulty is to use a SAT (satisfiability problem)
solver such as zChaff [26]. It is also important to consider approximate solution
methods.

This work was supported by Grant-in-Aid for Young Scientists (B) 23760387
and Scientific Research (C) 21500009.

A Linearization of The Product of Binary Variables

The product of binary variables can be linearized by using the following lemma
[7].

Lemma 1. Suppose that binary variables δj ∈ {0, 1}, j ∈ J are given, where
J is some index set. Then z =

∏
j∈J δj is equivalent to the following linear

inequalities ∑
j∈J

δj − z ≤ |J | − 1, −
∑
j∈J

δj + |J |z ≤ 0

where |J | is the cardinality of J .
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Abstract. Chemical and biological systems have similarities with IT-
systems as they can be observed as sequences of events. Most avail-
able tools propose simulation frameworks to explore biological pathways
(i.e., sequences of events). Simulation only explores a few of the most
probable pathways in the system. On the contrary, techniques such as
model checking, coming from IT-systems analysis, explore all the possi-
ble behaviors of the modeled systems, thus helping to identify interesting
pathways. A main drawback from most model checking tools in the life
sciences domain is that they take as input a language designed for com-
puter scientists, that is not easily understood by non-expert users. We
propose in this article an approach based on Domain Specific Languages.
It provides a comprehensible language to describe the system while al-
lowing the use of complex and powerful underlying model checking tech-
niques.

1 Introduction

Because of their stochastic and combinatorial nature, many biological systems
such as cellular and supra-cellular interactions are very hard to investigate. Cur-
rent practice is mainly limited to the use of in vivo and in vitro experiments.
Investigation through formal models of biological systems is currently a rather
restricted research field, unlike what has been done in other natural sciences
such as chemistry and physics. There is clearly an emerging field of research
where future experiments can be partially performed in silico, i.e., by means
of techniques from computer science. One of the main approaches of biological
modeling is the so-called regulatory networks [17,5]. The main idea of biological
modeling according to the regulatory network approach is to model interbiologi-
cal reactions through a set of interdependent biological rules. This can be seen as
a set of discrete modules having strong interconnections. The occurrence of in-
teresting events in the biological system can be represented as logical properties
expressed on the state of these modules. This is very similar to the kind of prop-
erties computer scientists validate on hardware and software systems (deadlocks,
error states,. . . ).

Among the tools available in this domain, the main analysis approach for reg-
ulatory networks is simulation. Simulation is generating and analyzing a limited
sample of possible system behaviors. This technique is not convenient when the
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main purpose of the research is to look for rare or abnormal behaviors (e.g., can-
cer). The main approach in this case is to use model checking instead of simu-
lation. Model checking consists in generating and analyzing the complete set of
possible states of the system. Naturally, this technique suffers from the drawback
of the enormous number of possible states of biological systems.

It is interesting to note that this problem is well-known to the model checking
community in computer science, where it is called the state space explosion [18].
There is a parallel between cellular interactions and software systems in that the
state space explosion is mainly due to their concurrent nature. Therefore, we can
apply techniques that have been developed for the model checking of hardware
and software systems to biological interactions. Approaches based on a symbolic
encoding of the state space are particularly well-suited for this [4,9].

In this paper we show a work in progress in our group. We present Gene
Regulation Language (GReg), our first attempt to build a framework for mod-
eling and analyzing biological systems based on formal modeling and reasoning.
Advanced techniques for defining Domain Specific Languages, giving their se-
mantics and analyzing them using symbolic model checking are presented. First,
Section 2 describes precisely the biological domain considered by GReg, then
Section 3 outlines the state of the current research in the field and Section 4
describes in detail the creation and usage of Domain Specific Languages. The
following two chapters describe GReg itself. Section 5 describes the language de-
signed for expressing biological mechanisms and the corresponding queries, and
Section 6 provides a simple example taken from the literature. Finally, Section 7
concludes the article and discusses the future research perspectives in this area.

2 Chemical and biological models covered by GReg

tra
nscription splicing tra

nslation

DNA pre-mRNA mRNA protein

Fig. 1: DNA to protein process

The purpose of GReg is to describe genetic regulatory mechanisms control-
ling the DNA to protein process (Figure 1). This process comprises three steps:
transcription, splicing and translation. The regulation of each step can be mod-
eled using standard chemical reactions, presented in Section 2.1. For the tran-
scription initiation we use the genetic regulatory mechanism model, presented
in Section 2.2. Finally we define a cell network in Section 2.3. We separate these
three domain models to clearly distinguish chemical from biological concepts.

We use the same definition of molecule level as presented in [17], if a molecule
has n distinct actions, we define (n + 1) levels. This allows us to use a discrete
formalism to efficiently model the gene expression [17], which is in fact the
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concentration of the gene products. The lowest level is the lowest transcription
rate of a gene.

2.1 Chemical compartment model

A chemical compartment κ = 〈Mκ,R〉 ∈ K , is composed of a non-empty set of
molecules (∅ 6= Mκ ⊆ Molecules) and a set of reactions (R ⊆ Reactions). Two
compartments may be separated by a membrane (i.e., selective barrier), thus
allowing molecule transfer between them.

A chemical reaction ρ = 〈Re,Pr ,Ca, k, typeρ〉 ∈ R, where Re,Pr ,Ca ⊆
M(Mκ)×K , the reactants (Re), products (Pr) and catalysts (Ca) are defined as
the association of a multiset of one molecule (M(Mκ)) with a given compartment
(κ ∈ K ).

Catalysts (Ca) have the particularity to appear as reactants and products
in a chemical reaction. We have chosen to define the catalysts in a distinct set,
therefore no catalyst can appear as reactant or product:
∀m ∈ Mκ,m ∈ Ca =⇒ m /∈ Re ∧m /∈ Pr .

A reaction may be either irreversible or reversible, typeρ ∈ {irr, rev}. In
reversible reactions an equilibrium constant (k) is defined with the ratio of both
direction rates.

2.2 Genetic regulatory mechanism model

A genetic regulatory mechanism µ = 〈Γµ,C 〉, is composed of a non-empty set of
genes (Γµ). Genes are organized into one or more chromosomes (C ). A genetic
regulatory mechanism is contained in a chemical compartment, this specification
will be presented in Section 2.3.

A chromosome c = λ1, . . . λn ∈ C is a sequence of loci. A gene may have
different version (i.e., alleles) at a given chromosome location (i.e., locus). And a
locus λ = 〈Γλ〉 defines a non-empty set of genes (∅ 6= Γλ ⊆ Γµ) that are located
at a given locus. Then the set of all possible chromosomes in a mechanism is the
Cartesian product of the set of genes at each locus:
Chromosomes = Γλ1 × · · · × Γλn .

A gene γ = 〈Mγ , Σ〉 ∈ Γµ is a portion of DNA that codes for at least one
molecule (∅ 6= Mγ ⊆ Mκ), and may contain some regulation sites (Σ ⊆ Sites).

A regulation site σ = 〈Mσ, typeσ〉 ∈ Σ defines the non-empty set of regula-
tory molecules (∅ 6= Mσ ⊆ Mκ) associated to the regulation site σ of a given
gene. Note that when using anti-termination sites, genes order matters, therefore
chromosomes must be defined.

I1 O1 In On start A1 T1 An Tn stop

promoter region transcribed region

Fig. 2: Idealized gene structure
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Our idealized gene structure (Figure 2) is composed of two regions: promoter
and transcribed. Note that the exact position in the gene of each regulatory site
is not specified, i.e.,we are mainly interested in its regulatory role. The type of
a regulation site is typeσ ∈ {I,O,A,T}.

Initiation (I) the portion of DNA where bound activators increase the rate of
the transcription process. It is located in the promoter region;

Operator (O) the portion of DNA where bound repressors block the transcrip-
tion process. It is located in the promoter region;

Anti-termination (A) the portion of DNA where activators continue the tran-
scription process. It is located in the transcribed region. These sites may also
allow the transcription of the next gene;

Termination (T) (also called attenuator) the portion of DNA where repressors
stop the transcription process. It is located in the transcribed region; thus,
it produces a reduced RNA.

2.3 Cell network

The cell network model is designed to model the interactions of different cells
with their environment and also with their inner components (i.e., organelles).
This model authorizes the construction of currently not observed cells, e.g.,
prokaryote with nucleus, eukaryote with multiple nuclei, etc. The validity of the
specification is delegated to the user (i.e., domain expert).

This model defines three chemical compartments, therefore they inherit both
sets Mκ and R.

Organelle, ω = 〈Mκ,R, µ〉 is the lowest compartment in the compartment hi-
erarchy. An organelle may contain a mechanism (µ), e.g., nucleus, mitochon-
drial DNA, etc.

Cell, φ = 〈Mκ,R, µ,Ω〉 contains a possibly empty set of organelles (Ω). The
model of a prokaryote cell would define a mechanism (µ), by cons an eukary-
ote cell would define instead an organelle with a mechanism (i.e., nucleus).

Network, ν = 〈Mκ,R, Φ〉 represents the environment and contains one or more
cells (Φ).

3 Related work

In this section we compare three well-known tools with our approach. We first
define a few criteria such as the kind of analysis, the supported formalism and
the supported exchange format. Table 1 presents a summary of the resulting
comparison.

Domain language To be productive, the syntax of the input language should
be as close as possible to the actual domain of the user. This input lan-
guage can be textual (like in tools that use Systems Biology Markup Lan-
guage (SBML) [8]) or graphical (like Systems Biology Graphical Notation
(SBGN) [11]).
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Simulation & Model Checking Although there are many tools adapted to
biological process design and simulation, only a few of them allow exhaustive
exploration of the state space. While simulation is very useful during model
elaboration, an exhaustive search may help to discover pathological cases
that would have never been explored by simulation.

Discrete & continuous Continuous models are closer to the real biological
systems than discrete models, but unlike the latter they are not adapted for
model checking techniques. Discrete formalisms allow a complete exploration
of the state space while preserving the qualitative properties of the system,
as mentioned in [17].

Exchange format The supported interchange format is an important feature
as it allows us to bridge the gap between different tools and therefore enables
the user to use the most adapted tool to hand. SBML is a common inter-
change format based on XML. It is used to describe biochemical reactions,
gene regulation and many other topics.

Cell Illustrator [16] is an example of a commercial simulation tool for continuous
and discrete domains. The graphical formalism is based on PN, called Hybrid
Functional Petri Nets with extensions (HFPNe), which adds the notions of con-
tinuous and generic processes and quantities [12]. The XML-based exchange file
format used in Cell Illustrator is called CSML.

Gene Interaction Network simulation a.k.a. GinSim [14] is a tool for the model-
ing and simulation of genetic regulatory networks. It models genetic regulatory
networks based on a discrete formalism [6,13]. These models are stored using
the XML-based format ginml. The simulation computes a state transition graph
representing the dynamical behavior network. GINsim uses a graphical Domain
Specific Language (DSL) called Logical Regulatory Graph (LRG) [5]. Models
in LRG are graphs, where nodes are regulatory components (i.e.,molecules and
genes) and arcs are regulatory interactions (i.e., activation and repression) be-
tween the nodes.

Cytoscape [7,15] is an open source software platform for visualizing complex net-
works and integrating these with any type of attribute data. Cytoscape supports
many file formats including PSI-MI and SBML. It has the advantage of adding
features through a plug-in system. Many plug-ins are available for various do-
mains such as biology, bioinformatics, social network analysis and the semantic
web. Over 100 plug-ins are listed on the official website.

4 DSL approach

Model checking involves verifying whether a property holds on the whole set of
possible states of a given model. To generate this complete state space, the model
must be expressed in a formal language intended for this operation, like Petri
Nets (PNs). This makes the model checking approach impractical for people who
do not master these formal languages. We propose using DSLs for this purpose.
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Tool Cell Illustrator GINsim Cytoscape GReg
Domain language 3 3 3 3

Simulation 3 5 3 5

State space 5 3 5 3

Model checking 5 5 5 3

Discrete 3 3 3 3

Continuous 3 5 3 5

Exchange format CSML GINML SBML,. . . GReg

Table 1: Tool comparison table.

A DSL is a programming or specification language tailored for a given do-
main; it presents a reduced set of instructions closely related to this domain.
Using a DSL has two main objectives. First, learning the language should be
easy for someone with enough knowledge about the domain, even if this person
does not have previous knowledge of other languages. Second, the number of
errors made by a novice user should be drastically reduced as the expressivity
of the language is reduced to the minimum.

The DSL semantics are defined by transformation into a target language,
which is a formal language where complex operations (like model checking) can
be performed. Usually, the scope of the target language is broader than the scope
of the DSL. This allows using the same target language and its associated tools
for different DSLs. Moreover, while creating a new DSL, it is often possible to use
an already-existing language as a target, thus facilitating the language creation
process. The results obtained in the target language are translated again into
the DSL and returned to the user. This process is described in Figure 3. After
the creation of the initial model, all the following steps must be fully automatic,
to hide the underlying complexity from the end user.

Domain 
expert

Computation tool

Transform
ation Tr
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or
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Domain Specific 
Language

Model of the system

Model of the system

Formal language

Counter-example

Counter-example

Domain Specific 
Language

Formal language

Automatic 
processing

Manual 
intervention

Fig. 3: DSL computational process
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Fig. 4: DSL creation process

The person in charge of the DSL creation is a language engineer. This person
should obviously have a certain knowledge about the language creation process,
but he should also master the target platform language, in order to define efficient
and correct transformations. Furthermore, he should be in contact with at least
one domain expert, in order to settle the requirements and verify the correctness
and completeness of the language created. The creation of a DSL follows a set of
specific steps. First, the language engineer must identify the abstract concepts
of the domain. These concepts include the basic elements of the domain, the
interactions between these elements and the precise boundaries of the domain
considered. Based on these concepts, the language engineer must define a set of
expressions used to create a specific model in the domain, i.e., a concrete syntax.
Finally, the language engineer must define the semantics of the language created,
usually by transformation to an existing platform. The whole process must be
validated by one or more domain experts. Domain experts must validate the
three steps of the DSL creation process: the domain must have been correctly
defined, the expressions of the concrete syntax must be close to the already
existing languages in the domain, and the execution must return the expected
results. This creation/validation process often leads to an iterative development
of the language. We show this entire process in Figure 4.

There exist various DSLs tailored for the biological processes, e.g., SBML [8]
and SBGN [11]. These two well-known languages cover a wide range of systems,
mainly in the bio-chemical domain. GReg, instead, focuses on a more specific
domain, which is genetic regulatory mechanisms. This domain has been described
in Section 2.

While creating GReg, we used the Eclipse Modeling Project (EMP)[1] ap-
proach. We first created a metamodel of the domain using the Eclipse Model-
ing Framework (EMF), and we defined a concrete syntax with XText. XText
provides a set of tools to create an editor for a given language, with some user-
friendly features such as syntax highlighting, on the fly syntax checking (see Fig-
ure 5) and auto-completion. As a target platform we chose AlPiNA. AlPiNA[3]
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is a model checking tool for Algebraic Petri Nets (APNs). It aims to perform
efficient model checking on models with extremely large state spaces, using De-
cision Diagrams (DDs) to tackle the state explosion problem. AlPiNA’s input
languages were also defined using the EMP approach. This allowed us to use At-
las Transformation Language (ATL) transformations, which is a tool dedicated
to define model to model transformations. GReg is thus fully integrated in the
Eclipse/EMP framework.

The modular structure of GReg’s definition would allow us to replace the
target domain while keeping exactly the same language. If needed, we could, for
example, define a transformation to SBML using a model to text transformation
tool like XPand.

5 GReg : Gene Regulation Language

GReg is a Domain Specific Language designed to describe genetic regulatory
mechanisms. We built it in order to illustrate the DSL approach, and the benefits
it provides to research in the life sciences domain. Throughout this section, we
introduce the GReg language using an excerpt of the lac operon model [10]. We
also introduce the GReg Query Language (GQL) language, used to specify the
queries to be executed in the model specified in GReg.

We first show how to describe a regulation mechanism. Listing 1 shows the
overall structure of a GReg mechanism specification. The mechanism is named
(lac_operon). It specifies the molecules occurring in the mechanism, and the
chemical reactions between these molecules. The GReg description also specifies
the genes with their properties and organization into chromosomes.

mechanism lac_operon i s
molecules
−− d e c l a r a t i o n o f mo l e c u l e s
reactions
−− d e c l a r a t i o n o f c h em i c a l r e a c t i o n s
chromosomes
−− d e c l a r a t i o n o f chromosomes
gene −− d e c l a r a t i o n o f a gene
−− d e c l a r a t i o n o f o t h e r gene s

end lac_operon

Listing 1: GReg mechanism specification

mechanism lac_operon i s
molecules

lactose , allolactose ,
lacI , lacZ , lacY , lacA ,
cAMP , CAP

...
end lac_operon

Listing 2: Molecules declaration

The molecules section of a GReg
description specifies the molecules oc-
curring in the mechanism. For in-
stance, in Listing 2, the lac_operon
mechanism uses molecules lactose,
allolactose, lacI, lacZ, etc.

Molecules are only described by
their names, as it is the only infor-
mation relevant in our language. The DSL approach emphasizes specification of
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only the required information for the particular domain. No molecules other than
the ones described here can be used in the mechanism. This constraint is useful
for the user creating a GReg specification: spelling errors in molecule names are
detected, see Figure 5.

Fig. 5: Example of a spelling error in a molecule name (allolactose).

After the molecules declaration, a GReg description specifies the chemical
reactions that take part in the mechanism. Listing 3 presents the reactions part
of the mechanism.

mechanism lac_operon i s
...
reactions

induction : lacI + allolactose → _
allo : lactose → allolactose cat lacZ

...
end lac_operon

Listing 3: Reactions declaration

In GReg, each reaction has a name, for instance induction. As usual in chemical
notations, a reaction is a relation among (weighted) molecules. The molecule
weight is usually called the stoichiometric coefficient. By default, stoichiometric
coefficients are valued 1.

A reaction can be either irreversible (→ ) or reversible (↔ ). In our example,
the reaction induction is a degradation of lacI and allolactose. A degradation
is an irreversible reaction where products are not interesting, thus the reactants
are simply removed from the system.

If needed, each direction of the reaction can be given a reaction rate (i.e., prob-
ability). Each reaction can also have catalysts specified using the keyword cat.
For instance allo is a reaction catalyzed by lacZ.

mechanism lac_operon i s
...
gene rep

codes lacI
end rep
gene lac

codes lacZ , lacY , lacA
s i t e s

I : cAMP and CAP = 1
O : lacI @ 2

end lac
end lac_operon

Listing 4: Genes declaration

Listing 4 presents the genes spec-
ification. For instance, rep is a mini-
mal gene (i.e., not regulated). A mini-
mal gene defines at least the molecules
it codes. If they are relevant, regula-
tion sites are also specified in a section
with the sites keyword. The lac gene
defines a regulated gene with two reg-
ulation sites I and O , together with
the molecule acting on them. Note
that GReg also allows us to define sev-
eral regulation sites for I, O, A, T.
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As molecules may be present at different levels, the @ keyword allows the spec-
ification of the required molecules levels acting at a regulation site. By default,
molecule levels are valued 1. As several molecules can act on one regulation site,
GReg allows to combine molecules with Boolean operators for a regulation site.
There are two operators defined : and and or. For instance the I site of lac gene
specifies that cAMP and CAP are required to activate this site. The = keyword
allows to specify the target level attributed to the gene once this site is active.

Note that for A sites, it is also possible to specify the next gene target level.
As the role of a T site is to interrupt the transcription process, we allow the
specification of the reduced set of produced molecules when these sites are active.

mechanism lac_operon i s
...
chromosomes

c : {rep}, {lac ,lac ’}
...

end lac_operon

Listing 5: Chromosomes declaration

The chromosomes section is used
to specify one or more chromosomes.
A chromosome defines the sequence of
loci. A locus is defined between two
braces. Note that genes’order in each
locus does not matter. This section is
mandatory when taking into account
A sites.

Listing 6 shows an example of GQL specification. The use keyword im-
ports the lac_operon mechanism from another file, allowing us to reference the
molecules declared in lac_operon mechanism from a query specification. A GQL
file specifies the levels and the queries.

use "lac_operon.greg"
l eve l s

l1 : lacZ = 1
l2 : lacZ = 0, lacI = 2

queries
bool a : exists l1
paths b : paths l1, l2
paths c : paths l1 .. l2

Listing 6: GQL queries specification

The levels section is used to de-
fine the combination of levels. A com-
bination of levels is a partial or to-
tal definition of molecule levels, while
unspecified molecules may match any
possible value. For instance l1 speci-
fies only the level of lacZ among all
molecules defined in lac_operon. The
exists query returns true if predefined
level exists. The paths query is used to retrieve all paths from the state space
matching the sequence of predefined levels. The query b returns the path where
l2 is a direct successor of l1. But query c does not require that l2 is a direct
successor of l1.

use "lac_operon.greg"
use "lac_operon.gql"
i n i t i a l l y lac_operon has

lactose = 1
lacI = 1

execute
i f a then (b and c)

Listing 7: GReg specification

Listing 7 shows an example of
a GReg configuration specification
given outside the mechanism, usually
in a separate file. This allows to eas-
ily repeat experiments for the same
mechanism with several initial quan-
tities. The first section starts with
the initially keyword and defines the
genes or molecules initial levels. The second section starts with the execute
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keyword and is used to specify which queries will be executed by the model
checker.

6 Example

We present a simple example of a genetic regulatory mechanism taken from [17]
with three genes. Gene Y is activated by the product of gene X. Genes X and
Z are repressed by the products of genes Z and Y respectively. The products
of genes X, Y and Z are molecules x, y and z respectively. Graphical (LRG)
and textual (GReg) models derived from this example are given at Figure 6 and
Listing 8 respectively.

X Y

Z

Fig. 6: LRG model of example

mechanism example i s
molecules x, y, z
gene X codes x

s i t e s O : z
end X
gene Y codes y

s i t e s I : x
end Y
gene Z codes z

s i t e s O : y
end Z

end example

Listing 8: GReg model of Figure 6

GReg models are transformed into APN models usable by AlPiNA. Note
that the obtained APNs can always be unfolded into Place/Transition Petri
Nets (P/Ts). We propose two different transformations:

– the first transformation produces a P/T shown in Figure 7, called Multi-level
Regulatory Petri net (MRPN) in [5] ;

– the second transformation produces an APN shown in Figure 8, which is the
folding of the corresponding MRPN and thus more compact.

From theses models AlPiNA is able to compute the state space and to identify
all deadlock without requiring any additional input from the user.

A deadlock is a situation where no more events can occur in the system.
Strictly speaking, in real biological systems there are no deadlocks but livelocks,
a situation where events still occur but without changing the state of the sys-
tem. The states where such situations occur are usually called stable states or
attractors.

But we can also search for specific properties of the biological system. As pre-
viously mentioned, the state space might contain too many states to be used as
it is. Therefore we propose a way to extract portions of state space (e.g., subsets
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Xpre Zpre Ypre

Xabs Xabs Yabs

Xrep Zrep

Xact Zact

Yrep

Yact

Fig. 7: PN model of example in Figure 6 and Listing 8

X 0 Z 0 Y 0

Xrep

x

x− 1

z

Xact

x

x+ 1

z

Zrep

z y

z − 1

Zact

z y

z + 1

Yact

x
y

y + 1

Yrep

x y

y − 1

Fig. 8: APN model of example in Figure 6 and Listing 8
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of states, paths, cycles, ...) through GQL queries. In Listing 9, we have defined
one level (l1) and one query (at).

use "example.greg"
l eve l s

l1 : x = 1, y = 1
queries

states s1 : at l1

Listing 9: GReg query example

This query returns the subset (s1) of states from the state space where the
level of x and y is equal to one. To compute the set of states s1, the query is
transformed into an AlPiNA property, shown in Listing 10.

s1 : exists ($x in x, $y in y, $z in z :
(($x equals suc(zero)) and ($y equals suc(zero ))) = false

Listing 10: AlPiNA property expression of query in Listing 9

The example in Figure 6 and Listing 8 has eight states reachable from the
initial marking, where all molecules are initially at level zero (x,y,z) = (0,0,0),
see Figure 9. Model checking of the example PN finds two stable states: (1,1,0)
and (0,0,1) and returns for s1 the two states: (1,1,0) and (1,1,1).

x = 0
y = 0
z = 0

x = 0
y = 0
z = 1

x = 0
y = 1
z = 0

x = 0
y = 1
z = 1

x = 1
y = 0
z = 0

x = 1
y = 0
z = 1

x = 1
y = 1
z = 0

x = 1
y = 1
z = 1

Zact

Xact

Zact

Yact

Xrep Yact

Zrep

Xrep

Zrep

Yrep

Xact

Yrep

Legend

Initial
state

Stable
state

Fig. 9: State space of example in Figure 6 and Listing 8

7 Conclusion & future work

This paper introduces Gene Regulation Language (GReg), a language dedicated
to the modeling of regulatory mechanisms. We explain the need to explore com-
pletely the sets of possible behaviors of a given model in order to detect rare
events. GReg includes a query language used to express the properties of such
events.
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From a technical point of view, we explain that the techniques proposed
are based on general principles borrowed from software modeling and verifica-
tion. These techniques include the use of a dedicated DSL defined with a meta-
modeling approach and the translation of this language into a formal verification
platform called AlPiNA.

The languages and transformations shown in this article have been imple-
mented and tested on several toy examples. We also asked biologists to assess
the expressivity and usability of the language. Although the first feedback seems
promising, there is much room for improvement. We foresee three main axes of
future development: improving the expressivity of the modeling and query lan-
guages, assessing the usability of the approach and exploring the mitigation of
the state space explosion.

Extending the expressivity of GReg Concepts such as time and probabil-
ities play an important role in biology and are therefore good candidates
for a language extension. As the current underlying formalism, APNs, does
not support these notions, such extension would require changing the tar-
get platform. Good examples of target formalisms are timed Petri nets and
stochastic Petri nets. As mentioned in 4, the techniques used to create GReg
allow changing the target language without changing the language itself.
Note that we do not plan to add continuous concepts, used in languages
such as HFPNe.

Improving the usability of our tool Textual domain specific languages con-
stitute a first step towards democratization of formal methods. Although
highly efficient, textual languages are usually not as intuitive as graphical
languages. On the other hand, graphical domain specific languages are espe-
cially good in the early phase of the modeling as well as for documentation,
but they are often less practical when the model grows. The tools in EMP
that were used to create GReg allow us to define a graphical version of the
same language, thus keeping the best of both worlds.
Another way to ease the modeling phase is to allow import/export of models
from/to other formalisms and standards such as SBML and to integrate it
with Cytoscape through its plug-in mechanism.

Mitigating the state space explosion So far, we have done little experimen-
tation in this area for biological processes. Nevertheless, we conducted several
studies on usual IT protocols and software models that show that AlPiNA
can handle huge state spaces[2]. This suggests promising results in the reg-
ulatory mechanisms domain.

The development of GReg is a work in progress, we would like to set up more
collaborations with biologists interested in exploiting formal techniques from
computer science to discover rare events. We think that we can make, in the
near future, a useful contribution to life sciences based on advanced techniques
borrowed from computer science.
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2 J.Kleijn, M.Koutny and G.Rozenbergbiologial appliations, but to establish bridges between biology and Petri netsthrough the onnetion provided by reation systems.As a �rst step, we propose and disuss four di�erent approahes to the mod-eling of reation systems by using existing Petri net lasses and onurrenyonepts. However, as it turns out, in order to obtain a good math between re-ation systems and Petri nets, it is neessary to re-evaluate one of the basi netpriniples, namely, token ounting. This leads us to the introdution of a newlass of Petri nets, alled set-nets, whih provide a net based omputationalmodel mathing very losely the omputations exhibited by reation systems.The main di�erene between set-nets and standard Petri nets is that the lattersupport multiset-based token arithmeti, whereas the former support set-based(boolean) operations on tokens. Thus, the omputational `intuition' originatingfrom reation systems provides the inspiration to introdue a new lass of netswith intriguing and yet to disover properties. Consequently, the main ontribu-tion of this paper is more than just providing a bridge between reation systemsand the world of Petri nets. In the future, after fully understanding and master-ing the properties of the new set-nets, one would hope to provide also a newset of tools and analyses for biologial appliations.The paper is organised in the following way. In the next setion, we desribebasi notions of reation systems. Setion 3 desribes two methods of modellingreation system using low-level Petri nets, and the next one does the same usinghigh-level Petri nets. The new lass of set-nets is introdued in Setion 5, andin Setion 6 we explain why this new lass of nets an faithfully and elegantlymodel reation systems. Comparison with related work is presented in Setion 7.Proofs of the results presented in this paper an be found in [16℄.Notation We use the standard mathematial notions and notation. A multisetover a set X is a funtion µ : X → N = {0, 1, 2, . . .}, and its support is ||µ|| =
{x ∈ X | µ(x) > 0}. The empty multiset ∅ satis�es ||∅|| = ∅. A multiset may berepresented, somewhat informally, by listing its elements with repetitions, e.g.,
µ = {y, y, z} is suh that µ(y) = 2, µ(z) = 1, and µ(x) = 0 otherwise. We treatsets as multisets without repetitions.2 Reation systemsIn this setion, we explain some notions relevant to reation systems. It is ourintention to introdue enough onepts to allow one to follow the subsequentdisussion on the relationship between reation systems and Petri nets. For aomprehensive desription of reation systems, inluding motivations, applia-tions and examples, the reader is referred to [7�9℄.De�nition 1 (reation system [7�9℄). A reation system is a pair: A =
(S,A), where S is a �nite bakground set omprising the entities of A, and Ais the set of reations of A. Eah reation is a triplet of the form: a = (R, I, P ),
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Modelling Reation Systems with Petri Nets 3where the three omponents are �nite non-empty sets: R ⊆ S is the set of rea-tants, I ⊆ S is the set of inhibitors, and P ⊆ S is the set of produts.The omponents of a reation a = (R, I, P ) are denoted by Ra, Ia and Pa,respetively. De�nition 1 desribes the stati struture of a reation system. Toapture the dynami behaviour of reation systems, we need additional notions.De�nition 2 (state of reation system). A state of a reation system isany set C of its entities. Then an initialised reation system is a triplet A =
(S,A,C0), where (S,A) is a reation system and C0 ⊆ S is the initial state.In this and in the next setion, we will onsider as a running example theinitialised reation system A0 = ({w, x, y, z}, {a, b, c}, {x, z}), with bakgroundset {w, x, y, z}, initial state {x, z}, and three reations:

a = ({x}, {y}, {y, z}) b = ({y}, {x}, {x, z}) c = ({z}, {w}, {z}) .A reation system with bakground set S has exatly 2|S| potential states.To desribe possible transitions between these states, we need to say what ismeant by an ourrene of a reation or a set of reations.De�nition 3 (state hange). A reation a is enabled at a state C ⊆ S if
Ra ⊆ C and Ia∩C = ∅; the result of a reation a at C is de�ned by resa(C) = Paif a is enabled at C and resa(C) = ∅ otherwise. The result of A on C, denotedby resA(C) onsists of the produts of all reations from A enabled at C, that is

resA(C) =
⋃
a∈A

resa(C) .This state hange is denoted by C −→ resA(C).Note that the state hanges aptured by De�nition 3 are deterministi. More-over, all entities in C \
⋃

a∈A resa(C) disappear. As a result, and unlike in otherformal models of dynami systems, there is no persisteny in a reation systemin the sense that an entity present in a state disappears unless it is sustained byat least one reation.For the example reation system A0, we have:
{x, z} −→ {y, z} and {y, z} −→ {x, z} and {w, x, y} −→ ∅ .One may observe that there is no on�it between reations in the `lassi'sense that the ourrene of one reation might imply that another reationwhih is also enabled at the urrent state, annot our. This, again, is a featurenot found in most other formal models of dynami systems. In partiular, it isworthwhile to point expliitly to the `non-ounting' features of reation systems:entities are either present or not, and produed or not, and reations an orannot our based only on the presene or absene of ertain entities. Thereis no representation of multiple instanes of entities or multiple ourrenes of
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4 J.Kleijn, M.Koutny and G.Rozenbergreations. Thus reation systems are a qualitative rather than a quantitativemodel.We also note that there is an alternative notion of on�it-freeness for a setof reations, alled onsisteny. A set of reations R is onsistent if for any tworeations a, b ∈ R, Ra ∩ Ib = Rb ∩ Ia = ∅. Clearly, if a set of reations is notonsistent, then the reations it omprises annot be exeuted simultaneously.Although the goal of this paper is a faithful `translation' of reation sys-tems into Petri nets, we onlude this setion with a number of omments aboutresearh on reation systems. This researh happens in the framework of re-ation systems where a reation system onstitutes the basi tehnial notion.Depending on the goal of a spei� researh theme, many other onstruts areintrodued and studied (see, e.g., [2, 9, 10℄) � they form various extensions ofthe basi notion of reation system. For example, there are many biologial situ-ations where one needs to assign quantitative parameters (time, onentrations,. . . ) to states of a biohemial system. Although reation systems are a qualita-tive model (they annot `ount'), they an be extended so that suh quantitativeparameters an be aommodated. This is done through the use of measurementfuntions whih lead to reation systems with measurements (see [2, 3, 9, 10℄),where various numerial parameters an be assigned to (alulated for) onse-utive states of dynami proesses.Finally, we want to point out that (beause living ells are open systems)reation systems have an environment and they operate/evolve within a hangingontext (with entities oming from the environment in�uening the transitionsof dynami proesses). In this paper, however, we will onsider only ontext-independent proesses de�ned by a reation system with an initial state, whereeah next state is obtained solely as the result of reations taking plae in theprevious state (thus assuming that the environment does not in�uene statetransitions).3 Reation systems and low-level Petri netsIn this setion, we disuss two possible ways of modelling ontext-independentproesses of reation systems using low-level Petri nets (pt-nets extended withwith inhibitor and ativator ars).In addition to the standard notions of reation systems, in order to betterexplain how they relate to Petri nets, throughout the rest of this paper we willsay that a set R ⊆ A is enabled at C if eah reation of R is enabled at C. If
R ⊆ A is enabled at C, then

C
R
=⇒ resR(C) =

⋃
a∈R

Pa .denotes the e�et of R at C.De�nition 4 (pt-nets with inhibitor and ativator ars [14℄). A pt-netwith inhibitor and ativator ars (or ptia-net) N = (Pl ,Tr ,Flw , Inh,Act ,M0)
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Modelling Reation Systems with Petri Nets 5is a tuple suh that Pl and Tr are �nite, disjoint sets of respetively plaes andtransitions, and: Flw ⊆ (Pl × Tr) ∪ (Tr × Pl), Inh ⊆ Pl × Tr , Act ⊆ Pl × Trare respetively the sets of �ow, inhibitor and ativator ars. Moreover, M0 isa multiset of plaes, the initial marking of N ; in general, any multiset of plaesis alled a marking.In diagrams, plaes are drawn as irles and transitions as retangles. Mark-ings are the possible global on�gurations (states) of N . We say that a plae qis marked under a marking M if M(q) > 0, where M(q) denotes the numberof ourrenes of q in M . In diagrams, markings are indiated by putting M(q)tokens inside the irle representing q. If (x, y) ∈ Flw , then (x, y) is an ar lead-ing from node x to node y. A double headed arrow between q and t indiatesthat (q, t), (t, q) ∈ Flw . An inhibitor ar ends with a small open irle, while anativator ar ends with a small blak irle.Given a node x, we denote by •x the set of input nodes of x, i.e., those yfor whih (y, x) ∈ Flw , and by x• the set of output nodes of x, i.e., those yfor whih (x, y) ∈ Flw . For a transition t we use: ◦t = {q | (q, t) ∈ Inh} and
�t = {q | (q, t) ∈ Act} to denote the inhibitor and ativator plaes of t. All fournotations extend in the usual way to sets of nodes. As in the ase of reationsystems, we now formalise the notion of marking (state) hange.De�nition 5 (marking hange). A multiset of transitions U (also alled astep) is enabled at a marking M if ◦U ∩ ||M || = ∅, �U ⊆ ||M || and, for everyplae q, M(q) ≥

∑
t∈q• U(t) (reall that ||M || is the set of q whih our in M ,and U(t) is the number of ourrenes of t in U).In suh a ase, U an be �red with its e�et on M being given by the result-ing marking M ′ suh that, for every plae q: M ′(q) = M(q) −

∑
t∈q• U(t) +∑

t∈•q U(t). We denote this by M [U〉M ′. Moreover, if U is a maximal (w.r.t.multiset inlusion) step of transitions enabled at M , then we may denote thismarking hange also by M [U〉maxM
′.Note that whenever a step U is enabled at marking M it must be the asethat all ativator plaes of transitions in ||U || are marked (are in ||M ||) and noneof the inhibitor plaes of transitions in ||U || are marked.We now make some general observations and assumptions about the rela-tionship between reation systems and nets.� Entities an be represented by plaes, and reations by net transitions.� Sine there are no on�its between reations, ativator ars an be usedto test for the presene of reatants (rather than laiming resoures for theexlusive use as with ordinary ars and input plaes).� All reations that an our in a reation system do our, and the only en-tities left after a state hange are the newly generated produts. In the Petrinet framework, these features orrespond to maximal parallelism desribedat the end of De�nition 5, and plae resetting [6℄ desribed later on.
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6 J.Kleijn, M.Koutny and G.Rozenberg
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⋆

⋆

⋆

⋆Fig. 1. Method I and II representations of the reation system A0.Method I. The �rst attempt is illustrated in Figure 1(a) for the example rea-tion system A0. Method I produes a ptia-net NI(A0) suh that:� Transitions a, b and c use ativator ars and inhibitor ars to test respetivelyfor the presene and absene of tokens in the plaes w, x, y and z.� Plaes qa, qb and qc ensure that the three transitions modelling reations,i.e., a, b and c, �re at most one in any step. This orresponds to the `non-ounting' of ourrene instanes of the same reation in a reation system.� Transitions rw, rx, ry and rz (in a maximal step) empty the four plaesmodelling entities w, x, y and z. This does not have any in�uene on the�ring of the transitions a, b and c.� In a single maximal step, M [U〉maxM
′, the net �res a maximal multiset oftransitions U enabled at marking M and then produes a new marking M ′.For the net in Figure 1(a), suh a �ring rule gives:

{x, z, qa, qb, qc} [{rx, rz , a, c}〉max {y, z, z, qa, qb, qc}
{x, x, x, z, qa, qb, qc} [{rx, rx, rx, rz , a, c}〉max {y, z, z, qa, qb, qc} .Formally, given an initialised reation system A = (S,A), Method I yieldsa ptia-net NI(A) suh that the plaes, transitions and the initial marking are,respetively: Pl = {qa | a ∈ A} ∪ S, Tr = {rs | s ∈ S} ∪ A and M0 = {qa | a ∈

A}+C0. Moreover, the sets of �ow, inhibitor and ativator ars are, respetively:
Flw = {(s, rs) | s ∈ S} ∪ {(a, qa), (qa, a) | a ∈ A} ∪ {(a, s) | a ∈ A ∧ s ∈ Pa}
Inh = {(s, a) | a ∈ A ∧ s ∈ Ia} Act = {(s, a) | a ∈ A ∧ s ∈ Ra} .Note that this kind of modelling in ombination with the `resetting' of plaes

w, x, y and z in eah �red step, implemented by the auxiliary transitions rw,
rx, ry and rz , means that the resulting Petri net is bounded (in every reahablemarking the multipliity of eah plae is never more than the number of reationsof A if A has at least one reation).In order to relate the behaviour of the original reation system A and itsptia-net representationNI(A) just introdued, we need two mappings. The �rst
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Modelling Reation Systems with Petri Nets 7one takes a marking M of NI(A) and returns a state of A, and the other takesa step U of transitions of NI(A) and returns a set of reations of A, as follows
νI(M) = S ∩ ||M || and ϕI(U) = A ∩ ||U ||. It is then possible to show a numberof results, where a marking M of the ptia-net NI(A) is alled well-formed if
M(qa) = 1, for every a ∈ A.First, M0 is a well-formed marking satisfying ν(M0) = C0, and if M is awell-formed marking and M [U〉M ′, then M ′ is also well-formed. Seond, if M isa well-formed marking, then for every reation a ∈ A, a is enabled at M i� {a}is enabled at state νI(M). We then an show that the translation is sound.Theorem 1. If M is a well-formed marking then:1. M [U〉M ′ implies νI(M)

ϕI(U)
=⇒ νI(M

′). Moreover, if M [U〉maxM
′, then ϕI(U)omprises all reations enabled at νI(M).2. νI(M)

R
=⇒ C implies M [U〉M ′ for some U and M ′ satisfying: ϕI(U) = Rand νI(M

′) = C. Moreover, if R omprises all reations enabled at νI(M),then M [U〉maxM
′.Thus, eah maximal omputational step in the Petri net orresponds to aunique exeution of the reation system, and eah exeution in the reationsystem orresponds to at least one maximal step in the Petri net. For example,the two exeutions given above for the Petri net in Figure 1(a) both orrespondto {x, z}

{a,c}
=⇒ {y, z} in the reation system A0.Note that in Figure 1(a) one annot simply delete the auxiliary plaes of theform qr as then eah of the transitions representing reations ould be unbound-edly enabled. To address this problem one ould hange the ativator ars fromplaes representing entities into �ow ars. Then, however, it would be neessaryto add weights |R| to the ars orresponding to the prodution of new entitiesin order to avoid on�its on the plaes representing the reatants.Method II. The �rst attempt to model ontext-independent reation systemsprovides a sound translation, but it is not simple as it employs features whihan make formal analysis and veri�ation far from easy. One way of improvingMethod I ould be to replae multisets of �red transitions by sets of �red tran-sitions leading to a maximal set-semantis. This an be ahieved by using resetars [6℄, onneting plaes to transitions and indiated by ⋆'s in the diagrams,whih always empty their soure plae. Formally, reset ars Reset ⊆ Pl ×Tr donot have any in�uene on the enabledness of a step U , but the alulation of themarking of a plae q after the �ring of U (now a set) at marking M hanges to:

M ′(q) =

{
M(q)− |q• ∩ U |+ |•q ∩ U | if ({q} × U) ∩Reset = ∅

|•q ∩ U | otherwise .The resulting ptia-net with reset arsNII (A0) is shown in Figure 1(b). Tran-sition r is always enabled and, when �red, removes all the tokens from theplaes modelling the entities. For the net in Figure 1(b), the new �ring rule gives
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8 J.Kleijn, M.Koutny and G.Rozenberg
{x, z} [{r, a, c}〉max {y, z, z} and {x, x, x, z} [{r, a, c}〉max {y, z, z}. One an thenshow that a ounterpart of Theorem 1 holds also in this ase, with νII de�ned as
νI before and ϕII (U) = U \{r}. As transition r is always enabled, we now have aone-to-one orrespondene between groups of exeuted reations and transitions,at the prie of introduing non-standard reset ars.To remove the need to have reset ars or, equivalently, to obtain a one-to-one orrespondene between states and markings, one ould hange the rules forinserting tokens into plaes, by basially applying an OR-treatment for arrivingtokens. This would, of ourse, be a radial departure from the standard Petrinet approah, but one worth investigating. The resulting model of set-nets willbe desribed in Setion 5.4 Reation systems and high-level Petri netsThe two translations desribed in the previous setion use low-level pt-nets ex-tended with reset ars in addition to inhibitor and ativator ars as well asmaximal parallelism. Reset ars are a non-standard mehanism and, in partiu-lar, they do not as yet support a ausal proess semantis. Moreover, the e�et ofa reset ar depends on the urrent marking rather than on a �xed input/outputrelation with its neighbourhood. To ope with this problem, we will now outlinetwo translations from ontext-independent reation systems to high-level Petrinets. We assume familiarity with the basi onepts of high-level nets [13℄, inpartiular, ar insriptions, ativator and inhibitor ars, and simple transitionguards.Method III. The �rst translation is illustrated by the high-level net NIII (A0)shown in Figure 2(a). In this ase, tokens are positive integers ating as thoughthey were time-stamps. Intuitively, a token n is ative only in the n-th exeutionyle of the reation system. Beause the same token annot be aessed morethan one in a step sequene evolution, reset ars are not needed anymore. Sinethe X transition �res in eah maximal step, the yle number n held in the`lok' plae clk is known to all transitions representing reations. In the plaesrepresenting entities, they hek only for tokens n, ignoring all the other tokensprodued in previous yles, and then produe tokens with value n+1 to be usedin the next yle. The initial marking M0 is formed by inserting a single token 1into plae clk and all the plaes s suh that s ∈ C0. Note that the resulting netmay be unbounded as the tokens in plaes representing entities are not `garbageolleted'. For the high-level net NIII (A0) in Figure 2(b), we have:

{x 7→ {1}, y 7→ ∅, z 7→ {1}, w 7→ ∅, clk 7→ {1}}
[{an7→1, cn7→1,Xn7→1}〉max

{x 7→ {1}, y 7→ {2}, z 7→ {1, 2, 2}, w 7→ ∅, clk 7→ {2}}
[{bn7→2, cn7→2,Xn7→2}〉max

{x 7→ {1, 3}, y 7→ {2}, z 7→ {1, 2, 2, 3, 3}, w 7→ ∅, clk 7→ {3}} .
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Modelling Reation Systems with Petri Nets 9

(a) NIII (A0)
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Fig. 2. Method III and IV representations of reation system A0. Note that n and
m are net variables, and that to avoid lutter not all ars have been annotated: allthe �ow (thiker) ars to plaes x, y, z are in fat annotated with n + 1, and all theunannotated inhibitor and ativator ars are annotated with n. In (b), the auxiliaryplaes for transitions b and c are omitted. Note that 〈m ≥ n〉 is the guard of transition
ax, and all other transitions have the trivial true guard.As in the ase of Method I, not every marking M of NIII (A) an represent avalid state of the reation system A. We say that M is lok-onsistent if thereis a single token k in plae clk , and all the tokens l in other plaes satisfy l ≤ k.Relating the resulting net and the original reation system an be done usingthe following two mappings: νIII (M) = {s ∈ S | ||M(clk)|| ∩ ||M(s)|| 6= ∅}and ϕIII (U) = U \ {X}. One an show that M0 is a lok-onsistent markingsatisfying ν(M0) = C0, and if M is a lok-onsistent marking and M [U〉maxM

′then M ′ is also lok-onsistent.Theorem 2. If M is a lok-onsistent marking then:1. M [U〉maxM
′ implies νIII (M)

ϕIII (U)
=⇒ νIII (M

′).2. νIII (M)
R
=⇒ C implies M [U〉maxM

′ for some U and M ′ satisfying: ϕIII (U) =
R and νIII (M

′) = C.Method IV. In the seond high-level net onstrution the aim is to eliminatethe need for maximal parallelism using information present in the time-stampedtokens. We replae the global clk plae by individual clka plaes, whih are inre-mented by transitions a representing reations. Moreover, whenever a is blokedfrom �ring in a ertain yle one of the auxiliary transitions orresponding tothe possible `reasons' for the bloking a is �red to inrement the token in clka.This results in an inrement of the yle number for this transition (in ase
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10 J.Kleijn, M.Koutny and G.Rozenbergthere is more than one reason for bloking, an auxiliary transition is hosennon-deterministially).There are two possible reasons why a might be bloked in yle n. One is thepresene of a token n in the plae representing an inhibitor of a, and to hek forthis we use a transition with an ativator ar, e.g., ay in Figure 2(b). The other ismore ompliated as it is a lak of token n in the plae representing a reatant sfor a, and to hek for this we use a transition with an inhibitor ar. However, wealso need to ensure that all transitions whih feed tokens to s have already hada hane to do so, and we hek this using extra ativator ars together with atransition guard whih evaluates to true if all suh feeding transitions have theirloal yle su�iently high, e.g., transition ax in Figure 2(b). The overall resultfor the reation system A0 is a high-level net NIV (A0) shown in Figure 2(b).The resulting high-level net is exeuted aording to the standard sequential(interleaving) �ring rule and its behaviour losely simulates that of the net ob-tained by Method III, and so also the behaviour of the original reation system.We skip the full desription of the relationship between these two nets. Intu-itively, a marking M of the seond translation orresponds diretly to a markingof the �rst one if all the plaes of the form clka ontain the same single token
k, and all the tokens l in other plaes satisfy l ≤ k. (Note that from eah reah-able marking of the seond translation one an exeute a sequene of transitionsleading to a marking with this property.)5 Set-netsIn our attempts to obtain a diret and elegant translation from reation systemsinto Petri nets, a major and as far as we an tell insurmountable problem wasthe fat that several transitions may insert tokens into a plae representingthe presene of a single entity. In this setion, we introdue set-nets, a modelthat resulted from loser investigations into the possibilities of an OR-treatmentof arriving tokens representing the prodution of entities by reations. Notethat OR-treatment of ausality has been onsidered in [20℄, but the underlyingpriniple there was ompletely di�erent from what we are going to propose.The main idea is that in a set-net there is no onept of ounting. Plaesare marked or not marked and ars have no weights. Set-nets resemble elemen-tary net systems (en-systems) [19℄ whih is a fundamental model to study basifeatures of onurrent systems, inluding on�it, ausality and independene.However, their exeution semantis is di�erent. In set-nets, a marked plae in-diates the presene of a resoure without any quanti�ation. Hene any numberof transitions that take input from this plae an be �red at the same time.Moreover, �ring a transition empties all its input plaes. Thus there are no on-�its over tokens in set-nets, unlike in en-systems or pt-nets. Similarly, plaesdo not ount the tokens, and the �ring of a transition simply marks eah of itsoutput plaes (whether or not they were already marked). We will build up thenew model in two stages, introduing �rst set-nets with only �ow ars.
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Modelling Reation Systems with Petri Nets 11
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q↓Fig. 3. A set-net representing reation system A1 (a); and an ourrene net on-struted for its step sequene {b, q↓, s↓}{a, b, r↓, q↓} (b) .De�nition 6 (basi set-net). A tuple SN = (Pl ,Tr ,Flw ,M0) is a (basi)set-net if the �rst three omponents are as in De�nition 4, and M0 ⊆ Pl is theinitial marking (in general, any set of plaes is a marking).The graphial representation of set-nets is the same as in the ase of Petrinets. We now formalise the �ring rule for set-nets.De�nition 7 (marking hange). A set of transitions U (also alled a step)is enabled at a marking M if •U ⊆ M . In suh a ase, U an be �red with itse�et on M being given by the resulting marking M ′ = (M \•U)∪U•. We denotethis by M [U〉M ′. Moreover, if U is the set of all transitions enabled at M (i.e.,all transitions t satisfying •t ⊆ M), then we may write M [U〉maxM
′.Hene a step U enabled at a marking M may ontain two distint transitions

t and u for whih •t ∩ •u 6= ∅ or t• ∩ u• 6= ∅ and yet the ommon plaes willnever ontain more than one token. Sine tokens are manipulated using set-basedarithmeti we have hosen the name `set-nets' for the new lass of Petri nets.We have introdued �rst basi set-nets (without inhibitor and ativatorars), as it seems that one an attempt to develop for them a ounterpart of`struture theory' of pt-nets. To illustrate our point, let us onsider a basi set-net SN = (Pl ,Tr ,Flw ,M0) with at least one transition. A non-empty set ofplaes Sphn ⊆ Pl is alled a siphon if •Sphn ⊆ Sphn•. Similarly, a non-emptyset of plaes Trap ⊆ Pl is alled a trap if Trap• ⊆ •Trap. It an be easily seenthat an empty siphon annot aquire a token by �ring any transition, and amarked trap annot beome empty by �ring any transition. Both type of setsof plaes an be used to provide a su�ient ondition for deadlok-freeness inpt-nets whih was a major motivation behind the development of their struturetheory. As it turns out, the same an be done in ase of set-nets.Theorem 3. If in the initial marking, every siphon ontains a marked trap,then the set-net is deadlok free.We next introdue set-nets with inhibitor and ativator ars.
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12 J.Kleijn, M.Koutny and G.RozenbergDe�nition 8 (set-net). A tuple SNIA = (Pl ,Tr ,Flw , Inh,Act ,M0) is a set-net if the �rst �ve omponents are as in De�nition 4, and the last one as inDe�nition 6.The de�nitions and notations onerning the marking hange in SNIA are thesame as for SN in De�nition 7 with one exeption, namely a set of transitions Uis enabled at a marking M if •U ∪�U ⊆ M and ◦U ∩M = ∅. It is interesting toobserve that an enabled step U is always onsistent in the sense that (•U ∪�U)∩
◦U = ∅. Suh a property has a natural and diret (as we will see) onnetionwith the notion of onsisteny introdued for reation systems.As before, given a transition t representing a reation, the sets •t, ◦t and �torrespond to the reatants, inhibitors and produts of this reation. However,we do not require that these sets be non-empty in a set-net (at least at thispoint) as suh an assumption is not neessary.6 Reation systems and set-netsReation systems and set-nets �t together well in the sense that both do notount tokens and both hange states on the basis of the presene/absene ofresoures, represented by sets. Moreover, under the set-net semantis, ordinaryars (transitions) an be used to empty plaes. In this semantis, reset ars withtheir e�et depending on the urrent number of tokens in a plae are meaningless.Finally, following the assumption that all reations that an take plae do takeplae, the maximal set-semantis an be employed.Figure 3(a) depits a set-net orresponding to a ontext-independent ini-tialised reation system A1 = ({r, q, s}, {a, b}, {q, s}), where a = ({r, q},∅, {r})and b = ({q},∅, {r, q}). (For reasons of larity, we allow in this setion reationswithout any inhibitors.) As before, plaes represent entities. Transitions r↓, q↓and s↓ ensure that one the set-net is ative only tokens produed in the lastmaximal step are present in the urrent marking. For example, we have:

{q, s} [{b, q↓, s↓}〉max {r, q} [{a, b, r↓, q↓}〉max {r, q} ,and so σ = {b, q↓, s↓}{a, b, r↓, q↓} is a max-step sequene. Relating the behaviourof the set-net model and the original reation system is easy and we obtain aounterpart of Theorem 1 with ν(M) = M and ν(U) = U \ {s↓ | s ∈ S}.For a set-net without inhibitor and ativator ars as in Figure 3(a), onean investigate the ausality semantis of reation systems based on the un-foldings of the orresponding set-nets. Figure 3(b) shows how suh an our-rene net ould be derived for the set-net in Figure 3(a) and its step sequene
{b, q↓, s↓}{a, b, r↓, q↓} whih orresponds of the state sequene {b}{a, b} of theoriginal reation system. It is worth observing that the proess has branhingplaes whih is not possible, in the ase of proesses of en-systems or pt-nets.This, however, is fully onsistent with the exeution semantis of set-nets.
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Modelling Reation Systems with Petri Nets 13Modelling inhibition aspets of reations is rather straightforward using in-hibitor ars, as illustrated by the set-net in Figure 4(a), representing the ontext-independent initialised reation system A2 = ({r, q, s}, {a, b}, {q}), where:
a = ({r, q},∅, {r}) and b = ({q}, {s}, {r, q}) and c = ({q},∅, {s}) .Using inhibitor ars gives a ompat translation of reation systems whih isin a sense minimal w.r.t. the number of plaes, ars and transitions. Moreover,relating the behaviour of the resulting set-nets and the original reation systemsan be done as before. Formally, the plaes, transitions and initial marking ofthe translation are given by: Pl = S, Tr = A∪{s↓ | s ∈ S} and M0 = C0. Thereare no ativator ars, and the �ow and inhibitor ars are as follows:

Flw = {(s, s↓) | s ∈ S} ∪ {(s, a) | a ∈ A ∧ s ∈ Ra} ∪ {(a, s) | a ∈ A ∧ s ∈ Pa}
Inh = {(s, a) | a ∈ A ∧ s ∈ Ia} .The development of a ausal proess semantis of set-nets with inhibitor ars ismore di�ult. It is therefore interesting to onsider models of reation systemsusing set-nets without any inhibitor ars, as outlined next.Figure 4(b) shows a set-net without inhibitor ars modelling A2. The way inwhih it does it is now more involved. More preisely, eah exeution step of thereation system is simulated in two phases by the set-net operating aording tothe maximal parallelism exeution semantis. To keep these two phases learlyseparated, they are ontrolled by an additional yli subnet with two plaes. Thekey aspet of the onstrution is the use of a `omplement' scpl of the `regular'plae s whih at the time of heking whether s is empty by reation b ontainsa token i� s is empty.Figure 4(c) provides a generi piture of how, in the proposed onstrution,a set-net (without inhibitor ars) handles an entity r in its role as a reatant,inhibitor, and produt. Note that r is represented by two plaes, r and rcpl , andif rcpl is marked then the entity r in absent in the urrent state. Moreover, eahreation d is represented by two transitions, d and d′. The �rst orresponds tothe enabling stage of d, and the seond to the generation of its produts.The �rst phase of the simulation always starts in a onsistent marking Min whih there is a token in plae phI ; for every s ∈ S, s ∈ M ⇔ scpl /∈ M ,and otherwise all plaes are empty. In this phase transitions orresponding toreations beome ative on the basis of the presene and absene of their rea-tants and inhibitors. Simultaneously, transitions of the form r↓ and r↑ take arethat all the entities present in the urrent state ease to exist (their orrespond-ing plaes are emptied and the omplement plaes �lled). In the seond phase,eah enabled transition d′ �nishes the exeution of the orresponding reation,and marks the plaes orresponding to the entities produed by reation d andempties their omplements.Relating the behaviour of the set-net model and the original reation systemis more ompliated, using the following two mappings:

ν(M) = M\({phI }∪{scpl | s ∈ S}) ϕ(U) = U\({I}∪{s↓ | s ∈ S}∪{s↑ | s ∈ S}) .

48

Matsuno
長方形



14 J.Kleijn, M.Koutny and G.Rozenberg
(a)

r

q

s

r↓

q↓

s↓

a

b

c

(b)

phIphII

II

I

r

q

s

scpl

r↓

q↓

s↓

s↑

a

b

c

a′

b′

c′

(c)

r

rcpl

r↓

r↑

a

c

b

a′

c′

b′Fig. 4. Two set-nets representing A2 (a, b). Generi translation without inhibitor ars:here r is a reatant for reation a, produt for b, and inhibitor for c (c). Note that notall plaes and ars are shown; in partiular, eah reation has at least one reatant andhene transitions like c an only �re in the �rst phase.One an then show that M0 is onsistent and satisfying ν(M0) = C0, and if Mis a onsistent marking and M [U〉maxM
′′[U ′〉maxM

′ then M ′ is also onsistent.Theorem 4. If M is a onsistent marking then:1. M [U〉M ′′[U ′〉M ′ implies ν(M)
ϕ(U)
=⇒ ν(M ′).2. ν(M)

R
=⇒ C implies M [U〉M ′′[U ′〉M ′ for some U , U ′, M ′ and M ′′ satisfy-ing: ϕ(U) = R and ν(M ′) = C7 Related work and onluding remarksWhen introduing a new lass of Petri nets, espeially a fundamental one, it isneessary to put it in the ontext of existing formalisations. To make omparisonfair, we will now drop the assumption about maximal parallelism in the exeutionof set-nets (whih is implied by the exeution mode of reation systems), andonsider semantis whih allows any set of enabled transitions to be �red.Set-nets are so simple when it omes to their de�nition, that it is reasonableto expet that there were in the past net lasses with similar features. Indeed, thefundamental lass of en-systems [19℄ extended with inhibitor as well as ativatorars [12, 17, 18℄ basially have the same stati struture as set-nets. However,their treatment of on�its between transitions aessing the same token, aswell bloking a transition whih ould add a token to a marked plae, are totally
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Modelling Reation Systems with Petri Nets 15
(a)

q
a b

c (b)

q0 q1

a0

a1

b0

b1cFig. 5. Boolean net (set-net with sequential semantis) (a), and 1-safe pt-net simu-lating its (sequential) behaviour (b).di�erent. The latter issue has been noted in the past, and the onstraint relaxed.For example, there are variations of Petri nets, suh as Boolean Petri nets, whereadding a token to an already marked plae does not add another token [4, 5, 11℄.Also, behaviour of this kind was mentioned in [1℄ in the ontext of net synthesis.Having said that, the semantis onsidered in prior works known to us wasbased on single transition �rings, rather than (maximal) steps as is the asefor set-nets. Therefore, the previous models were not onerned with multipleinputs of tokens to a single plae something whih is essential if one wants tofaithfully model reation systems. Furthermore, by aiming at a set-semantis,we had to introdue the non-on�it feature on the �ow ars onsuming thetokens. Therefore, as far as we are aware, the model of set-nets is an originalontribution to the �eld of Petri nets.As we already mentioned, set-nets with interleaving semantis are nothingbut Boolean nets used, for instane, in [5℄. In suh a ase, the lak of on�itwhen �ring two transitions sharing an input plae is an irrelevant issue, and theonly non-standard aspets is that �ring a transition with a marked output plaedoes not inrease the token ount in that plae. Suh a feature, moreover, aneasily be modelled using ordinary 1-safe pt-nets, aording to the following idea.First, one splits eah plae q into plaes q0 and q1, respetively representingthe lak and presene of a token in q. Then, eah transition t adding tokensto plae q is split into t0 and t1 to aount for two di�erent states the plae
q an be in represented by q0 and q1. Figure 5 illustrates this onstrution.It an be easily seen that both nets generate the same sequential reahabilitygraphs assuming that a0 and a1 are instanes of a, and b0 and b1 are instanesof a. However, one we start treating the net in Figure 5(a) as set-net, thesituation hanges radially. The reason is that we then have three �rings ofthe following form: ∅[{a}〉{q}, ∅[{b}〉{q} and ∅[{a, b}〉{q}. Now, the standardlasses of Petri nets enjoy the so-alled subset property whih means that if astep U is enabled at marking M , then also any of its subsets is enabled as well.Suppose, then, that there is a Petri net N satisfying this property and suh thatits step reahability graph is the same as that of the set-net in Figure 5(a),perhaps after renaming λ being applied to the transitions of the former. Thenwe have to have two transitions, t and u, in N suh that λ(t) = a, λ(u) = b and
M0[{t, u}〉M . Then, by the subset losure property, we also have M0[{t}〉M

′and M0[{u}〉M
′′. Hene, by the reahability graph isomorphism, we must have
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16 J.Kleijn, M.Koutny and G.Rozenberg
M = M ′ = M ′′ as well asM0 6= M . Hene we have:M0[{t, u}〉M and M0[{t}〉Mand M0[{u}〉M and M0 6= M . In the standard Petri nets, inluding variousextensions of pt-nets, M0[{t, u}〉M and M0[{t}〉M would imply that u does nothange the urrent marking. Similarly,M0[{t, u}〉M andM0[{u}〉M would implythat t does not hange the urrent marking. Yet the simultaneous �ring of t and
u does hange the marking as M0 6= M . This would produe a ontradition.What we just presented is intuition rather than proof, however, we expet thatdetailed arguments an be developed for any of the standard net lasses. Animportant onsequene, however, is that set-nets are semantially di�erent fromthe existing net lasses and therefore deserve to be reognised as an originalontribution.8 ConlusionsThe main initial motivation of our investigation was to see how Petri net basedonepts ould be deployed to analyse reation systems. In partiular, we wantedto disover methods for heking properties of reation systems by relating themto the properties of the orresponding Petri nets and ausal proesses.We proposed modelling methods resulting both in low-level and high-levelnets. In all four ases, we established a lose orrespondene between the mark-ings of Petri nets and states of the original reation systems. The same was trueof the evolutions of two orresponding models. In fat, we established that theyhave essentially isomorphi state spaes. All these net models, however, exhibitedde�ienies w.r.t. simpliity and/or elegane and/or tratability of the transla-tion. For example, both high-level net models are intrinsially unbounded, andthe seond of the low-level translations uses reset ars. We therefore proposeda new lass of Petri nets, alled set-nets, whih we feel provide a strong mathwith the reation systems and their semantis.In this way we think we derived new interesting notions and ontributions toPetri net theory based on our experienes with reation systems in a similar wayas the onepts of loalities and loally maximal onurreny were derived fromour previous investigation of a Petri net semantis of membrane systems [15℄.Aknowledgement We would like to thank the anonymous reviewers for theirsuggestions and omments. This researh was supported by the Pasal Chairaward from Leiden University and the Epsr Verdad projet.Referenes1. E.Badouel and P.Darondeau: Theory of regions. Leture Notes in Computer Siene1491 (1998) 529�5862. R.Brijder, A.Ehrenfeuht, M.G.Main and G.Rozenberg: Reation systems with du-ration. Leture Notes in Computer Siene 6610 (2011) 191�2023. R.Brijder, A.Ehrenfeuht, M.G.Main and G.Rozenberg: A Tour of Reation Sys-tems. Int. Journal of Foundations of Computer Siene (2011)
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Abstract. This paper presents a novel method to estimate kinetic pa-
rameter of biological pathways by using observed time-series data and
other knowledge that cannot be formulated in the form of time-series
data. Our method utilizes data assimilation (DA) framework and model
checking (MC) technique, with a quantitative modeling and simulation
architecture named hybrid functional Petri net with extension (HFPNe).
Proposed method is applied to an HFPNe model underlying circadian
rhythm in mouse. We first translate 23 rules of biological knowledge
with temporal logic for the model checking, which are not described in
the time-series data. Next, we employ particle filter often applied to DA
for our estimation procedure. Each particle checks whether its simulation
result satisfies the rules or not, and the result of the checking is used for
its resampling step. Our simulation results show that proposed method
is faster and more accurate than previous method.

Keywords: Hybrid functional Petri net with extension, parameter esti-
mation, data assimilation, particle filter, model checking, temporal logic

1 Introduction

Modeling and simulating large-scale biological pathways have played an impor-
tant role in systems biology. Owing to their importance, many formal description
methods of biological pathway models have been made so far [1–3]. Petri net and
its related concepts are one of the succeeded ways of describing biological models
[4–6], which have been used for modeling a wide variety of biological pathways
and succeeded in reproducing consistent time-series profiles of biological ele-
ments such as the concentrations of mRNAs and proteins by means of computer
simulations.

Simulation studies on biological pathways promises a deep understanding of
complex cellular mechanisms by investigating the dynamic feature. Simulation-
based models are commonly governed by a series of parameters, e.g. initial values,
� Corresponding author email: masao@hgc.jp. †These authors made equal contribu-

tions.

 Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN2011) 
                                                                                        online:  http://ceur-ws.org/Vol-724  pp.53-70

53



2 Parameter Estimation with Data Assimilation and Model Checking

reaction speeds and threshold values of activities. Before the model can be simu-
lated, all parameters must be assigned in advance. However, most parameters are
often unknown or not obvious. In general, such parameters are carefully tuned
by experts to fit the simulated elements with observed in vivo/vitro experiment
results. Due to the nonlinearity of the model, parameter estimation is difficult
and requires a lot of trial and errors. Small differences of the parameters make
large gap between reality and simulation results. Therefore, conventional hand
tuning method severely limits the size and complexity of simulation models built
as more output data (e.g., microarray gene expression data) are being measured.

The aim of this paper is to develop a novel method to automatically and
efficiently estimate kinetic parameters of a given model or a model starting
from scratch by combining data assimilation (DA) and model checking (MC)
approaches, coupled with observed experiment data. Observed experiment data
includes well-defined time-series data and other knowledge that cannot be for-
mulated in the form of time-series data.

DA was originally established in the field of geophysical simulation science.
Nagasaki et al. [7] have proposed a so-called genomic data assimilation approach.
Their DA framework enables users to handle both the model construction and
parameter tuning in the context of statistical inferences, and establishes a link
between the HFPNe simulation model and observed data, e.g., microarray gene
expression data [7] or time series proteomic data [8]. Current DA approach has
some issues because it depends on providing successive time points (at least 10-
20 time points) of time-series data by biological experiments. That is, for a small
time-series data set including for example two or three time points, DA will cost
massive computational resource, in some cases, it will be completely impossible
to estimate parameters. The response to this difficulty of dealing with sparse
and/or not well-defined time-series data is the use of model checking.

MC is a method for automatic verification of system requirements [9], which
firstly used in hardware field because of its determined behavior and limited value
space. Today, this technique has been applied to more complex biological models.
There are several studies that use model checking for parameter estimation, e.g.
Donaldson and Gilbert developed a computational system named MC2(GA) [10]
that couples model checking with genetic algorithm for parameter estimation. Li
et al. [11] proposed online model checking approach based parameter estimation
framework applied to the HFPNe class. In order to check the model, one need
to write biological rules of the knowledge with temporal logic. For example, “A
biological phenomena Foo keeps decreasing until Bar rises.” can be written as
“d([Foo])≤0 U d([Bar])>0” in a kind of temporal logic. Various knowledge
can be described in this way. Nevertheless, in order to improve the estimation
efficiency and accuracy, it is expected to find a general methodology to determine
parameters by combining DA and MC dealing with both time-series experimental
data and biological queries.

The paper is organized as follows. In Methods, we briefly explain how to (i)
construct biological models with HFPNe, (ii) estimate unknown parameters in a
nonlinear state space model, (iii) translate biological rules with a temporal logic
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for querying system properties, and (iv) combine MC with DA for parameter
estimation. In Results, we compare our novel method with previous method by
applying them to mouse circadian rhythm model represented by HFPNe. We
show that our method is potentially faster and more accurate than previous one
that excludes MC technique.

2 Methods

2.1 Hybrid Functional Petri Net with Extension (HFPNe)

HFPNe is developed as a biosimulation tool for pathway modeling and simulation
extended from original Petri net [13]. HFPNe can deal with three types of data:
discrete, continuous and generic, whereas the original Petri net deal with only
discrete data. HFPNe consists of three types of elements: entity, process and
connector (see Figure 1 (a)). Figure 1 (b) shows connection rules in HFPNe. For
more definitions and usages of HFPNe, see Nagasaki et al. [13].

Figure 2 shows circadian rhythm model of mouse represented by HFPNe [14].
This model is composed of of 12 entities, 28 processes and 45 connectors. Due
to the space restriction, Appendix gives the details of these elements. Initial
value of entities mi(0) (i=1, · · ·, 12), reaction speed parameters ki (i=1, 2 and ki
is a common parameter to control speeds of similar biological processes: k1 for
protein binding; k2 for translation), and threshold parameters si (i=1, · · ·, 3) are
unknown parameters.

2.2 Data Assimilation for Parameter Estimation

We here explain how to estimate parameters in a simulation model from time-
series data with the use of DA.

Data Assimilation with Nonlinear State Space Model DA is an approach
to improve the accuracy of the models by combining with data, which can deal
with models formulated by nonlinear state space model (SSM) given by two
equations [15]:

mt=f(mt−1,wt,θsys) , (1)
yt=Hmt + εt . (2)

Equation (1) is called “system model” and Equation (2) is called “observed
model”. In the system model, mt≡(m1t, · · ·,mpt)T is a state vector consisting
of p state variables mit (i=1, · · ·, p) at discrete time point t. wt denoting system
noise is an l-dimensional white noise at t with a density q(w). f is a vector-valued
function, f : R

p+l �→ R
p, and θsys is a vector of model parameters. In the ob-

served model, yt∈R
d is an observation vector at t, H∈R

d×R
p is an observation

matrix; Hij takes value one if observed value of jth entity corresponds to the
ith element of yt, otherwise zero. εt called observational noise is a d-dimensional
white noise at t with a density r(ε). The likelihood of the parameter is given by
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4 Parameter Estimation with Data Assimilation and Model Checking

Fig. 1. (a) Basic HFPNe elements and biological icons in Cell Illustrator [12] in which
HFPNe was implemented. (b) Connection rules (left side) and corresponding network
(right side) in HFPNe. For instance, for the uppermost block labeled with ”Connection
from Entity to Process with Process connectors”, the check-mark denotes the availabil-
ity connected from corresponding entities to processes, e.g., only the generic process
can be selected as the output connected from generic entity with process connector.
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Fig. 2. Circadian rhythm model of mouse with HFPNe .

L(θsys)=p(y1, · · ·,yT |θsys)=
∏T
t=1 p(yt|Y t−1,θsys)=

∏T
t=1

∫
p(yt|mt,θsys)p(mt|

Y t−1,θsys)dmt, where Y t={y1, · · ·,yt}. The maximum likelihood estimator
(MLE) for θsys is given by

argmax
θsys

logL(θsys).

We can estimate parameters with MLE, however, this maximum likelihood method
has an important issue that the value of logL(θsys) computed by Monte Carlo
filter includes an approximation error. For accurate estimation, huge computa-
tion resources are thus required.

Self-Organizing State Space Model To deal with the difficulty of maximum
likelihood method, we use self-organizing state space model (SOSSM) [16–18].
We can estimate parameters based on Bayesian inference with SOSSM by weav-
ing parameters in the state vector as

zt=
[

mt

θsys

]
.

The SSM for this vector is given by zt=F ∗(zt−1,wt) and yt=H∗zt+εt, where

F ∗(zt−1,wt) =
[

f(mt−1,wt,θsys)
θsys

]

H∗zt = Hmt.
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We can obtain marginal posterior densities without obtaining MLE of θ as

p(mT | Y T ) =
∫
p(zT | Y T )dθsys

p(θsys | Y T ) =
∫
p(zT | Y T )dmT .

In this way, we can avoid the issue of maximum likelihood method during the
estimation.

Particle Filter As mentioned above, we have to calculate distribution p(zT |Y T )
for estimating parameters. However, it generally becomes a non-gaussian distri-
bution in SSM. Therefore, it is needed to represent this distribution with some
method. We here use a sequential Monte Carlo method called particle filter (PF)
[19]. Figure 3 shows the overview of particle filter’s algorithm. In particle filter,
predictive distribution p(zt|Y t−1) and filter distribution p(zt|Y t) are approxi-
mated by m in which each realization is called particle as follows:

pt|t−1 ≡ {p(1)
t|t−1, · · · ,p(m)

t|t−1} ∼ p(zt | Y t−1)

pt|t ≡ {p(1)
t|t , . . . ,p

(m)
t|t } ∼ p(zt | Y t),

where p
(j)
t|t−1 (j=1, · · ·,m) and p

(j)
t|t (j=1, · · ·,m) are (p+|θsys|)-dimensional num-

bers. This algorithm is processed with the following steps.

Fig. 3. Overview of particle filter. The left-most column of particles shows state at t−1.
The second column shows the predicted states. The third column shows the weights of
corresponding particles (αt ≡ α

(1)
t , · · · , α

(m)
t ). The right-most column shows results of

resampling step.
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Step 1 Generate the (p+|θsys|)-dimensional random number p
(j)
0|0 for j=1, · · ·,m.

Step 2 Repeat the following three steps for the observed time points t=1, · · ·, T .
Step 2.1 (Prediction step) Generatem system noises w

(j)
t independently

and identically from q(wt), and compute particles by inputting filtered
states into simulation model, p

(j)
t|t−1=F ∗(p(j)

t−1|t−1,w
(j)
t ) for j=1, · · ·,m.

Step 2.2 (Weight calculation step) Compute the weights of importance
for the particles according to

α
(j)
t =p(yt|p(j)

t|t−1)=r(yt − H∗p(j)
t|t−1) (3)

for j=1, · · ·,m. These weights are then normalized as ᾱ(j)
t =α(j)

t

∑m

j=1
α

(j)
t .

Step 2.3 (Resampling step) Generate filtered state p
(j)
t|t for j=1, · · ·,m

by resampling {p(1)
t|t−1, · · · ,p(m)

t|t−1} with the probabilities {ᾱ(1)
t , · · · , ᾱ(m)

t }.

2.3 Model Checking

We explain how to represent requirements of biological pathway models for model
checking. Model checking is a method to verify whether models satisfy the re-
quirements or not. Temporal logic formulae are often used to describe the system
requirements. In this study, we selected PLTL (Probabilistic Linear-time Tem-
poral Logic) for querying dynamic models of cellular networks [20, 21] which
extends original LTL to a stochastic setting with a probability operator and a
filter criterion defining the starting state where the property is satisfied.

Table 1. Syntax of PLTL.

ψ ::= P�x(LTL) | P=?(LTL) | LTL
LTL ::= φ{AP} | φ
φ ::= Xφ | Gφ | Fφ | φ U φ | φ R φ | ¬φ | φ&&φ | φ‖φ | φ⇒ φ | AP
AP ::= value comp value | valueboolean

value ::= value op value | [variableName] | Functionnumeric | Integer | Real
valueboolean ::= true | false | Functionboolean

comp ::= == | ! = | > | ≥ | < | ≤
op ::= + | − | ∗ | / | ˆ,

with � ∈ {<,≤, >,≥}, x ∈ [0, 1].

[PLTL Syntax] Table 1 shows definition of PLTL syntax, which is used to ask
for the probability of user’s query via a PLTL formulae ψ. In the LTL expression
φ{AP}, φ will be checked from the state that AP is satisfied rather than from
the default initial state, where AP is called atomic proposition and takes boolean
domain. PLTL allows (i) LTL expression to contain temporal operators, i.e., X,
F, G, U, R. Five temporal operators are used to describe the sequencing of the
states along the execution; and (ii) the usage of ψ without probabilistic operators
(i.e. simply in the form of LTL), which is useful when the model is deterministic.
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Table 2. Semantics of temporal operators

Operator Meaning Explanation
Xφ Next time φ must be true at the next time point.
Gφ Globally φ must always be true.
Fφ Finally φ must be true at least once.

φ1Uφ2 Until φ1 must be true until φ2 becomes true; φ2 must become true
eventually.

φ1Rφ2 Release φ2 must be true until and including the time point φ1 becomes
true; if φ2 never true, φ1 must always be true.

[PLTL Semantics] The semantics of PLTL is defined over the finite sets of
finite paths through system’s state space, obtained by repeated simulation runs
of HFPNe models. The PLTL formula is built upon two components: probabilis-
tic operator and property LTL. For each simulation run, the LTL expression is
evaluated to a boolean truth value, and the probability of the LTL statement
holding true is calculated based on the whole set of simulation results.

For the probability operator components, there are two distinct operators:
(i) P�x(LTL) is any inequality comparison of the probability of the property
LTL holding true, for example P≥0.5(LTL); and (ii) P=?(LTL) returns the value
of the probability of the property holding true. The semantics of the temporal
logic operators are described in Table 2. Concentrations of biochemical species
in the model are denoted by [variableName]. A special variable, [time], stands
for simulation time.

Due to the ability of PLTL, it is possible to define functions of two differ-
ent natures: functions that return a real number and functions that return a
boolean value. An example of the real number function is d([variableName])
which returns the subtracted value of [variableName] between time i and i−1.
Note that, d([variableName]) equals zero at time point zero. One example of
a boolean function is similarAbsolute(value a, value b, value ε), which returns
true if |a−b|<ε or else it returns false. Table 3 shows the rules written in PLTL
for circadian rhythm model of mouse.

2.4 Combining Model Checking with DA

As stated in Introduction, we have applied either DA or MC to pathway model
in the previous researches, but used time scales are different. We here employ
common time scale called Petri net time for combining DA with MC, which is the
virtual time unit of the HFPNe model denoted by [pt]. We define: (i) simInt∈R

as simulation interval; (ii) mcInt∈R which is a multiple of simInt as a model
checking interval; and (iii) MapOttoP t : N �→R as a mapping from observed time
point to Petri net time for combining. From the MC’s viewpoint, Xφ means that
φ must be true at the state after mcInt Petri net time. Meanwhile, a simulation
from timeMapOttoP t(t−1) toMapOttoP t(t) is a run in f from DA’s viewpoint.

Hürseler and Künsch mentioned that it is difficult to generate a good ini-
tial distribution of parameters with SOSSM [22]. This is because parameters
in resampled particles are the subset of parameters in the initial particles and
a model with randomly generated parameters rarely satisfy all rules. To gen-
erate good initial distribution of parameters, two considerations are designed:
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Table 3. Biological rules for circadian rhythm model of mouse. Rule 1 to Rule 9
describes the range of concentrations; Rule 10 to Rule 17 describes that of peak con-
centrations, Rule 18 to Rule 21 specifies concentration relationships when they reach
peaks, and Rule 22 to Rule 23 specifies normal concentration relationships.

No.
Rule

LTL translation

Rule 1
Concentration of per mRNA is between 0.2 and 3.8.
G([per mRNA] < 3.8 && [per mRNA] > 0.2)

Rule 2
Concentration of Rev-Erv mRNA is between 0.2 and 3.4.
G([Rev-Erv mRNA] < 3.4 && [Rev-Erv mRNA] > 0.2)

Rule 3
Concentration of Bmal mRNA is between 0.2 and 4.3.
G([Bmal mRNA] < 4.3 && [Bmal mRNA] > 0.2)

Rule 4
Concentration of Bmal mRNA is between 2.4 and 2.6 after time becomes 20.
G(similarAbsolute([Clock mRNA],2.5,0,1)){[time] > 20}

Rule 5
Concentration of Cry mRNA is between 3.8 and 0.2.
G([Cry mRNA] < 3.8 && [Cry mRNA] > 0.2)

Rule 6
Concentration of PER is between 2.6 and 0.2.
G([PER] < 2.6 && [PER] > 0.2)

Rule 7
Concentration of CRY is between 2.6 and 0.2.
G([CRY] < 2.2 && [CRY] > 0.2)

Rule 8
Concentration of PER/CRY is between 2.7 and 0.2.
G([PER/CRY] < 2.7 && [PER/CRY] > 0.2)

Rule 9
Concentration of REV ERB is between 1.5 and 0.2.
G([REV ERB] < 1.5 && [REV ERB] > 0.2)

Rule 10
Local maximum concentration of per mRNA is greater than 2.0.
G(d([per mRNA]) ≥ 0 && X(d([per mRNA])<0) ⇒ [per mRNA] > 2.0)

Rule 11
Local minimum concentration of per mRNA is less than 1.0.
G(d([per mRNA])≤0 && X(d([per mRNA])>0)⇒ [per mRNA] < 1.0)

Rule 12
Local maximum concentration of Rev-Erv mRNA is greater than 1.5.
G(d([Rev-Erv mRNA])≥0 && X(d([Rev-Erv mRNA])<0) ⇒ [Rev-Erv mRNA] > 1.5)

Rule 13
Local minimum concentration of Rev-Erv mRNA is less than 1.0.
G(d([Rev-Erv mRNA])≤0 && X(d([Rev-Erv mRNA])>0) ⇒ [Rev-Erv mRNA] < 1.0)

Rule 14
Local maximum concentration of Bmal mRNA is greater than 1.5.
G(d([Bmal mRNA]) ≥0 && X(d([Bmal mRNA])<0) ⇒ [Bmal mRNA] > 1.5)

Rule 15
Local minimum concentration of Bmal mRNA is less than 1.0.
G(d([Bmal mRNA])≤0 && X(d([Bmal mRNA])>0) ⇒ [Bmal mRNA] < 1.0)

Rule 16
Local maximum concentration of Cry mRNA is greater than 2.0.
G(d([Cry mRNA])≥0 && X(d([Cry mRNA])<0) ⇒ [Cry mRNA] > 2.0)

Rule 17
Local minimum concentration of Cry mRNA is less than 1.0.
G(d([Cry mRNA])≤0 && X(d([Cry mRNA])>0) ⇒ [Cry mRNA] < 1.0)

Rule 18
When concentration of Bmal mRNA takes local minimum, concentration of Bmal mRNA is less
than concentration of per mRNA.
G(d([Bmal mRNA])≤0 && X(d([Bmal mRNA])>0) ⇒ [Bmal mRNA] < [per mRNA])

Rule 19
When concentration of Bmal mRNA takes local maximum, concentration of Bmal mRNA is grater
than concentration of per mRNA
G(d([Bmal mRNA])≥0 && X(d([Bmal mRNA])<0) ⇒ [Bmal mRNA] > [per mRNA])

Rule 20
When concentration of per mRNA takes local minimum, concentration of per mRNA is less than
concentration of per mRNA.
G(d([per mRNA])≤0 && X(d([per mRNA])>0) ⇒ [per mRNA] < [Bmal mRNA])

Rule 21
When concentration of per mRNA takes local maximum, concentration of per mRNA is grater
than concentration of Bmal mRNA
G(d([per mRNA])≥0 && X(d([per mRNA])<0) ⇒ [per mRNA] > [Bmal mRNA])

Rule 22
Concentration of per mRNA is greater than concentration of Rev-Erv mRNA.
G([per mRNA] > [Rev-Erv mRNA])

Rule 23
Concentration of CLOCK is greater than concentration of PER.
G([CLOCK] > [PER])

61

Matsuno
長方形



10 Parameter Estimation with Data Assimilation and Model Checking

Firstly, we repeat particle filters many times by regenerating p0|0 from pT |T like
a crossover in genetic algorithm since the length of time courses for biological
use is generally shorter than that for other fields; Secondly, a threshold value Th
is used to discard particle whose unsatisfied number by the checking is greater
than Th. Th is changed for each run of particle filter. In this study, system noise
is not taken into account in order to accelerate the estimation. Nevertheless, a
generic process can be mapped to Java object supporting HFPNe model in a
nondeterministic settings.

Algorithm 1 shows pseudocode of our parameter estimation method. In
step 9, PredictandMC returns predicated particle and the result whether it is
worthless or not. The detail of this function is displayed in Algorithm 2. In
steps 10–15, if the simulation results unsatisfy more than Th rules, the weight of
the particle will become zero, or else the weight is calculated by Equation (3)
via r. To calculate r, we assume that observed noise is a gaussian white noise
and its mean is zero. The variance of observed noise is thus needed to be esti-
mated. We generate multiple candidate values and use the value that has the
maximum likelihood as the variance. Steps 17–19 are designed to break the run
of particle filter if all the particles unsatisfied more than Th rules; Otherwise Th
is incremented or decremented in steps 23–27. p0|0 for the next run of particle
filter is generated from pT |T in step 28.

Algorithm 1. Pseudecode of our parameter estimation method.

1: function EstimateParameters(Y T , Rules)
2: p0|0 ← GenerateInitialParticles()

3: Th← initialThreshold
4: F ← false
5: loop
6: for t← 1, . . . , T do
7: F ← false
8: for j ← 1, . . . ,m do

9: (p
(j)
t|t−1, SatisfiedRules)← PredictandMC(p

(j)
t−1|t−1, t, Rules, Th)

10: if SatisfiedRules then

11: α
(j)
t ← CalculateWeight(p

(j)
t|t−1,yt)

12: F ← true
13: else
14: α

(j)
t ← 0

15: end if
16: end for
17: if !F then
18: break
19: end if
20: ᾱt ← αt/

∑M
j=1 α

(j)
t

21: pt|t ← Resampling(pt|t−1, ᾱt)

22: end for
23: if F then
24: Th← max(0, Th− 1)
25: else
26: Th← Th+ 1
27: end if
28: p0|0 ← RegenerateParticles(pT |T )

29: end loop
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In Algorithm 2, steps 2–3 convert time scale from observed time to Petri
net time. Step 4 separates particle p into m(start) and θ, where m(t) is a
vector consisting of the values of p entities at Petri net time t and θ is a vector
of parameters to be estimated. m(pt+simInt) is predicted by simulation in
step 6. Step 7 returns the number of unsatisfied rules via ModelChecking(). In
steps 9–11, if simulation result violates more than Th rules, simulation will stop
immediately.

Algorithm 2 Prediction step of particle filter and model checking.

1: function PredictandMC(p, t, Rules, Th)
2: start← MapOttoPt(t− 1)
3: end←MapOttoPt(t)− simInt
4: (m(start), θ)← p
5: for pt← start to end step simInt do
6: m(pt + simInt)← Simulation(m(pt), θ)
7: if (pt+ simInt)%mcInt = 0 then
8: N ←ModelChecking(m, Rules)
9: if Th < N then
10: return ([m(pt+ simInt)T , θT ]T , false)
11: end if
12: end if
13: end for
14: return ([m(MapOttoPt(t))T , θT ]T , true)

3 Results and Discussions

3.1 Estimation environment and evaluation criteria

We estimate 17 parameters of circadian rhythm model of mouse (i.e., 12 ini-
tial values of entities, two reaction speeds and three threshold values). We
use synthesized data set coupled with simulation and observed noise εt (εt ∼
N (0, 0.052I12)) as observed data. It contains 312 data of 26 time points (see
Figure 4) for each 12 biological entities – five mRNAs, five proteins and two
complex proteins –. One observed time point is mapped to five Petri net times.
Table 4 summarizes details of our estimation environment. Parameter search
range is set from zero to 15.

Table 4. Default parameters of the estimation.

Parameter name Value Meaning
m 50,000 the number of particles
p 12 the number of entities
d 12 the number of entities which have observed data
T 26 the number of observed time points
simInt 0.1 simulation interval
mcInt 1.0 model checking interval
initialThreshold 8 initial value of threshold for model checking
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Fig. 4. Examples of observed data.

To evaluate the results of estimation, following Scores are defined and cal-
culated before the step RegenerateParticles step given in Algorithm 1.

Scoremean =
∑T
t=1

∑p
e=1

|SimResult(Paramsmean,e,t)−yt,p|2
|Y T |

Scoremode =
∑T
t=1

∑p
e=1

|SimResult(Paramsmode,e,t)−yt,p|2
|Y T |

Scoremedian =
∑T
t=1

∑p
e=1

|SimResult(Paramsmedian,e,t)−yt,p|2
|Y T |

Scorebest =
∑T
t=1

∑p
e=1

|SimResult(Paramsbest,e,t)−yt,p|2
|Y T |

Score = min{Scoremean, Scoremode, Scoremedian, Scorebest, Scorecurrent},
where yt,p is an observed value of entity p at observed time point t. Paramsbest
denotes parameters of a particle which is made of particles. Paramsmean, Paramsmode
and Paramsmedian represent mean, mode and median value of all particles’ pa-
rameters respectively. SimResult(Params, e, t) returns the value of entity e at
time t which is calculated by simulation with Param. Scorecurrent is ∞ at first
time of the calculation, otherwise it is the Score of previous calculation.

3.2 Experimental Result

Comparison between PFMC and PF We compare the performance be-
tween our new method Particle Filter with Model Checking (PFMC) and pre-
vious method Particle Filter (PF). The estimation experiments are carried out
on workstation of Intel Xeon E5450 (3.0GHz) with 32G bytes of memory. We
performed estimation 100 times for both methods. Figure 5 shows the result
with respect to the distribution of Score with elapsed time. Mean of Score is
also analyzed by Welch’s t-test (See Table 5). Nearly all Score of PFMC and
PF are good on and after 600 seconds. Both medians are also good on and after
600 seconds, but there are many bad cases before 1,000 seconds for PF. That
is, roughly speaking, if there are enough amounts of observed data, there is no
much difference by using either PMFC or PF for the estimation. However, in
almost all cases, we can finish the estimation within a short time incorporating
model checking.
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Fig. 5. Distributions of Score at corresponding time points. The left diagram shows
the result of PFMC, and the right one shows that of PF. X-axis denotes elapsed time
(second), while y-axis denotes Score.

Table 5. Results of Welch’s t-test.

Elapsed time[sec] P-value Mean of PFMC Score Mean of PF Score

200 1.584 × 10−6 1.1055600 0.7746972
400 0.02169 0.4656204 0.5243369
600 1.834× 10−10 0.07760144 0.44547495

800 6.165 × 10−9 0.0516071 0.3580496
1000 9.631 × 10−8 0.04642736 0.31403475
1200 2.974 × 10−7 0.04446433 0.29820645

Estimation with small amount of observed data To investigate the per-
formance in the case of small amount of observed data, we use only first ten time
points of five biological entities’ data for the estimation: per mRNA, Cry mRNA,
Rev Erv mRNA, Clock mRNA and Bmal mRNA. More detailedly, we use all
default parameters for Score calculation and just overwrite p to five and T to
ten. The estimation results are exhibited in Figure 6 and Table 6.

The results clearly show that on and after 1,200 seconds, in contrast to the
previous experiment, there is difference not only between bad cases, but also
between medians of PFMC and PF. This is because it is difficult to estimate
parameters which makes certain rhythms with only two cycles of observed data.
Therefore, median Scores of PF are not good before 3,000 seconds. Moreover,
convergence of PFMC is worse than previous experiment.

Effects of the rules We also investigate the effect of rules by checking which
rule is unsatisfied which results in the cutting of a particle. We run estimation
100 times with default parameters and all of observed data. All the runs finished
after 20 minutes and the results are shown in Figure 7.

Two kinds of effects used in model checking approach can be considered.
First, it cuts useless particles,which enables us to estimate with more particles
or more runs of particle filters. Second, it cuts bad results which facilitates the
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Fig. 6. Distributions of Score with small amount of observed data.

Table 6. Results of Welch’s t-test.

Elapsed time[sec] P-value Mean of PFMC Scores Mean of PF Scores
600 0.3340 6.401179 1.137218

1200 3.725× 10−10 0.3219618 0.8769369
1800 1.393× 10−10 0.2144606 0.7418111
2400 1.797× 10−10 0.1849873 0.6784018
3000 8.596× 10−9 0.1677461 0.6048147
3600 3.071× 10−8 0.1469600 0.5597454

estimation only with observed data. From the first effect’s viewpoint, the rule
that cut more particles is a good rule. This is due to the fact that rule is able
to cut many particles from early time because the number of unique particle
decreases with the time elapse in our method. Rule 1 to 3, 5 to 9, 22 and
23 are such rules. From the second effect’s viewpoints, good rules are different
depending on behaviors of target models. For the circadian rhythm model, it is
important to reproduce the oscillations within a certain range. Rule 10 to 21
are specified for verifying the behavior of oscillation. Generally, it is not easy
to prepare this kind of rules before trial. Nevertheless, unlike observed data, it
will be a great help in improving the efficiency and accuracy of conventional
parameter estimation process and eventually leading to better understanding of
biological pathways.

4 Conclusions

We propose a novel parameter estimation method for biological pathways. By
combining model checking with DA framework, our method enables us to use
various knowledge in addition to observed time series data. We extract 23 bi-
ological rules with temporal logic which cannot be formulated in the form of
time-series data. Proposed method and previous method are applied to mouse
circadian rhythm model of HFPNe by means of performance evaluation. Results
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Fig. 7. The number of the particle cutting happened by model checking with respect
to each rule. X-axis denotes rule number, and y-axis denotes the number of the cutting.

shows that (i) if estimations execute with enough amounts of observed data, our
method can practically give good parameters in a short time; and (ii) if estima-
tions execute with small amount of observed data, new method is much faster
than the method without model checking.
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Appendix:

Table 7. Biological entities in the model of Figure 2. Variable mi(t) (i = 1, . . . , 12)
indicates the concentration of corresponding entity at time t. mi(0) (i = 1, . . . , 12) is
the initial value of corresponding entity.

Entity Name Variable Initial Value Biological Type

per mRNA m1(t) m1(0) mRNA
PER m2(t) m2(0) protein
Cry mRNA m3(t) m3(0) mRNA
CRY m4(t) m4(0) protein
PER/CRY m5(t) m5(0) complex protein
Rev-Erv mRNA m6(t) m6(0) mRNA
REV-ERV m7(t) m7(0) protein
Clock mRNA m8(t) m8(0) mRNA
CLOCK m9(t) m9(0) protein
Bmal mRNA m10(t) m10(0) mRNA
BMAL m11(t) m11(0) protein
CLOCK/BMAL m12(t) m12(0) complex protein
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18 Parameter Estimation with Data Assimilation and Model Checking

Table 8. Processes and their reaction speeds in the model. (k1 and k2 are common
parameters to control speeds of similar biological processes: k1 for protein binding. k2

for translation.

Process Name Biological Process Type Speed of corresponding processes

p1 degradation v1(t) = m1(t) × 0.2
p2 degradation v2(t) = m2(t)/7
p3 degradation v3(t) = m3(t) × 0.2
p4 degradation v4(t) = m4(t) × 0.1
p5 degradation v5(t) = m5(t)/15
p6 degradation v6(t) = m6(t) × 0.2
p7 degradation v7(t) = m7(t) × 0.1
p8 degradation v8(t) = m8(t) × 0.2
p9 degradation v9(t) = m9(t)/7
p10 degradation v10(t) = m0(t) × 0.2
p11 degradation v11(t) = m1(t) × 0.1
p12 degradation v12(t) = m2(t)/15
p13 transcription v13(t) = 1
p14 transcription v14(t) = 0.05
p15 translation v15(t) = m1(t)/k2

p16 transcription v16(t) = 0.05
p17 transcription v17(t) = 1
p18 translation v18(t) = m3(t)/k2

p19 binding v19(t) = m2(t) × m4(t)/k1

p20 transcription v20(t) = 1
p21 transcription v21(t) = 0.05
p22 translation v22(t) = m6(t)/(2 × k2)
p23 transcription v23(t) = 0.5
p24 translation v24(t) = m8(t)/k2

p25 transcription v25(t) = 0.05
p26 transcription v26(t) = 1.1
p27 translation v27(t) = m10(t)/k2

p28 binding v28(t) = m9(t) × m1(t)/k1

Table 9. Threshold parameters si (i = 1, . . . , 3) and the corresponding connectors in
the model.

Threshold Name of regulation Corresponding
parameters connector

s1 Bmal mRNA active regulation c45
s2 Rev-Erv mRNA inhibitory regulation c40
s3 Cry mRNA inhibitory regulation c39
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Abstract. Biochemical reaction systems are usually modeled by ordi-
nary differential equations (ODEs). For further analysis, they are of-
ten transformed into stochastic Petri nets (SPN), whose state space (or
reachability graph) then can be studied to deduce properties.
If a biochemical reaction system is in a steady state, from now on called
steady situation,1 then the rates of the reactions and the concentra-
tions of the species are constant. These concentrations and rates can be
established by simulation of the SPN-model. A steady situation,1 signifies
also that on the model level only a subset of all possible reachable states
is pertinent to this situation. It would be of interest to isolate formally
and constructively this subset of states. To our knowledge there is no
way to achieve this using the SPN-model or the ODE-model.
In this article we propose an approach to calculate the part of the state
space corresponding to a steady situation1. To do so, we map the SPN-
model onto a Time Petri Net-model (TPN) with the same behaviour as
that in the steady situation1 observed in the SPN simulation.
Using reduction methods for TPNs we can extract the part of the reacha-
bility graph of the SPN-model which is relevant for the steady-situation1.
We show that this is exactly the reduced reachability graph of the con-
structed TPN-model. Finally, the later one can be analyzed qualitatively
and quantitatively.
In addition, this approach helps for validating the correctness of the
calculated (and used) rates in the steady situation1and of the parameters
used in the original ODEs, fixed by experiments in the wet labs, both
being -a priori- subject to a certain degree of uncertainty.

1 Introduction

When considering biochemical reaction systems we emphasize the interactions
between different species during time and we do not take a momentary snap-
shot of the system. This means that time is an indispensable component in each

1 to avoid confusion, between state in the biochemical system and states or state
space in the models, the biological steady state will be called throughout the
whole paper steady situation
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model of such a system. Furthermore, the repetitive occurrence of reactions in
the system during a certain time, expressed by their reaction rates, defines the
behaviour of the system. It is obvious, that the rates depend on the concentra-
tions of the species involved in the reactions: the higher the concentration the
higher the reaction rate. This is the case until the concentrations of the involved
species achieve certain levels. Then the concentrations of the species do no longer
change, i.e., the reaction rates stay constant. This situation is the so called steady
situation1 in an biochemical reaction system. Finally, the occurrence (or taking
place) of biochemical reactions is a stochastical one.

The taking place of a particular reaction can be modeled by an ordinary
differential equation (ODE), the causal relationship between the interactions
is often modeled by some graph. Both aspects can be represented in a unique
model, by using some variant of Petri Nets, such as e.g. Hybrid Functional Petri
Nets [9, 10] or Continuous Petri Nets [16] or Stochastic Petri Nets (SPNs) [8].
The last ones model the stochastic nature of a reaction system especially well.
The ODE model can be obtained by means of punctual measured data and using
interpolation, cf. [4], or from a first established Modular Interaction Network,
cf. [18]. The SPN model, as graph models in general, can be obtained from a
system of ODEs which describes the reaction system; such translations are well
explained in e.g. [6,9,10]. In general, a system of ODEs defines a unique SPN but
it is possible that different systems of ODEs define the same SPN. Conditions
for one-to-one and onto mappings between ODEs and SPNs are given in [16].

Please note that an essential point while constructing an SPN-model is the
definition of its initial marking. It should faithfully map the initial concentrations
of all species involved in the reaction system.

Considering the models quoted above, it is not possible by formally analyzing
it, to extract the steady situation1 in which the reaction system may stay after
some time. The only thing which can be done, and which is done in general, is to
simulate the model (over a very high number of runs) until being able to deduce
properties concerning the steady situation1, with some remaining uncertainty.

In this paper we are using the uncertain data obtained by simulation of the
SPN, and also uncertain parameters estimated by measures and interpolation,
and prove analytically if they present in fact those of a steady situation1. For this
reason, we first observe the SPN-model during a high number of runs which yield
mean values corresponding to the concentration of species and reaction rates in
the steady situation1. In function of these values, we map the SPN onto a Time
Petri Net-model (TPN), having the same skeleton, such that the behaviour (that
of the observed steady situation1) stays the same.

This works, because TPNs have the same semantics as SPNs with constant
rates, and we dispose of a well established theory [11–13] for studying analytically
their behaviour. In particular, our reduction results concerning state spaces of
TPNs [12, 13] will be of good use in the presented work. When the simulated
reaction rates in the steady situation1 are exactly the rates in the real situation,
then the reduced reachability graph of the TPN should consist of cycles only
- up to some initiation part. By contraposition we may conclude, that a non
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cyclic form of the reduced state space indicates severe problems in the set of
data used to build the TPN, and by consequence, in the initially established
data from experiences in the wet labs. Furthermore, we are able to calculate the
time-length of the cycle(s), a data which cannot be measured within the SPN
model. The last one can be compared with measures from the wet labs, if there
are any. Thus once more, we bridge back to the original data. Thus our method
offers a way of validating a complex modeling process of biochemical reaction
systems.

This paper is organized as follows: in the next section we recall some basic
notions and notations of the used Petri Net classes together with the reduction
results of TPN state spaces. In section 3 we introduce the mapping from an
SPN in the steady situation1 onto a TPN model. In the subsequent section we
illustrate our approach on the core model of the influence of the Raf-1 Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway, chosen as running example, before concluding.

2 Basic Concepts

In this section we recall the concept of TPNs. After that we introduce some basic
notions and fundamental properties, which are important for their quantitative
and qualitative evaluation.

2.1 Basics

Time Petri Nets (TPN) [11] are derived from classical Petri nets by assigning to
each transition t a (continuous) time interval [at, bt]. Here at and bt are relative
to the time when t was enabled most recently. When t becomes enabled, it can
not fire before at time units have elapsed, and it has to fire not later than bt time
units, unless t got disabled in between by the firing of another transition. The
firing itself of a transition does not consume time. So, the given time intervals
specify reaction times for the transition firings. The time intervals are defined
on non-negative real numbers, but the interval bounds are given as nonnega-
tive rational numbers. Rational numbers are sufficient to reflect any measuring
accuracy required by a given application domain. Moreover, to support the nor-
malization of different time scales within a model, zero and ∞ are allowed as
interval bounds.

As usual, in this paper, N denotes the set of natural numbers, and Q+
0 , resp.

R+
0 , the sets of nonnegative rational numbers, resp. real numbers. T ∗ denotes

the set of all finite words over the alphabet T , l(w) is the length of a given word
w.

Some 5-tuple Z = (P, T, v, mo, I) is called a Time Petri net (TPN), if
S(Z) := (P, T, v,mo), the skeleton of Z, is a Petri net where P, T are finite sets
with P ∩ T = ∅, v : (P × T ) ∪ (T × P ) −→ N defines the arcs with their weight,
mo : P −→ N fixes the initial marking, and I : T −→ Q+

0 × (Q+
0 ∪ {∞}) is its
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interval function where ∀t ∈ T , I(t) = [I1(t), I2(t)] and I1(t) ≤ I2(t), spezi-
fying the earliest and latest firing time of t: eft(t) = I1(t), lft(t) = I2(t).

As shown in [11], considering TPNs with I : T −→ N × (N ∪ {∞}) will
not result in a loss of generality. Therefore, only such time functions I will be
considered subsequently.

A marking m : P −→ N can be seen as a vector of size |P |, we refer to it as
p-marking. Thus each transition t ∈ T induces the p-markings t−, t+ and ∆t
defined by t−(p) := v(p, t), t+(p) := v(t, p) and ∆t(p) := t+(p) − t−(p). With
these notions the firing rule for TPNs can be defined. A transition t ∈ T is
enabled at a marking m iff t− ≤ m (e.g. t−(p) ≤ m(p) for every place p ∈ P ).

The pre-sets and post-sets of a place or transition x are given by •x :=
{y | v(y, x) > 0} and x• := {y | v(x, y) > 0}, respectively.

An example for an arbitrary TPN is shown in Fig. 1.

Fig. 1. A Time Petri net Z1.

Every possible situation in a given TPN can be described completely by a
state z = (m,h), consisting of a p-marking m (the standard marking) and a
transition-marking (short: t-marking) h. The t-marking is a transition vector,
which describes the current time circumstances in a certain situation. More
exactly, each component of the t-marking is either a real number or the sign
]. Thus h(t) can be seen as clock of t. If t is enabled at a marking m, its clock
h(t) shows the time elapsed since t became most recently enabled. If t is disabled
at m, the clock is switched off (indicated by h(t) = #).

Formally, a pair z = (m,h) with m : P −→ N and h : T −→ R+
0 ∪{#} is called

a state of a TPN Z = (P, T, v,mo, I) if ∀t ∈ T , either (t− ≤ m and h(t) ≤ lft(t))
or (t− 6≤ m and h(t) = # ).
The initial state zo := (mo, ho) of the TPN Z is given by defining ho as follows

∀t ∈ T, ho(t) :=

{
0 if t− ≤ m0

# if t− 6≤ m0.

Thus, the initial state of Z1, as given in Fig. 1, is z0 = ( (0, 1, 1)︸ ︷︷ ︸
p-marking

, (0, ], ], 0)︸ ︷︷ ︸
t-marking

).

The state z = (m,h) is called an integer state, if h(t) is an integer for each
enabled transition t in m.

The behaviour of a TPN is defined by changing from one state into another
by firing a transition (without auto-concurrency) or by time elapsing. In
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order to define these dynamic aspects of TPNs we need first the notion ready
to fire.

Let to be a transition in T and z = (m,h) a state of a TPN Z = (P, T, v,mo, I).

The transition to is ready to fire at state z, denoted by z
to−→ , if t−o ≤ m and

eft(to) ≤ h(to).
Then the state z change into a state z′ = (m′, h′) by the firing of such

a to, denoted by z
to−→ z′ , where the new marking is m′ = m + ∆to and the

new clock satisfies ∀t ∈ T, h′(t) :=

# if t− 6≤ m′
h(t) if t 6= t0, (t− + t−o ) ≤ m, t− ≤ m′
0 otherwise.

This definition implies, that in the case that t0 is still enabled after the
firing of t0, it can only refire after at least αt new waiting units. To resume,
concurrency but no auto-concurrency is possible by the way the evolving of the
clocks is defined.

The state z may also change into a state z′ = (m,h′) by the time elapsing

τ ∈ R+
0 , denoted by z

τ−→ z′, where the marking stays the same, but time goes
on : ∀t ∈ T with h(t) 6= # we need h(t) + τ ≤ lft(t) ) i.e. the time elapsing τ
need to be possible, and the new clock is given ∀t ∈ T by

h′(t) :=

{
h(t) + τ if t− ≤ m′
# if t− 6≤ m′.

A state z = (m,h) of a TPN Z is called reachable in Z (starting at z0),
if there exist states z1, z

′
1, ..., zn, z

′
n, transitions t1, ..., tn, and times τi ∈ R+

0 , for

i ≤ n, such that z0
τ0−→ z1

t1−→ z′1
τ1−→ z2

t2−→ z′2
τ2−→ . . . zn

tn−→ z′n
τn−→ z holds.

The sequence of transitions σ = t1 . . . tn leading to a reachable state will
be called a feasible one (starting at z0) or just a firing sequence of Z. The
full sequence σ(τ) = τ0t1τ1 . . . tnτn is called a (feasible) run of σ. It shows that
in a given TPN the state changes generally consist of alternating series of time
elapsing and transition firing. Obviously, for a given run the transition sequence
is well defined, and for a given firing sequence there are infinitely many runs in
general.

Eventually, RSZ(z′) is the set of all reachable states in Z starting from
an arbitrary state z′. And RSZ := RSZ(z0), that from the initial state is also
called the state space of Z.

We may also consider the set of reachable p-markings, also called the
p−marking space RZ := { m | (m,h) ∈ RSZ} in a TPN Z. This is a subset
(not necessarily proper) of the reachable markings of the skeleton S(Z). There-
fore, a firing sequence in the skeleton S(Z) is not necessarily a firing sequence
in Z. The set of p-markings, reachable in Z starting at an arbitrary p-marking
m′, is denoted by RZ(m′). A TPN is called bounded, if its set of reachable
p-markings is finite, otherwise it is called unbounded.

For different reasons the state space of a TPN is in general infinite and dense
in terms of the time: the set of reachable p-markings can be infinite or the set of
t-markings for a fixed p-marking can be infinite or both together. Later on, we
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consider some approaches for concise state space representations, when RSZ is
infinite while RZ is finite.

The definition of state change by time elapsing can be slightly and consis-
tently modified for the introduction of a reachability graph based on all reach-
able essential states for arbitrary TPNs, especially for TPNs including transi-
tions whose lft s are ∞. The set of all reachable essential states for arbitrary
TPNs is defined as a subset of all reachable integer states of the considered TPN.
We will use the following property (for more details see [13]): if no transition t
in Z has lft(t) =∞ then the set of essential states is exactly the set of integer
states in RSZ .

2.2 Time-dependent Minimal and Maximal Runs in TPNs

We will formalize the time-dependent notions of measuring the length of runs,
cf. [15].

Let σ(τ) be a run of the transition sequence σ in some TPN Z. The length
of the run l

(
σ(τ)

)
is the sum of all times while executing the run σ(τ), i.e.,

l
(
σ(τ)

)
:=

n∑
i=0

τi, where n = l(σ) and τ = τ0τ1 . . . τn.

For a given transition sequence σ in Z, a feasible run σ(τ) with minimal
length will be referred to as minimal run of σ. Evidently, it satisfies :

l
(
σ(τ)

)
:= min

τ ′
{ l
(
σ(τ ′)

)
| σ(τ ′) is a feasible run of σ in Z }.

The notion of maximal run can be introduced analogously. It denotes the
run with maximal length within all feasible runs of σ if such an upper bound
exists; otherwise it is not defined.

The notions of minimal, respectively maximal time distance between
two states can be found in [12, 15] and are useful for precise analysis of bio-
chemical reaction systems which present different kind of steady situations1 than
our current running example.

2.3 State Space Reduction

The central problem for the dynamic analysis of a given TPN is the adequate
knowledge of its state space. It is important to get a finite description of the
infinite state spaces, under the condition that the p-marking space is finite.

It can be shown that - despite the continuous nature of the time intervals
- it is sufficient to pick up just some “essential” states to determine the entire
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timed behaviour of the net so that qualitative and quantitative analyses remain
possible.

Fig. 2. For some TPN Z. Left hand. Sketched state space of Z: a continuous set.
Right hand. Sketched reduced state space of Z: all reachable integer states.

While the calculation of a single reachable integer state is rather straightfor-
ward, the proof that the knowledge of the integer states is sufficient for analyzing
a TPN was quite difficult. Three solutions had been proposed in the past: con-
sidering a global clock [11] or considering a parametrical description of the state
space [15] or dividing into a finite number of problems, which can be solved
recursively with a methodology inspired from dynamic programming [12]. As
result, one is able to construct for each TPN a reduced reachability graph
whose vertices are the essential states. When the TPN does not contain a
transition whose lft is ∞, then the essential states are exactly all the reachable
integer states in the net.

An edge (z1, z2) labeled (k, t), with k ∈ N, in this reduced reachability graph
has the meaning that in state z1 k time units are elapsing before transition t fires
leading to state z2. Now, for finding minimal and maximal time paths between
two states/p-markings in a TPN, its reduced reachability graph can be used,
even effectively. Our algorithms for computing the reduced reachability graph of
a given TPN are implemented in several standard Petri Net tools, like INA [17],
tina [3] and charlie [7]. INA can additionally compute minimal and maximal
time-dependent paths. Thus these tools can be successfully applied for models
of bio-chemical reaction systems, too.

2.4 Stochastic Petri nets

Stochastic Petri Nets (SPNs) had been introduced at the beginning of the Eight-
ies, cf. [1, 2]. They are widely used in the modeling of biochemical reaction sys-
tems, cf. [8].

Such SPNs are derived from classical PNs by assigning to each transition t
a firing rate λt. This firing rate specifies a firing delay for the transition. More
exactly, the firing delay is a random variable which is distributed exponentially
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and has λt as parameter of the probability density function. In fact, to each
transition t a probability density function with parameter λt is associated :

ft(x;λt) =

{
λte
−λtx, x ≥ 0,

0, x < 0.

Finally, the firing rate λt may be marking-dependent in general. In such a case,
we should write λt(m), where m is a marking, instead of λt. Than the expected
value for the firing delay for the transition t in the marking m is 1

λt(m) .

The firing mode is defined as follows: In a given marking m, each enabled
transition t obtains an instance of the firing delay λt(m) from its associated
probability density function. Then a choice is made: the transition with the
minimum firing delay is firing. The firing itself of a transition does not consume
time. The successor marking is than obtained as in the underlying classical PN.
It is well known [1], that the probability for two transitions to fire at the same
instant is null, i.e. there is no conflict. That is why the transitions in SPNs fire
naturally one by one, i.e., just as in TPNs.

3 Biochemical Systems and Time Petri Nets

Biochemical reaction networks are mostly described by ordinary differential
equations (ODEs) or reaction rate equations (RREs), and both can be con-
verted into each other. Taking account of the rate equations of all reactions in
the systems, ODE like RRE models can be transformed into Continuous Petri
nets or Stochastic Petri nets. More about these transformations can be found,
e.g. in [8]. Conditions for a uniform transformation of ODEs into Continuous
Petri nets (or RREs) are introduced in [16]. Systems of ODEs can be repre-
sented as hybrid functional Petri nets, cf. [9, 10], too. These Petri net models
allow for qualitative and quantitative evaluations using tools and methods of the
Petri net theory, cf. [2, 5].

A transformation of an ODE model into a Time Petri net model (TPN) using
the reaction rates is shown in [14]. This transformation allows the computation
of time-minimal and time-maximal paths (if existing) between two system situa-
tions, i.e. two states of the TPN model. It can be considered as an indication for
the conformance and coherence of the model if the length of the time-minimal
and time-maximal paths coincide with the results in the wet labs. Otherwise the
original model becomes invalidated.

Independently from the original model, an RRE one or an ODE one, in a first
step, a timeless Petri net is always derived. This describes the causal relations
between the events in the system. In biochemical systems, these are biochemical
reactions or biochemical signal transductions. Thereafter additional information,
in particular the time parameters, need to be assigned to the Petri net. They
are obtained from the parameters (kinetic rate constants) in the ODEs. Their
values are often determined experimentally. When it is not possible to collect
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or identify them in vitro, the parameters are estimated using experimental data
achieved only for some discrete time points. In this case the goal is to estimate the
value of the parameters for each moment so that the values over the time fit the
experimental data (cf. [9]). Thus in a second step, integrating these parameters,
a time-dependent PN model is established for the biochemical network. It is
obviously that at this stage of modeling a certain level of inexactness is present
in each model.

In this paper we are going to study biochemical reaction systems which pos-
sess a steady situation1. This is the case when the system comes in a situation, in
which the concentration of all substances stays constant. Usually, in the steady
situation1 the concentration of all substances allows that all reactions take place
permanently. Now constructing the reachability graph, may be interpreted as
considering the path of changes of the single substances. Loosely speaking, we
should get a cyclic set of states in the reachability graph corresponding to the
steady situation1. The behaviour of the SPN, expressed by Markow chains is
isomorphic to the full reachability graph of the underlying PN, i.e., they have
the same state space. By convention, we speak in the following of “the reacha-
bility graph” of the SPN. But the nodes corresponding to the steady situation1

can not be recognized in this reachability graph, even knowing the rates in the
steady situation1. To our knowledge, no method is known until now for sepa-
rating or extracting the subgraph corresponding to the steady situation1 from
the reachability graph of the SPN. Steady state meaning cyclic behaviour, this
subgraph (of the reachability graph of the SPN) is supposed to present a cyclic
structure (with one or more circles), up to some initiation part. In contrast,
knowing the steady situation1 rates we are able to separate the reachable states,
we are looking for, using a TPN and its reachability graph. This is due to the
reduction results on reachability graphs of TPNs discussed in section 2.3.

Thus, we propose in this paper a methodologie to calculate and verify such
set of states which correspond to steady situation1. The starting point will al-
ways be an SPN model for a biochemical reaction system, which has a steady
situation1. This means that the rate for each enabled transition in each marking
is constant. The steady situation1 concentrations and rates can be determined
using simulation of the SPN. Examples for which about 10,0000 simulation runs
have been done may be considered. These runs has to be merged into one av-
eraged simulation run showing the mean of the concentrations, and thus also of
the rates, over the time. We take the expectation values of the steady situation1

rates for our investigations.

Simulation means approximation; thus it is not a priori clear how accurate
the determined steady situation1 rates are.

The reciprocal value of the rate is the time which each enabled transition has
to wait before it can fire. The transition with the minimal waiting time fires in an
SPN. Consequently, an SPN acts in the steady situation1 exactly like a certain
kind of TPN: we propose to construct a TPN, having the same underlying Petri
net as the SPN, and where the transitions t will recieve time intervals [at, bt],
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where at = bt is equal to the above calculated waiting time of t in the SPN in
the steady-state.

A qualitative analysis of the TPN can prove whether the subset of all reach-
able states generate cycle(s) only (up to some initiation part). Furthermore, the
time length of these cycles can be computed.

The formal analysis we proposed allows the following interpretations. If the
reduced reachability graph of the TPN consists of cycles, then the considered
rates achieved by simulation describe a steady situation1, actually. By contrapo-
sition we may deduce, that a non cyclic form of the reduced state space indicates
severe problems in the set of data used to build the TPN, and by consequence,
in the initially established data from experiences in the wet labs.

Additionally the time-length of the cycles can be easily computed and com-
pared with results from the wet labs. Both, the reachability graph of the TPN
and the time-length of the cycles are either an indication for the correctness
of the models or they invalidate these. Therefore our method offers a way of
validating a complex modeling process of biochemical reaction systems.

4 An Example

In this section we will illustrate our approach of analysing a biochemical reaction
system in a steady situation1 along an example introduced in [4] and studied
further in [6, 8], concerning the core model of the influence of the Raf-1 Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway.

In [4] this biochemical reaction system is modeled using an integrated ap-
proach of mathematical modeling in combination with experimental data. This
model consists of eleven nonlinear ODEs. The parameters in the ODEs are esti-
mated using interpolation of polynomial functions.

Afterwards, simulation studies provides a qualitative validation of the math-
ematical model compared to experimental results in the wet labs in view of the
transient behavior and sensitivity analysis. However, parameter estimation is, as
already mentioned, an uncertain factor in such a mathematical model.

Then in [6, 8], a qualitative model is proposed in terms of a Petri Net, see
Fig. 3, deduced from the quoted ODE system.

Additionally, reaction rates are associated to all transitions of this PN [6,
8]. These are derived from the estimated parameters used in [4]. The obtained
whole model is therefore an SPN. In [6], inter alia, the example is considered
w.r.t. the attained steady situation1 in the biochemical network. This is done
by simulation: Rate values for the reactions are estimated after about 10.000
simulation runs have been done. Nevertheless, considering the behaviour of the
model based on estimated parameters, we are in presence of a further factor of
uncertainty.

We are going to investigate the SPN in the simulated steady situation1.
First let us have a look on its reachabilty graph depicted on the left hand side of
Fig.4. Unfortunately no method exists, to our knowledge, to find out analytically
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Fig. 3. The Petri net for the core model of the RKIP pathway, consisting of 11 places
and 11 transitions. The places s1, ..., s11 stand for proteins or protein complexes. Com-
plexes are indicated by an underscore between the protein names, phosphorylated
forms by the suffix -P or -PP. The transitions r1, ..., r11 model the reactions. The
preplaces of a transition correspond to the reaction’s precursors, and its postplaces to
the reaction’s products. The layout follows the suggestions by the graphical notation
used in [4]. The initial marking is constructed systematically using standard Petri net
analysis techniques. This figure with its legend is cited from [8].

/ formally which are the states (nodes) corresponding to the steady situation1.
Instead, we will use the estimated data in order to derive a TPN. This time-
dependent Petri net should have the same state space as the SPN in the steady
situation1. To be able to do this derivation, we need to know the waiting (or
delay) times τi. They can be calculated from three kind of informations/data,
given in the tables below.

• the rate function vi, presented in [8] for each of the eleven transitions ri,
and shown in Table 1

• the estimated parameters k1 · · · k11 in the eleven corresponding ODEs, pre-
sented in [4], renamed rate parameters and denoted by ci := ki in [8], and
shown in Table 1

• the mean steady situation1 concentrations for the species s1 · · · s11
are taken from [6] and shown in Table 2.
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Table 1. The rate function for each transition and the rate constants (the estimated
parameter in the ODEs), cited from [4, 8]. The abbreviations s1 · · · s11 stand for the
involved species as follows: s1 is Raf-1*, s2 is RKIP, s3 is Raf-1* RKIP, s4 is Raf-
1* RKIP ERK-PP, s5 is ERK, s6 is RKIP-P, s7 is MEK-PP, s8 is MEK-PP ERK, s9
is ERK-PP, s10 is RP and s11 is RKIP-P RP. In the rate functions each of the s1 · · ·
s11 is supposed to be the mean concentration of the species s1 · · · s11 in the simulated
steady situation in the SPN, as given in Table 2.

transition ri rate function vi rate constant ci
r1 c1 · s1 · s2 0.053
r2 c2 · s3 0.0072
r3 c3 · s3 · s9 0.625
r4 c4 · s4 0.00245
r5 c5 · s4 0.0315
r6 c6 · s5 · s7 0.8
r7 c7 · s8 0.0075
r8 c8 · s8 0.071
r9 c9 · s6 · s10 0.92
r10 c10 · s11 0.00122
r11 c11 · s11 0.87

Table 2. Mean steady situation1 concentrations for for all si, cited from [6].

specie si concentration

s1 0.2133
s2 0.1727
s3 0.2163
s4 0.5704
s5 0.0332
s6 0.0200
s7 0.7469
s8 0.2531
s9 0.1433
s10 0.9793
s11 0.0207

Now, we can calculate the rates v1 · · · v11 of the transitions in the steady
situation1 using their rate functions from Table 1 and the data from Table 1 and
Table 2. Subsequently, the delay time τi for every one of the ten transitions ri
is obtained as the reciprocal of the rate in the steady situation1. The resulting
values are presented in Table 3.

Finally, the TPN model can be constructed: As skeleton of the TPN model
we take the underlying PN of the SPN, i.e. the net given in Fig. 3. To each
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Table 3. Rates in the steady situation and delay times for r1 · · · r11.

transition ri rate in the steady delay time in the steady
state vi state τi (rounded)

r1 0.00195235623 512
r2 0.00155736 642
r3 0.019372369 52
r4 0.00139748 716
r5 0.0179676 56
r6 0.019837664 50
r7 0.00189825 527
r8 0.0179701 56
r9 0.01801912 55
r10 0.000025254 39598
r11 0.018009 56

transition ri, 1 ≤ i ≤ 11, a time interval [τi, τi] is associated, where τi is the
calculated delay time, from Table 3.
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Fig. 4. Left hand: The reachability graph, from [8], for the SPN of Fig. 3.
Right hand: The reachable p-markings in the TPN. Please note, that this is not the
reachability graph of the TPN.

Now the obtained TPN may be analysed. First, we just calculate the reach-
able p-markings, designed on the right hand side of Fig.4. We observe that due
to the time constraints this graph has 9 nodes, i.e., much less p-markings are
reachable as in the reachability graph of the SPN, depicted on the left hand side,
which is also the reachability graph of the underlying net of the SPN and TPN.
We also detect that the right graph is clearly a subgraph of the left one. The
complete state space of the TPN is -a priori- infinite, a lot of states may share
the same p-marking.
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The reduced reachability graph of the considered TPN can now be con-
structed, by applying the reduction method described in section 2.3. We did it
with tools INA and Charlie [7, 17], which gave us the same result, depicted in
Fig 5. It consists of eleven essential states, i.e., 10 pairs of p- and t-markings,
although only 10 p-markings are reachable in the considered TPN. This is no
incoherence : Two essential states, z3 and z10, share the same p-marking m5.
However, in the cycle each p-marking belongs to exactly one state (node) only.

406,r1

z2

z7

z9

z10

56,r5

5,r11

5,r9

51,r8

z6

z8

z3

52,r3

z5

z4

z1

406,r1512,r1

50,r6

56,r8

50,r6

Fig. 5. The reduced reachability graph of the TPN model.

Analyzing this reduced reachability graph of the TPN tells us that it consists
of the cycle z4, r3, z5, r5, z6, r6, z7, r9, z8, r8, z9, r11, z10, r1
and an initiation path z1, r6, z2, r8, z3, r1.

This path (or panhandle) is caused by the choice of the initial p-marking
for the TPN, chosen to be the same as for the SPN. Actually, the initial p-
marking for the TPN should be a p-marking which the SPN reaches in the
steady situation1. However, the TPN only initiates its behaviour by this path
and then comes to the steady situation1, i.e. stays in the cycle. The time-length
of the cycle was also calculated, its value is 731 time units.

We also read on this reduced graph that the transitions r2, r4, r7 and r10 will
never fire. Such transition are called dead. These are the transitions modeling the
backward reactions which have rate constants being essentially smaller as the
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rate constants for the forward reactions. This tell us that in the steady situation1

the backward reactions do never proceed.

5 Conclusions

In this paper we introduce a method for qualitative and quantitative evaluation
of an SPN model of biochemical reaction systems in a steady situation1 including
validation of all used data. A mathematical model of such a system contains a
number of uncertain factors resulting from the estimation of the parameters in
the ODEs and the values of the reaction rates in the steady situation1 obtained
by simulation of the SPN. The reaction rates and the concentration of the species
in the steady situation1 are constant values.

This means that the set of reachable markings in the SPN model in the steady
situation1 is finite and they generate a cycle, not necessarily a simple one. But
no state reachability analysis of the SPN does allow for isolating those states
which correspond to the steady situation1, i.e. does allow to detect the cycle.

Due to the fact of constant values, we are able to propose a mapping from
the usual SPN model in the steady situation1 onto a TPN model which has the
same behaviour. Contrarily to the SPN model, we can reduce the state space of
the TPN to the part we are interested in, consisting of the essential states. The
obtained reduced state graph can be further analyzed. Its cyclic or non cyclic
form validate or invalidate the used data during the modeling process. The time
length of the cycle can be calculated and compared to real time measures, too.

The algorithms for reachability analysis of TPNs, implemented in the tools
[3,7,17] had been applied for the evaluation of the simulated steady situation1 in
a mathematical model of our running example. We considered the core model of
the influence of the Raf-1 Kinase Inhibitor Protein (RKIP) on the Extracellular
signal Regulated Kinase (ERK) signalling pathway. We were able to show that
the simulated values for the reaction rates define one cycle in the TPN model
and to compute the time-length of this cycle. Furthermore we ascertain that the
backward reactions do not proceed in the steady situation1.

We will lead some reflexions if the initial state for the TPN could be redefined
in a better way by regarding the values for the concentrations of the species in
the simulated steady situation1. We are planning to apply the presented method
to some other cases of biological or biochemical interaction networks, were more
complex steady situations1, with -a priori- non simple cycles.
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Abstract. Model checking has been attracting attention to analyze sig-
naling pathways. There are two or more, i.e. multiple, signals flowing in
a signaling pathway. Most of previous work, however, have treated only
one, i.e. single, signal. To analyze a signaling pathway more precisely, it
is necessary to treat multiple signals. There is few previous work treating
multiple signals. It is known that a primary issue in model checking is
the state-space explosion. Multiple signals make it difficult to analyze by
model checking. In this paper, we propose two modeling methods for sig-
naling pathways with multiple signals. These methods transform a Petri
net model of a signaling pathway to an automaton model of UPPAAL.
The first method uses multiple automata as a model of UPPAAL. The
second method uses a single automaton as a model of UPPAAL. We ap-
ply these methods to an example. And we find that the single automaton
modeling method is more effective than the multiple automata model-
ing method from the viewpoint of the number of signals, the number of
states explored, and checking time. These results show that the model
size to be analyzed is improved by devising of modeling method.

1 Introduction

Signaling pathway is a signaling mechanism to unify the behavior of cells. Since a
pathway is large and complex, there are unknown mechanisms and components.
Some researchers have applied model checking to analysis of signaling pathways.
Model checking is an automatic and usually quite fast verification technique
for finite state concurrent systems. In 2003, Chabrier et al.[1] applied NuSMV
to analysis of biological pathways, and in 2009, Bos et al.[2] applied UPPAAL
to analysis of a signaling pathway. They also described that model checking is
powerful, but the state-space explosion may happen. Note that both [1] and [2]
treated only one signal.

There are two or more, i.e. multiple, signals in a signaling pathway because
a ligand joins a receptor repeatedly. To analyze the signaling pathway more
precisely, it is necessary to treat multiple signals. There is few previous work
treating multiple signals. Kwiatkowska et al.[3] described that model checking
of multiple signals cause the state-space explosion further than that of a single
signal in performing model checking by PRISM.

 Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN2011) 
                                                                                      online:  http://ceur-ws.org/Vol-724  pp.87-101
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2 Shota Nakano and Shingo Yamaguchi

In this paper, we propose two modeling methods for signaling pathways with
multiple signals. These methods transform a Petri net model of a signaling path-
way to an automaton model of UPPAAL. Cassez et al.[4] proposed a method for
transforming a time Petri net to an timed automaton. But this method tends to
increase the size of an automaton. Our methods can give a smaller automaton
model. The first method uses multiple automata as a model of UPPAAL. The
second method uses a single automaton as a model of UPPAAL. We apply these
methods to an example. Then we evaluate the methods from the viewpoint of
the number of signals, the number of states explored, and checking time. Finally,
we discuss whether we can increase the model size to be analyzed by devising of
modeling method.

In Sect.2, we present a Petri net model of signaling pathways and an au-
tomaton model of UPPAAL. In Sect.3, we propose two modeling method for a
signaling pathway with multiple signals. In Sect.4, we apply the two proposed
methods to an example and evaluate the two methods. Finally, Sect.5 gives a
conclusion and some future work.

2 Preliminary

2.1 Petri net model

Matsuno et al.[5, 6] have proposed a Petri net model of signaling pathways. The
Petri net model can represent multiple signals as multiple tokens. Places denote
static elements including chemical compounds, conditions, states, substances and
cellular organelles. Tokens indicate the presence of these elements. The number
of tokens is given to represent the amount of chemical substances. Transitions
denote active elements including chemical reactions, events, actions, conversions
and catalyzed reactions. Directed arcs connecting the places and the transitions
represent the relations between corresponding static elements and active ele-
ments.

The formal definition of a Petri net model of a signaling pathway is as follows.

Definition 1. A Petri net model of a signaling pathway is a 5-tuple TPNR =
(T, P, E , D,R).

T : A set of transitions {t1, t2, · · · , t|T |}
P : A set of places {p1, p2, · · · , p|P |}
E : A set of directed arcs between the places and the transitions
D : T → N : A function to assign a firing delay time to a transition
R : T → [0, 1] : A function to assign a firing rate to a transition.

Note that
∑

t∈p• R(t) = 1. □
There are one or more source transitions and one or more sink transitions. Every
node is on a path from a source transition to a sink transition. If a firing of a
transition ti is decided, tokens required for the firing are reserved. We call these
tokens as reserved tokens. When D(ti) passes, ti fires to remove the reserved
tokens from each input place of ti and put non-reserved tokens into each out-
put place of ti. If a place pi has two or more output transitions, each output
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Two modeling methods for signaling pathways with multiple signals 3

transition can’t fire over R(ti). Let X(t) be the firing count of t. Then, ∀t ∈ p•

: X(t)∑
t′∈p• X(t′) ≤ R(t). Figure 1 is a Petri net model of a part of IL-1 signaling

pathway[6].

2.2 Automaton model of UPPAAL

UPPAAL[7] is a model checking tool for verification of real-time systems. This
tool can use timed automata as state transition models. We use the following
notations: C is a set of clocks and B(C) is the set of conjunctions over simple
conditions of the form x ▷◁ c or x − y ▷◁ c, where x, y ∈ C, c ∈ N and ▷◁∈
{<,≤,=,≥, >}. A timed automaton is a finite directed graph annotated with
conditions over and resets of non-negative real valued clocks.

Definition 2. A timed automaton is a 6-tuple (L, l0, C,Act, E, I).
L : A set of locations
l0 ∈ L : The initial location
C : A set of clocks
Act : A set of actions
E ⊆ L × Act × B(C) × 2C × L : A set of edges between locations with an
action, a guard and a set of clocks to be reset
I : L→ B(C) : A function to assign to an invariant to a location □

Timed automata often form a network over a common set of clocks and actions,
consisting of n timed automata Ai = (Li, l

0
i , C,Act, Ei, Ii), 1 ≤ i ≤ n. For the

semantics of the automaton model, refer to [8].
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Fig. 1. A part of Petri net model of IL-1 signaling pathway
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4 Shota Nakano and Shingo Yamaguchi

In model checking in UPPAAL, we describe a property to be analyzed in
Timed Computation Tree Logic (TCTL) and we can verify whether the model
with clock variables satisfies the property by running model checking. TCTL on
UPPAAL includes E<> p (There exists a path where p eventually holds) and
A[] p (For all paths p always holds).

3 Two modeling methods for signaling pathways with
multiple signals

A Petri net model representing a signaling pathway must be correct. We use
UPPAAL to verify whether a Petri net model is correct, because the Petri net
model includes time concept. The model used in this paper is timed Petri net,
but it is easy to extend our method to time Petri nets.

It is known that model checking is powerful but may cause the state-space ex-
plosion. The more signals are, the more the problem becomes severe. Kwiatkowska
et al.[3] mentioned that model checking with multiple signals cause the state-
space explosion further than that with a single signal. It is known that there is
a tradeoff between expressive power and analytical power. To balance the pow-
ers, we need to devise modeling methods. Concretely, we propose two modeling
methods. The first method uses multiple automata as a model of UPPAAL. It is
named “multiple automata modeling method.” The second method uses a single
automaton as a model of UPPAAL. It is named “single automaton modeling
method.”

3.1 Multiple automata model and single automaton model

We give the representation model used in each modeling method. Both models
have the same expressive power as a Petri net model; provided that the Petri net
model has no transition branches. Note that those models can treat transition
joins. We give a simple example to show the difference between the multiple
automata model and the single automaton model.

D(t1)=12

t1

t2

t3

D(t2)=9

D(t3)=12

p1

p2

(a) A Petri net model
　

0  0 1  0 0  1 1  1

1  0 0  1 0  0

time:0 time:12 time:21 time:24

time:27 time:33 time:39

t1 t1t2

t3

t2 t3

(b) A state transition of the case t1 fires twice
　

Fig. 2. A Petri net model TPNR1 of a signaling pathway
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Two modeling methods for signaling pathways with multiple signals 5

(1) Multiple automata model
The multiple automata model preserves the structure of a given Petri net
model as much as possible. A Petri net model with n signals is represented
as the following:
• The multiple automata model of the Petri net model consists of n au-

tomata.
• Each automaton represents the state transition of a single signal.
• A place or a transition is represented as a location.
• An arc is represented as an edge.
• Firing delay time is implemented by using a location invariant and a

guard.
In this example, we use a Petri net model, TPNR1, which is shown in Fig.2.
Figure 2(a) is a Petri net model and Fig.2(b) is a state transition of the
case t1 fires twice. Since TPNR1 is state machine, the reachability graph
has a similar structure as the net. Figure 3 shows the multiple automata
model of TPNR1. In this example, we assume that source transition t1 fires
twice. There are two signals in this model. The two signals are represented
as two automata. Two places and three transitions are represented as five
locations. Four arcs are represented as four edges. Firing delay time D(t1) =
12 is implemented by using location invariant (gc1<=12) of t1 and guard
(gc1>=12) of edge (t1,p1), where gc1 denotes a global clock. Similarly, firing
delay time D(t2) = 9 is implemented by using location invariant (c<=9) of

Fig. 3. The multiple automata model of TPNR1
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6 Shota Nakano and Shingo Yamaguchi

Table 1. Variables of single automaton model

Variable Meaning

clock gc1, gc2, · · ·, gcm Clock for source transitions

clock c[k] Clock of the i-th signal

int xf[k] Firing delay time of the i-th signal

int mp1, mp2, · · ·, mp|P | The number of signals in pi
int tf1, tf2, · · ·, tf|T | Signal ID of the first reserved signal in transition ti

int tx1[k], tx2[k], · · ·, tx|T |[k] Signal IDs reserved in transition ti
int l1, l2, · · ·, r1, r2, · · · The firing count of a transition in a place branch

void t1res(), t2res(),· · · Reset c[] and xf[]

void freetx1(), freetx2(),· · · Organize reserved signal IDs of transition ti

p1 and t2 and guard (c>=9) of edge (p1,t2), where c denotes a local clock.
D(t3) is implemented by a similar way. A current state of the automata
represents where the signals are now.

(2) Single automaton model
The single automaton model represents a given Petri net model as a single
automaton with only one location even if there are two or more signals. A
Petri net model with n signals is represented as the following:

Fig. 4. The single automaton model of TPNR1
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Two modeling methods for signaling pathways with multiple signals 7

• The single automaton model consists of a single automaton with only
one location.

• The automaton represents multiple signals by using clocks c[] and vari-
ables xf[].

• The markings of the places are represented as variables mp1, mp2, · · ·,
mp|P |.

• A firing of each transition is represented as a self loop of the location.
• Firing delay time is implemented by using a location invariant and a

guard.

Figure 4 shows the single automaton model of TPNR1. Figure 5 is the state
transition of the single automaton model. Places p1, p2 are represented as
a single location with variables mp1, mp2, where mpi denotes the marking
of pi. The state transition of marking is same as Fig.2(b). Table 1 is the
variables used in single automaton model. A firing of t1, t2, t3 is repre-
sented as edge (A), (B), (C). A global clock gc1 is assigned for the source
transition t1. Clocks c[] and variables xf[] are assigned for signals. k is
the maximum number of signals in the pathway. xf[i] denotes the firing
delay time of the i -th signal. Multiple signals are represented as a single
location with c[] and xf[]. Firing delay time of the i -th signal is imple-
mented by using location invariant (c[i]<=xf[i]) and guard (c[i]>=xf[i]).
In a firing of transition t1 (Edge (A)), action (xf[tf1]:=9) means setting
the firing delay time of next transition t2. tfi denotes the signal ID of the
first reserved signal in transition ti. Action (tx2[i2]:=tf1) means reserv-
ing the signal that fires on t1 to next transition t2. txi[k] stores signal
IDs reserved in transition ti. (tf2:=tx2[0]) removes the first reserved sig-
nal ID of transition t2. In a firing of the transition t2 (Edge (B)), action
(mp1--, mp2++, c[tf2]:=0, xf[tf2]:=0, tx3[i3]:=tf2, tf3:=tx3[0])

mp1=0
mp2=0

gc1=0
c[1]=0
c[2]=0

tf1=1

mp1=0
mp2=0

gc1=1
c[1]=1
c[2]=1

mp1=1
mp2=0

gc1=0
c[1]=0
c[2]=12

xf[1]=9
  =D(t2)
tx2[0]=1
tf1=2
tf2=1

mp1=1
mp2=0

gc1=1
c[1]=1
c[2]=13

time:0 time:1 time:12 time:13

Edge(A)

t1 has fired

mp1++,
c[tf1]:=0,
xf[tf1]:=9,
tx2[i2]:=tf1,
i2++,
tf2:=tx2[0],
gc1:=0,
t1res()

time:21

Edge(B)

t2 has fired

mp1--,mp2++,
c[tf2]:=0,
xf[tf2]:=6,
tx3[i3]:=tf2,
i3++,
tf3:=tx3[0],
freetx2(),
tf2:=tx2[0]

mp1=0
mp2=1

gc1=9
c[1]=0
c[2]=21

xf[1]=6
  =D(t3)
tx3[0]=1
tf3=1
tf2=0

time:24

Edge(A)

t1 has fired

mp1++,
c[tf1]:=0,
xf[tf1]:=9,
tx2[i2]:=tf1,
i2++,
tf2:=tx2[0],
gc1:=0,
t1res()

mp1=1
mp2=1

gc1=0
c[1]=3
c[2]=0

xf[2]=9
  =D(t2)
tx2[0]=2
tf2=0
tf1=1

Fig. 5. The state transition of single automaton model of TPNR1
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8 Shota Nakano and Shingo Yamaguchi

is the same role as above. freetx2() organizes reserved signal IDs of t2.
xf[0] denotes the end time. In this model, we can analyze the model until
xf[0].

3.2 Transformation algorithms

In this subsection, we give, for each modeling method, an algorithm for trans-
forming a Petri net to an automaton model. Due to limitations of space, we
restrict the algorithm to the modeling of a single path Petri net model.

(1) Multiple automata modeling method
<<Transformation to Multiple Automata Model>>
Input: Petri net model TPNR = (P, T, E , D,R), number n of signals
Output: Multiple automata model A1, A2, · · ·, An

Foreach i = 1 to n, make Ai according to the following:

1. L← P ∪ T

2. C ← {gc1, ci}
3. E ← {(p, ∅,(ci>= D(t)), ∅, t)| (p, t) ∈ A}
∪ {(t, (gc1:=0, ci:=0), (gc1>=D(t)), {gc1, ci}, p)| |•t| = 0, (t, p) ∈ A}
∪ {(t, (ci := 0), ∅, {ci}, p)| |t•| > 0, (t, p) ∈ A}

4. I ← {(t, (gc1<=D(t1)))| t ∈ T, |•t| = 0}
∪ {(t, (ci<=D(t)))| t ∈ T, |t•| > 0}
∪ {(p, (ci<=D(t)))| p ∈ P, t is the output transition of p}

(2) Single automaton modeling method
<<Transformation to Single Automaton Model>>
Input: Petri net model TPNR = (P, T, E , D,R), number n of signals
Output: Single automaton model A, variables mp1, mp2, · · ·, mp|P |, tf1, tf2,
· · ·, tf|T|, xf[], tx1[], tx2[], · · ·, tx|T |[].

1. L← {l0}
2. C ← {gc1, c[1], c[2],· · ·, c[k]}
3. E ← {(l0, (mp1++, c[tf1]:=0, xf[tf1]:=D(t2), tx2[i2]:=tf1, i2++,

tf2:=tx2[0], gc1:=0, t1res()), (gc1>=D(t1)), {gc1, c[tf1]}, l0)}
∪ {(l0, (mp|P |--, c[tf|T|]:=0, xf[tf|T |]:=10000, freetx|T|(), tf|T |
:=tx|T |[0]), (c[tf|T |]>=xf[tf|T |] && xf[tf|T |]==D(t|T |))), {c[tf|T |
]}, l0)}
∪
∪

i=2to|T |−1{(l0, (mp(i−1)--, mpi++, c[tfi]:=0, xf[tfi]:=D(t(i+1)),tx

(i + 1)[i(i + 1)]:=tfi,i(i + 1)++, tf(i + 1):=tx(i + 1)[0], freetxi(),
tfi:=txi[0]), (c[tfi]>=xf[tfi]&&xf[tfi]==D(ti)), {c[tfi]}, l0)}
t1res() resets c[] and xf[].
freetxi() organizes reserved signal IDs of transition ti.

4. I ← {(l0, (c[0]<=xf[0]&&c[1]<=xf[1]&&· · · &&c[k]<=xf[k]&&
gc1<=D(t1)))}
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3.3 Pattern lists

We give the pattern lists of transforming TPNR to multiple automata model and
single automaton model to ease the transformation. Multiple automata model

Table 2. The pattern list of transforming TPNR to multiple automata model

TPNR model multiple automata model

Multiple source transitions

t1

p1

t2

p2

D(t1)=10 D(t2)=12

A place branch

t1

p2

D(t1)=10

p1

t2

D(t2)=20
R(t2)=0.6

t3

D(t3)=30
R(t3)=0.4

A transition join

t1

p2

D(t1)=10

p1

p3

A place join

t1

p2

D(t1)=10

p1

p3

D(t2)=15

t2

95

Matsuno
長方形
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and single automaton model can be created by combination of these patterns.
Table 2 is the pattern list of transforming TPNR to multiple automata model.
c is a local clock and gc is a global clock.

Table 3. The pattern list of transforming TPNR to single automaton model

TPNR model single automaton model

Multiple source transitions

t1

p1

t2

p2

D(t1)=10 D(t2)=12

A place branch

t1

p2

D(t1)=10

p1

t2

D(t2)=20
R(t2)=0.6

t3

D(t3)=30
R(t3)=0.4

A transition join

t1

p2

D(t1)=10

p1

p3

A place join

t1

p2

D(t1)=10

p1

p3

D(t2)=15

t2
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– The first column is for multiple source transitions. Location source is a
global source. This location implements all of the firing delay times of source
transition with global clocks, gc1, gc2.

– The second column is for a place branch. A place branch is implemented
by using l and r. l denotes the firing count of t2, and r denotes the firing
count of t3. And guard ((l+r)*40>=l*100) limits that firing count of t2.
t3 is implemented by a similar way of t2 but firing delay time of t3 is longer
than that of t2. So, the blacken location is added to implement the firing
delay time.

– The third column is for a transition join. A transition join is implemented
by channels t1fire! and t1fire?. A signal on p1 and a signal on p2 are
synchronized, then two signals fires on t1. The blacken location is added to
abandon the signal on p2.

– The fourth column is for a place join. A place join is implemented by a
similar way of <<Transformation to Multiple Automata Model>>.

Table 3 is the pattern list of transforming TPNR to single automaton model. c
is a local clock and gc is a global clock.

– The first column is for multiple source transitions. Edge (A) implements a
firing of t1 and edge (B) implements a firing of t2. Firing delay times of t1
and t2 are implemented by global clocks gc1 and gc2.

– The second column is for a place branch. Edge (A) implements the firing
of transition t1 with substituting 0 in xf[] and tf2bra3 stores the signal
ID that isn’t reserved. Edges (B) and (D) are limiting the firing count by
similar way of multiple automata model and reserve a signal to transition t2
or t3. Edges (C) and (E) implement the firing of transitions t2 and t3.

– The third column is for a transition join. A transition join is implemented
by only updating variables mp1 and mp2.

– The fourth column is for a place join. A place join is implemented by a
similar way of <<Transformation to Single Automaton Model>>. Edge (A)
implements the firing of transition t1 and edge (B) implements the firing of
transition t2.

4 Application example: IL-1 signaling pathway

In this section, we apply the proposed modeling methods to IL-1 signaling path-
way. And we compare the obtained models and discuss the merits and demerits
of the modeling methods.

IL-1 is a proinflammatory cytokine, and plays an important role in regulating
the mechanism of proinflammatory. There cause multiple signals flowing in the
signaling pathway because a ligand joins a receptor repeatedly. The whole Petri
net model of IL-1 signaling pathway is shown in Fig.3 of [9].

The correctness of the model must be examined. We can check the correctness
of the model by model checking. For example,
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12 Shota Nakano and Shingo Yamaguchi

– We can check the reachability with time concept. Checking the reachabil-
ity helps us to understand signaling pathways. Let c be a clock, we write a
TCTL expression of this property as E<> M(p1)>0 && c==30. This expres-
sion means there exists a path where a signal is on p1 when c is 30.

– We can also check that there is no retention in the model. Retention means
that signals are accumulated at any place. We write a TCTL expression of
this property as A[] M(p1)<=5. This expression means that the number
M(p1) of signals for place p1 is always 5 or less.

In this paper, we focus on checking the retention. If there is retention in the
Petri net model, we consider the error in the Petri net model or the possible of
unknown paths in the signaling pathway.

We apply two modeling methods to a part of IL-1, which is shown in Fig.1.
The size of the Petri net model is |P | = 7, |T | = 12. Figure 6 shows the multiple
automata model of Fig.1. Figure 7 shows the single automaton model of Fig.1.

Fig. 6. The multiple automata model of the part of IL-1 signaling pathway. Each
automaton represents the behavior of a single signal.
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Two modeling methods for signaling pathways with multiple signals 13

Fig. 7. The single automaton model of the part of IL-1 signaling pathway. This au-
tomaton represents the behavior of multiple signals.

This Petri net model includes three source transitions, therefore we applied the
first column of each pattern list at the case of three source transitions. Places e1,
e2, and e3 have two output transitions, therefore we applied the second column
of each pattern list. We applied the third column of each pattern list for transi-
tion t72 because t72 has two input places. And we applied the fourth column of
each pattern list for place e7 because e7 has two input places.

Table 4 shows the size and the number of clocks and variables of the obtained
models. The size of each automaton of the multiple automata model is |L| = 23,
and |E| = 26. In comparison, the size of the single automaton model is |L| = 1,
and |E| = 19. The number of clocks of the multiple automata model is 3+n,
and the number of variables is 6, where n is the number of signals. The number
of clocks of the single automaton model is 48, and the number of variables is
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14 Shota Nakano and Shingo Yamaguchi

Table 4. Evaluation results of example 1: IL-1 signaling pathway |P |=7, |T |=12

Model Number 　　
of signals n

Number 　　
of clocks

Number of states
explored

Checking
time(min)

Multiple 39 42 139858 2
automata 78 81 770854 110
|L|=23, |E|=26 128 131 2205987 180
variables:6 129 132 Out of memory

Single 107 48 581918 5
automaton 325 48 2393918 20
|L|=1, |E|=19 702 48 5505758 35
variables:53 703 48 Out of memory

40. In addition, the number of arrays is 13. The number of clocks continue to
increase according to the number of signals n in the multi automata model, but
the number of clocks is constant in the single automaton model. The size of the
single automaton model is smaller than the size of the multiple automata model,
but the number of variables of single automaton model is larger than that of the
multiple automata model under the same expressive power.

We can analyze the retention property by using those automaton models.
Table 4 shows the number of signals, the number of states explored, checking
time. Model checking is performed on the PC with CPU Xeon 2.13GHz and
memory 3.2Gbyte. We could check the retention property of the multiple au-
tomata model until the number of signals is 128. Meanwhile we could check that
of the single automaton model until the number of signals is 702. The single au-
tomaton model enables us to analyze more signals than the multiple automata
model. The number of states explored of the single automaton model is smaller
than the multiple automata model, and checking time is also shorter.

5 Conclusion

In this paper, we proposed two modeling methods for signaling pathways with
multiple signals. Those modeling methods use different representation model.
Next we gave for each representation model, a transformation algorithm, and
a pattern list. Then we applied these proposed methods to the IL-1 signaling
pathway. The results show that signaling pathway with multiple signals should be
represented as not automata but variables, and the model size to be analyzed can
be increased by devising of modeling method. We have also applied these method
to endocytosis signaling pathway, and a similar trend have been obtained.

As future work, we plan to develop a method treating transition branches. An
approach is to prepare child process for implementing parallel part and devising
the clock handling. And we think that it is easy to extend our method to time
Petri net model. We will verify that our method can be applied to time Petri
net model.
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Abstract. We propose MPath2PN, a tool which automatically trans-
lates metabolic pathways, as described in the major biological databases,
into corresponding Petri net representations. The aim is to allow for a
systematic reuse, in the setting of metabolic pathways, of the variety of
tools existing for Petri net analysis and simulation. The current proto-
type implementation of MPath2PN inputs the KEGG description of a
metabolic pathway and produces two Petri nets, mainly differing for the
treatment of ubiquitous substances. Such Petri nets are represented using
PNML, a standard format for many Petri net tools. We are extending
the tool by considering further formats for metabolic pathways in in-
put and for Petri nets in output. MPath2PN is part of a more general
project aimed at developing an integrated framework which should offer
the possibility of automatically querying databases for metabolic path-
ways, producing corresponding Petri net models and performing analysis
and simulation on them by means of various tools.

1 Introduction

Metabolic pathways are complex systems whose understanding is important in
many fields, in particular in biology and medicine. Various techniques have been
proposed to model and analyse metabolic pathways. Among these, Petri nets are
a well-known formalism, used in computer science for modelling concurrent and
distributed systems, which turns out to be particularly natural for representing
metabolic pathways and with the advantage of the availability of many tools
for visualisation, simulation and analysis. By using Petri nets it is possible to
represent and analyse fundamental properties of metabolic pathways, like con-
servation relations on metabolites (corresponding to P-invariants), steady state
flux distributions (corresponding to T-invariants), the rates of chemical reactions
(corresponding to marking dependent rates in continuous transitions) or control
mechanisms, such as positive or negative feedbacks.

When modelling a metabolic pathway as a Petri net one has to face several
problems related to the multiplicity of data sources and formats. On the one
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hand, the information on the pathway may be stored in different databases each
using its own data format. On the other hand, once constructed, the Petri net
model could be analysed with different Petri net tools, each one having its specific
input format. Our proposal is aimed at alleviating this problem, automatising
the recovery of metabolic data and their translation into corresponding Petri
net models, which can be encoded using the input format of different tools
available for Petri nets. This is part of a larger project - in progress - aimed at
developing a framework able to automatically retrieve metabolic data from the
web, produce corresponding Petri net representations and analyse them through
the available tools. The framework should deal with the various databases for
metabolic pathways and the different tools for Petri nets.

In this paper we present a prototype implementation of the automatic trans-
lation of the metabolic data into a Petri net model. The tool, MPath2PN, is
written in Java and it is conceived to deal with different translations, that is
different databases in input, such as KEGG and the BioModels Database, and
different Petri net tools in output. At present it includes two specific translations
from KEGG’s data to PNML for PIPE2. The first translation is rather efficient
since it considers a KGML file as the main source. The second translation is
slower, since it gets most of the input data from the KEGG web service, but
it provides a more detailed representation of the pathway which includes also
ubiquitous substances.

The paper is organised as follows. In Section 2 we give a brief introduction
to metabolic pathways and their main databases. In Section 3 we recall how to
give a Petri net representation of a metabolic pathway. In Section 4 we describe
the tool structure and the two translations from KEGG to PNML for PIPE2.
Finally, in Section 5 we draw some conclusions.

2 Metabolic Pathways

An organism depends on its metabolism, the chemical system which generates
the essential components for life and the energy necessary to synthesise and use
them. Subsystems dealing with some specific function are called metabolic path-
ways. Biologists usually represent a metabolic pathway as a network of chemical
reactions, catalysed by one or more enzymes, where some molecules (reactants
or substrate) are transformed into others (products). Enzymes are not consumed
in a reaction, even if they are necessary and used while the reaction takes place.
The product of a reaction is the substrate of the next one.

To characterise a metabolic pathway, it is necessary to identify its components
(namely the reactions, enzymes, reactants and products) and their relations.
Such relations can be represented through a stoichiometric matrix. An element
of the matrix, a stoichiometric coefficient nij , represents the degree to which the
i-th chemical species participates in the j-th reaction. The kinetic of a pathway is
determined by the rate associated with each reaction. It is represented by a rate
equation, which depends on the concentrations of the reactants and on a reaction

2
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rate coefficient (or rate constant) which includes all the other parameters (except
for concentrations) affecting the rate.

A metabolic pathway contains many steps, one is usually irreversible, the
other steps are usually reversible and in many cases the pathway can go in the
opposite direction depending on the needs of the organism. Glycolysis is a good
example of this behaviour: it is a fundamental pathway which converts glucose
into pyruvate and releases energy. When glucose enters a cell, it is phosphorylated
by ATP to glucose 6-phosphate in a first irreversible step, thus glucose will
not leave the cell. When there is an excess of energy, the reverse process, the
gluconeogenesis, converts pyruvate into glucose: glucose 6-phosphate is produced
and stored as glycogen or starch. Most steps in gluconeogenesis are the reverse
of those found in glycolysis, but the three reactions of glycolysis producing most
energy are replaced with more kinetically favorable reactions. This system allows
glycolysis and gluconeogenesis to inhibit each other.

Information on metabolic pathways are collected in many different databases.
The KEGG PATHWAY database [9] contains the main known metabolic, reg-
ulatory and genetic pathways for different species. It integrates genomic, chem-
ical and systemic functional information [38]. KEGG can be queried through
a language based on XML [6], called KGML (KEGG Markup Language) [8],
but also a web service for querying the system from users programs is available.
Another important repository is the BioModels Database in the SBML.org
site [17]. The models are coded in SBML (Systems Biology Markup Language),
a language based on XML. Other free access databases are MetaCyc [11, 24],
Reactome [15], TRANSPATH, which is part of BIOBASE [20] and Bio-
Carta [1]. Relevant information can be found also in other databases, such as
BRENDA [3, 25], ENZYME [5], DIP [4, 52], MINT [12, 27] and BIND.

3 Petri nets for modelling Metabolic Pathways

In some seminal papers Reddy et al. [50, 48, 49] and Hofestädt [36] propose Petri
nets (PNs) for representing and analysing metabolic pathways. Since then a
wide range of literature has grown on the topic (see, e. g., [26, 39, 21] for surveys
on modelling metabolic pathways through PNs). PNs are a well-known formal-
ism applied in computer science for modelling concurrent systems. They have
an intuitive graphical representation which may help the understanding of the
modelled system, a sound theory and many applications both in computer sci-
ence and in real life systems (see [45, 51, 44, 28] for surveys on PNs and their
properties). A PN model can be decomposed in order to master the overall com-
plexity and it enables a large number of different analyses. Just to mention a
few, one can determine conflicting evolutions, reachable states, cycles, states of
equilibrium, bottlenecks or accumulation points. Additionally, once a qualitative
PN model has been devised, quantitative information can be added incremen-
tally. PNs seem to be particularly natural for representing metabolic pathways,
as there are many similarities between concepts in biochemical networks and
in PNs. They both consist of collections of reactions which consume and pro-
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duce resources and their graphical representations are similar. This suggest to
exploit the techniques developed for PNs also for metabolic pathways. In fact
many tools are available for visualisation, analysis and simulation of PNs, a quite
comprehensive list can be found at the Petri net World site [14].

Several generalisations of the basic PN formalism have been proposed to bet-
ter modelling biological systems (such as PNs with test and inhibitor arcs [42,
43], Coloured PNs [35, 54], Timed PNs [29, 34, 46], Stochastic PNs [32, 41, 33],
Continuous PNs [30, 23, 33, 39] and Hybrid PNs [42, 43]). Some extensions con-
cern the qualitative aspects of the models and aim at increasing the expressive
power or the modelling capabilities of the formalism. Other extensions introduce
quantitative concepts, such as time and probability, thus allowing for the repre-
sentation of temporal and stochastic aspects of biological systems, respectively.
In this paper we will be concerned only with basic PNs, used for a qualitative
modelling of metabolic pathways.

3.1 Petri net representation of a metabolic pathway

The qualitative representation of a metabolic pathway by means of a PN can
be derived by exploiting the natural correspondence between PNs and biochem-
ical networks. In fact, places in PNs are associated with molecular species, such
as metabolites, proteins or enzymes; transitions in PNs correspond to chemi-
cal reactions; input places represent the substrate or reactants; output places
represent reaction products. The incidence matrix of the PN is identical to the
stoichiometric matrix of the system of chemical reactions. The number of to-
kens in each place of the PN indicates the amount of substance associated with
that place. It may represent either the number of molecules expressed in moles
or the level of concentration, suitably discretised by introducing a concept of
concentration level [31].

Although the correspondence between metabolic pathways and PN elements
is rather straightforward, some modelling choices have to be taken in the con-
struction of a PN representation of a metabolic pathway. For example, enzymes
and ubiquitous substances, such that H2O, phosphate, ADP and ATP, might not
be represented in the PN. Enzymes are taken and then released by the reactions
and they are usually not represented in the PN model. This is an appropriate
choice as long as their concentration do not change. Also ubiquitous substances,
once assumed to be constant, can be omitted in the PN model. In this way the
resulting model is greatly simplified, but, as an obvious drawback, processes in-
volving such substances, such as the energy balance, are not modelled. In the
PN models produced by the current prototype enzymes are not explicitly repre-
sented. Instead, as clarified later, the decision on whether to include information
on the ubiquitous substances is left to the user.

Additionally, in a metabolic pathway one can distinguish between internal
and external metabolites. The former are entirely produced and consumed in the
network, while the latter represent sources or sinks, that is, connection points
with other pathways producing or consuming them. External metabolites can
be represented in the PN model in different ways, with different impacts on the
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resulting net. In the translations currently performed by the prototype, external
metabolites will simply result in places where connected transitions either all
consume or all produce tokens. Their special status may be considered later in
the simulation or analysis phase.

Another modelling problem arises from the fact that most of the reactions in
a pathway are reversible. A reversible reaction is decomposed into two distinct
reactions, a forward one and a backward one, leading to two corresponding tran-
sitions in the PN model. If the PN model does not represent the kinetic factors,
the presence of the forward and backward transitions leads to a cyclic behaviour
producing and destroying the same molecules, which might not be of biolog-
ical interest. In the current implementation pairs of transitions corresponding
to reversible reactions can be distinguished by their identifiers, so that the cor-
responding cyclic behaviours may be filtered out, if desired, in the analysis or
simulation phase (e.g., an analysis based on T-invariants could ignore the trivial
invariants consisting of pairs of transitions generated by a reversible reaction).

Once we have a qualitative model, quantitative data can be added to refine
the representation of the behaviour of the pathway. In particular, extended PNs
may have an associated transition rate which depends on the kinetic law of
the corresponding reaction. This introduces further representation problems and
choices, but in this paper we consider only qualitative modelling. A more detailed
description of the representation of metabolic pathways with PNs can be found
in [39, 21], where qualitative and quantitative modelling aspects are discussed
and analysed.

4 The tool MPath2PN

The tool MPath2PN is intended to provide a way of automatically transforming
a metabolic pathway, expressed in one of the various existing formalisms (e.g.
KGML, SBML), into a corresponding PN, also expressed in one of the existing
formalisms (e.g. PNML [13], a standard format used by many analysis tools
for PNs, or the specific input formalism for PN tools, such as SNOOPY [18],
INA [53] or TimeNET [19]).

We developed a prototype in Java with a structure which is modular enough
to cope with many different translations (see Figure 1). We also implemented two
specific translations which follow the modelling choices described in Section 3.1.
Both of them derive the description of a metabolic pathway from the KEGG
database and generate a corresponding PN. A basic source of information on
the pathway is a file, in KGML format, which can be downloaded from KEGG.
A file describing the corresponding PN model is produced, in PNML format for
PIPE2 (Platform Independent Petri net Editor 2) [22], an open source platform
independent tool for creating and analysing PNs. The two translations differ
for the level of detail of the description of the pathway: the second translation
considers also the presence of ubiquitous substances.

Since most of the descriptions of metabolic pathways and of PNs are based on
XML formats, MPath2PN produces the translation by using XSLT (eXtensible
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Fig. 1. Structure of MPath2PN

Stylesheet Language Transformation [7]) in the Saxon [16] open source version.
Each translation requires the definition of an appropriate style sheet XSL which
specifies the translation rules to be applied. Often there is the need to integrate
various information in the translation, hence a translation is standardised into a
three step process: pre-treatment, XSL translation and post-treatment. For the
pre- and post-treatment, Java classes can be developed which modify respectively
the input and the output files.

4.1 The first translation from KGML to PNML for PIPE2

The first translation implemented in MPath2PN consists of a plain transforma-
tion from a source KGML file describing the pathway downloaded from KEGG,
to a target file describing the produced PN in PNML format for PIPE2.

Consider for example the KEGG pathway of the Glycolysis / Gluconeogenesis
in Homo sapiens shown in Figure 2. We enclosed in a shaded box a small part
of the pathway corresponding to a single reversible reaction, i.e., β-D-glucose 6-
phosphate ketol isomerase (R03321). The KEGG page relative to such reaction
is shown in Figure 3. The reaction is catalysed by the enzyme identified by
the EC number 5.3.1.9 and it involves the compounds β-D-glucose 6-phosphate
(C01172) and β-D-Fructose 6-phosphate (C05345). Note that KEGG uses its
own identifiers for reactions and compounds. Let us take reaction R03321 as a
running example for the translation from KGML to PNML.

The structure of the KGML format is shown in Figure 4. The root node
represents the complete pathway, which is composed by nodes entry, relation
and reaction, all with multiplicity 0, ..,∞. A node entry represents a node
in the KEGG pathway such as a compound, an enzyme or also a reference to
another pathway. A node relation represents a relation between two proteins,
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4/12/11 10:39 AMKEGG PATHWAY: Glycolysis / Gluconeogenesis - Homo sapiens (human)

Page 2 of 2file:///Users/cocco/Desktop/KEGG%20PATHWAY:%20Glycolysis%20:%20Gluconeogenesis%20-%20Homo%20sapiens%20(human).webarchive
Fig. 2. KEGG pathway of the Glycolysis / Gluconeogenesis in Homo sapiens

or between a protein and a compound, or also a link to another map. A node
reaction represents a pathway’s reaction without dynamic information.

For instance, compound C01172 and reaction R03321 of our running example
are represented in KGML as follows:
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Fig. 3. The KEGG page of reaction R03321

Fig. 4. Structure of a KGML file.

<entry id=”90” name=”cpd:C01172” type=”compound”
link=”http://www.kegg.jp/dbget-bin/www bget?C01172”>
<graphics name=”C01172” x=”332” y=”301” type=”circle” width=”8”
height=”8” fgcolor=”#000000” bgcolor=”#FFFFFF”/>

</entry>
<reaction name=”rn:R03321” type=”reversible”>

<substrate name=”cpd:C01172”/>
<product name=”cpd:C05345”/>

</reaction>
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To build the PN representation of the pathway we use the nodes entry and
reaction. Compounds correspond to places in the PN and reactions to transi-
tions. The arcs are obtained by inspecting substrates and products in reactions.

The style sheet net.xsl implements most of the translation. It uses other
XSLs dealing with the various components: labels.xsl, places.xsl, transi-
tions.xsl and arcs.xsl, as shown in Figure 5.

Fig. 5. The PNML style sheet structure

In places.xsl the entries are checked to determine whether they have to be
translated into places: only compounds are represented. The target code gener-
ated for compound C01172 of our running example is the following:

<place id=”cpd:C01172”>
<graphics><position x=”332” y=”301”/></graphics>
<name><value>cpd:C01172</value></name>

</place>

Transitions are created by transitions.xsl from the reaction nodes in the
KGML format. As already mentioned, a non-reversible reaction produces a sin-
gle transition, while a reversible reaction produces two transitions (a direct and
an inverse one). The inverse transition is identified by the fact that its id ob-
tained from the id of the direct transition by adding the string “]rev” as suffix.
This allows to recognise cycles in the behaviour introduced by this encoding of
reversible reactions.

The PNML code generated for reaction R03321 is the following:
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<transition id=”rn:R03321”>
<name><value>rn:R03321</value></name>
<rate><value>1.0</value></rate>
<timed><value>false</value></timed>

</transition>
<transition id=”rn:R03321#rev”>

<name><value>rn:R03321#rev</value></name>
<rate><value>1.0</value></rate>
<timed><value>false</value></timed>

</transition>

The arcs are generated by templates in arcs.xsl. They are inferred by the
nodes reaction and their children substrate and product in the KGML for-
mat. For each pair (substrate, product) the following arcs are created,

substrate → reaction, reaction → product,

and, obviously, if the reaction is reversible, we will have also the inverse arcs:

inverse reaction → substrate, product → inverse reaction.

In our example the following arcs are generated in the target code:

<arc target=”rn:R03321” source=”cpd:C01172” id=”cpd:C01172 to rn:R03321”>
<inscription><value>1</value></inscription>
<type value=”normal”/>

</arc>
<arc target=”cpd:C05345” source=”rn:R03321” id=”rn:R03321 to cpd:C05345”>

<inscription><value>1</value></inscription>
<type value=”normal”/>

</arc>
<arc target=”rn:R03321#rev” source=”cpd:C05345” id=”cpd:C05345 to rn:R03321#rev”>

<inscription><value>1</value></inscription>
<type value=”normal”/>

</arc>
<arc target=”cpd:C01172” source=”rn:R03321#rev” id=”rn:R03321#rev to cpd:C01172”>

<inscription><value>1</value></inscription>
<type value=”normal”/>

</arc>

A KGML file representing a metabolic pathway does not provide any infor-
mation on kinetic laws, initial concentrations of compounds and stoichiometric
values. However, stoichiometric values, which are essential also for a qualitative
modelling (they correspond to arc weights in the PN) can be retrieved through
the KEGG web service. This is done in the post-treatment phase of the transla-
tion which, as a consequence of the multiple service invocations, is rather slow.
In order to speed up this process, a caching of the information is introduced, so
that each reaction is queried only once through the web service. Since KGML
files do not provide information on ubiquitous substances, the resulting PN does
not represent ubiquitous substances either.

10
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The complete PN corresponding to the Glycolysis pathway of Figure 2, as it
is visualised by PIPE2, can be found in Figure 6. The part corresponding to the
running example is enclosed in the shaded box.

Fig. 6. Petri net resulting from the first translation of the Glycolysis / Gluco-
neogenesis in Homo sapiens (represented with PIPE2)

4.2 The second translation from KGML to PNML for PIPE2

The second translation also uses the basic KGML file describing the pathway,
downloaded from KEGG but, in addition, it gets most of the input data from the
KEGG web service. It is then much slower with respect to the first translation,
but also more versatile since the data which can be accessed in this way are
much more detailed. The pre-treatment phase is fundamental: it gets all the
compounds from the stoichiometric formula of each reaction accessed through the
web service. This permits also the representation of the ubiquitous compounds
which are not present in the KGML file. Note that the KGML file is still necessary
since it specifies, for example, if a reaction is reversible or not. Hence the data
derived from the web service are inserted into the skeleton of the KGML file,
which is then translated by means of the XSL style sheets defined in the first
translation. The post-treatment phase is the same as in the first translation, but
it is obviously faster, since stoichiometric formulas have been already cached and
there is no need to access the web service for them.
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5 Conclusions and future work

An obstacle to the use of PNs for modelling metabolic pathways seems to be,
paradoxically, the amount of different sources of data on metabolic pathways
and the number of simulation and analysis tools for PNs. This is due to the
dishomogeneity both of databases formats for metabolic data and of input for-
mats for PNs tools. To cope with this problem in the literature we find proposals
for

– a standard format for metabolic data, such as SBML [17] or BioPAX [2],
and a standard format for PN tools, such as PNML [13];

– unification or integration of different databases such as in [47] or [37], and
translations between different data formats, such as in KEGGtranslator [10]
or KGML2SBML and KGML2BioPAX [40].

In this paper we proposed a tool MPath2PN, for translating metabolic path-
ways into corresponding PN representations, coping with different input and
output formats. The aim is to allow for a systematic reuse of the tools already
developed for PNs also for the analysis and simulation of metabolic pathways.
The input and output formats are generally based on XML. For this reason
MPath2PN is based on XSLT and each translation can be defined by giving a
corresponding style sheet XSL. Moreover MPath2PN allows for a pre-treatment
and a post-treatment phase, implemented by Java classes, to permit the inte-
gration of different data sources on metabolic pathways.

We developed a prototype version of MPath2PN providing two rather stan-
dard translations. The first translation is from KGML to PNML for PIPE2 and
it is rather efficient. The second translation is from KEGG to PNML for PIPE2
and it is slower, but it gives a more detailed representation of the pathway by
considering also ubiquitous substances.

We are working on further translations to be included in MPath2PN:

– from KGML to the format of INA [53], a tool which allows for many different
analysis of mainly qualitative Petri net models;

– from SBML to PNML;
– from SBML to the format of Snoopy [18], a tool which allows for analysis

and simulation of stochastic/continuous PNs;
– from SBML to TimeNET/eDSPN format and from SBML to TimeNET/

SCPN format. TimeNET is a tool that allows for analysis and simulation
of extended deterministic and stochastic Petri nets (eDSPN) and stochastic
coloured Petri nets (SCPN). Using this tool, it is possible to specify transition
rates that may depend on the global state of the net. As a consequence, the
translation of the dynamic information from the SBML specification into the
TimeNET format can be done efficiently and without the need of further
assumptions, in a purely syntactical way.

Further extensions of MPath2PN consist in providing different translations be-
tween the same input and output formats in order to implement different mod-
elling choices, for example we could represent explicitly also enzymes or supply
different ways of dealing with external metabolites.
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When quantitative data are available, as in SBML, it is possible to obtain a
quantitative PN model of a metabolic pathway. In this case further modelling
decisions have to be taken in the translation, such as whether to consider all
modifiers (such as inhibitors and cofactors) or not, whether and how to scale or
discretise the amounts of substances, which kinetic model to choose, and, more
generally, whether to give a continuous, a discrete or a stochastic representation.

Mpath2PN is freely available at:
http://www.dsi.unive.it/∼simeoni/MPath2PNtool.tgz.
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Abstract. The construction of monolithic pathway models, as well as
their coupling, curation and the integration of new data is arduous and
inconvenient. The modular Petri net modeling concept we present here
shows one way to manage these difficulties. In our concept, proteins are
represented as functional units by Petri net submodels with a defined
structure and connection interface, called modules. Each module inte-
grates all publicly available information about its intramolecular changes
and interactions with other molecules. Hence, a module corresponds to
an interactive review written in a formalized language. This allows to in-
tuitively understand the functionality of a protein. Modules of interact-
ing proteins communicate through matching subnets, which renders the
automatic generation of molecular networks possible. Here, we demon-
strate the applicability and advantages of our concept on pain signaling.
The molecular mechanisms involved in pain signaling are complex and
poorly understood. To enhance our understanding of the mechanisms and
to get an impression of the functional interactions among the involved
pathways, we systematically build a model from modules of pain-relevant
proteins. We also offer a prospect of a platform to organize approved cu-
rated modules in order to generate molecular networks. Hopefully, our
concept helps bridging the gap between experimental bioscientists and
theoretically oriented systems biologists.

Key words: Petri net, modular approach, pain signaling, molecular net-
works

1 Introduction

The modeling of large molecular networks in systems biology is a challenging
process, as well as their steady curation and improvement. Our modular Petri
net modeling concept described here, offers a way to handle these challenges by
combing Petri net modeling with a modular approach. Modular approaches have
already conquered the field of systems biology [1]. In the biological context, just
monolithic pathways have been regarded as single entities up to now. In our con-
cept, proteins are represented as functional units by a Petri net with a defined
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Figure 1: Nociceptor: Detector of noxious stimuli. The peripheral terminals of
dorsal root ganglion (DRG) neurons, called nociceptors, detect noxious stimuli. Inside
the nociceptor (left side) a plethora of signal cascades is responsible for the processing
and the encoding of the noxious stimuli operating on membrane components. The
action potential induced by sensitization runs along the DRG neuron to the spinal
cord, where other nociceptive neurons receive the signal. The brain integrates the
transmitted signal of the noxious stimuli and behavioral information (emotions, mood,
memories etc.) and causes the painful sensation.

structure and connection interface, called module. Each module comprises and
integrates scattered information about individual proteins, its intramolecular
changes and interactions with other molecules. Therefore, a module is equiva-
lent to an interactive review article written in a formalized language with the
help of Petri nets. The graphical notation of the underlying mathematical model
allows to intuitively understand the modeled protein. Modules of interacting pro-
teins communicate through identical matching subnets, the connection interface.
The coupling of monolithic pathway models is far from trivial in contrast to the
combination of protein modules described here. The defined connection interface
of each module allows to easily generate a comprehensive model of a molecular
network from a set of modules. However, it has been proven that Petri nets are
ideally suited to describe biological processes by their very nature. The Petri net
formalism provides a mathematical language to describe parallel and concurrent
processes of bipartite systems [2]. Therefore, we choose Petri nets to describe
the molecular network of pain signaling (case study). Pain signaling comprises
complex and diverse molecular mechanisms of parallel, convergent and concur-
rent processes. Up to now, a large variety of molecular pain mediators is known
Figure 1. Nevertheless, especially the intracellular plethora of pain signaling
cascades triggered by membrane components is underinvestigated and therefore
partly unknown [3]. The challenge to represent pain signaling in terms of a com-
prehensive Petri net model has led to the development of our modular Petri net
modeling concept and a modular network describing pain signaling in the pe-
ripheral terminals of dorsal root ganglion (DRG) neurons Figure 1. Our concept
is not at all limited to pain signaling, the application to other molecular net-
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works is straightforward. However, by studying pain signaling it turned out that
our concept is well suited to handle large molecular networks. Since last year,
we improved and extended our modular Petri net modeling concept presented
here (compare [4]). In addition, we developed first ideas to manage the modules
after curation by bioscientists in a database and thus, provide a platform to the
scientific community. The platform also facilitates the automatic generation of
a model of a molecular network from a collection of approved curated modules.

2 Petri Net Formalism

Petri nets offer a mathematical modeling language to describe concurrent and
parallel processes, as well as communication and synchronization in bipartite
systems. The graphical notation and construction of Petri nets allows to intu-
itively model such processes while being formally and mathematically consistent.
Therefore, Petri nets are ideally suited to describe biological processes by their
very nature [2]. The standard Petri net [2] consists of four elements: places,
transitions, arcs and tokens. In biological systems places correspond to species
(chemical compounds) and transitions describe the action occurring among the
species ((bio-)chemical reactions). Arcs specify the relations between places and
transitions. Tokens refer to the amount (discrete number, concentration) of a
species. Further, transitions are allowed to fire (enabled) if all pre-places are
sufficiently marked. By firing of transition it deletes tokens from its pre-places
and produces tokens on its post-places.

Definition 1 (Petri net). 1 A Petri net is a quadruple N = (P, T, f, m0),
where:

– P, T are finite, non empty, disjoint sets. P is the set of places. T is the set
of transitions.

– f: ((P × T) ∪ (T × P) → N0 defines the set of directed arcs, weighted by
non-negative integer values

– m0: P → N0 gives the initial marking.

One benefit of Petri nets is the formal analysis of the network structure. The
topological properties of a Petri net are also meaningful in a biological context
and give valuable hints to validate the network structure [2]. Important criteria
to validate a biological Petri net are liveness, boundedness, reversibility, as well
as T- and P-Invariants [2].

Definition 2 (Boundedness). 1

– A place p is k-bounded if there exists a positive integer number k, which rep-
resents an upper bound for the number of tokens on this place in all reachable
markings of the Petri net:
∃k ∈ N0 : ∀m ∈ [m0〉 : m (p) ≤ k.
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– A Petri net is k-bounded if all its places are k-bounded.
– A Petri net is structurally bounded if it is bounded in any initial marking.

Definition 3 (Liveness). 1

– A transition t is dead in the marking m if it is not enabled in any marking
m′ reachable from: @m′ ∈ [m〉 : m′(t).

– A transition t is live if it is not dead in any marking reachable from m0.
– A marking m is dead if there is no transitions which is enabled in m.
– A Petri net is deadlock-free if there are no reachable dead markings.
– A Petri net is live if each transitions is live.

Definition 4 (Reversibility). 1 A Petri net is reversible if the initial marking
can be reached again from each reachable marking: ∀m ∈ [m0〉 : m0 ∈ [m〉.

Definition 5 (P-invariants, T-invariants). 1

– The incidence matrix of N is a matrix C : P × T → Z, indexed by P and T,
such that C(p, t) = f(t, p)− f(p− t).

– A place vector (transition vector) is a vector x : P → Z, indexed by P
(y : T → Z, indexed by T)

– A place vector (transition vector) is called P-invariant (T-invariant) if it is a
nontrivial nonnegative integer solution of the linear equation system x·C = 0
(C · y = 0).

– The set of nodes corresponding to an invariant’s nonzero entries are called
the support of this invariant x, written as supp(x).

– An invariant x is called minimal if @ invariant z: supp(z) ⊂ supp(x), i.e.
its support does not contain the support of any other invariant z, and the
greatest common divisor of all nonzero entries of x is 1.

– A net is covered by P-Invariants (T-invariants) if every place (transition)
belongs to a P-invariant (T-invariant).

Thereby, we can determine if the model of the molecular network contains dead-
states, is live or if it can reset its initial state (reversible). To ensure the mass
conversation the coverage by P-invariants and the boundedness of the Petri net
must be considered. P-invariants describe sets of related species or states of a
species. Boundedness ascertains that no species infinitely accumulates in the
network. T-invariants contain a set of actions/reactions to reset its initial state
[2].
Several specialized Petri net classes like qualitative, stochastic, continuous, hy-
brid Petri nets and their colored counterparts are available to describe different
scenarios and to consider different simulative approaches. All network classes are
convertible into each other without changing the network structure. This allows
the application of the same powerful analysis techniques to the underlying qual-
itative structure for all Petri net network classes [2].
In particular, we use stochastic Petri nets to describe the inherently stochastic
nature of biological processes. In addition to the standard Petri net, firing rates
are assigned to each transition, which are determined by random variables de-
pending on the probability distribution. Therefore, we use stochastic simulation
to investigate the dynamic behavior by the time-dependent token flow [2].
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Definition 6 (Stochastic Petri Net). 1 A biochemically interpreted stochas-
tic Petri net is a quintuple SPNBio = (P, T, f, v, m0), where:

– P, T are finite, non empty, disjoint sets. P is the set of places. T is the set
of transitions.

– f: ((P × T) ∪ (T × P) → N0 defines the set of directed arcs, weighted by
non-negative integer values

– v: T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby

H :=
⋃

t∈T

{
ht|ht : N|•t|

0 → N+
}

is the set of all stochastic hazard functions,

and v(t) = ht for all transitions t ∈ T.
– m0: P → N0 gives the initial marking.

3 Modular Modeling Concept

The enormous amount of regulative events in pain signaling Figure 1 results into
the development of a modular modeling concept, which considers every protein as
functional independent unit. The basic concept presented last year (see reference
[4]) has now been improved and extended to a defined modeling concept. The
suggested modular modeling concept uses Petri nets to allow the assembling of
molecular networks from functional Petri net submodels of the involved proteins
with a defined structure and connection interface, called modules. A module
reflects all the intramolecular changes of a protein and its interactions with
other molecules as reported in the literature. Therefore, a module comprises
wide-spread information about each protein. Figure 3 and 4 show exemplary
the modules of two proteins and their regulation. Non-proteins (ions, second
messenger, energy equivalents etc.) are contained in the modules as interactants
and indirectly connect the proteins. The structure and the dynamic behavior of
each module has to fulfill certain criteria to be valid to meet the requirements of
our modular Petri net modeling concept Table 1. After positive validation, the
modules can be easily linked to a modular network by the defined connection
interface of each module. Additionally, we are now able to predict the properties
of the complex modular network from the topological properties of the combined
modules Table 1. In this section, we explain all steps needed for the construction
of a single module from literature and the assembling of the modular network
from the constructed modules.

3.1 Network Structure and Properties of a Module

We construct modules based on the information about the structure of a pro-
tein, interactions with other components and intramolecular changes during its
regulation given in the literature. Each place of a module corresponds to a spe-
cific state of a functional protein domain (phosphorylation site, catalytic and

1 Mathematical definitions are taken from [2].
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inhibitory domain etc.) or a specific state of a non-protein (free or bound, sub-
strate or product etc.). In this context, a transition describes a shift between
two different states of a protein domain or non-protein by a molecular action
(binding/dissociation, (de-)phosphorylation, conformational changes, substrate
processing etc.). Each module is constructed in such a way, that it obeys criteria
important for biological networks, which are given in detail in [2] and summa-
rized in Table 1. All states of a protein domain and all states of a non-protein
constitute a P-invariant (see also Section 2). Therefore, the whole module must
be covered by P-invariants. In this context, P-invariants ensure mass conserva-
tion. Sequential state shifts that restore an initial state of a protein domain
or a non-protein form T-invariants (see also Section 2). Consequently, all T-
invariants are covered by P-invariants. Places connected with a transition by
a double arc (see Figure 3 and 4) indicate molecular states responsible for
other state shifts without changing itself. To prohibit external sinks and sources
of protein domains, the modules are not bounded by transitions. However, a
module might well be bounded by places. Boundary places have their origin
in modules of other proteins or represent non-proteins, which are consumed or
produced. The principle of double entry-bookkeeping is a part of the modular
modeling concept, since every module has to contain all interactions with other
molecules. Thus, modules of two interacting proteins share identical matching
subnets describing the interaction mechanism.

Table 1: Topological properties of the modules and their biological interpreta-
tion linked with their transferability to the modular network.

Properties Module Modular network

A Properties that must be fulfilled for each module
Ordinary Just natural elementary regulation steps are

considered. Therefore, the arc weights are uni-

formly set to ”1”.

All properties are direct

transferable to the modular

network, because they are
fulfilled by all modules.

Homogeneous Due to ordinary: state-shifts produce (con-

sume) the same amount of tokens on each

place.
Connected Among all different states of protein domains

and non-proteins exist at least one indirect

path to represent the interrelated structure of
a protein.

Covered with

P-invariants

A set of related states of a protein domain or

of a non-protein must form a P-invariant. In
consequence, the module must be covered with

P-invariants.
Boundedness The coverage with P-invariants causes bound-

edness of each module and avoids the infinite

accumulation of tokens in a module.

B Properties that must not be fulfilled for each module
Pure Every module contains states of a protein do-

main responsible for other state shifts without

changing itself. Therefore, each module con-
tains double arcs.
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Boundary

Transitions

The modules are not bounded by transitions

to avoid external sinks and sources of protein
domains and non-proteins.

All properties are direct

transferable to the modular

network, because they are
fulfilled by all modules.

Conservative The formation of protein complexes results in

a non-token-preservingly firing of transitions.
Static conflict

free

A module contains at least one state of a pro-

tein domain or a non-protein attending on

multiple state shifts.
Strongly cov-

ered with
T-Invariants

A module contains two sequential actions re-

producing the initial state of the involved pro-
tein domain or non-protein.

C Properties that are variable among all modules
Dead Transi-

tion

Depending on the initial marking. Depending on the initial mark-

ing.

Dead states Depending on the specific regulation of a pro-

tein, the respective module contains at least
one set of sequential state shifts acting inde-

pendent of all other actions. In this case, the

module has no dead state.

The modular network has no
dead state if a least one

module has no dead state.

Dynamic con-
flict free

Depending on the specific regulation of a pro-
tein, certain state shifts in the respective mod-

ule do not inhibit other actions in the same

module. Consequently, the module has no dy-
namic conflicts.

The modular network is not

dynamic conflict free, if one
module contains a dynamic

conflict.

Boundary

places

Depending on the specific regulation of a pro-

tein, the respective module contains places cor-

responding to protein domains of other inter-
acting proteins or non-proteins that are irre-

versibly changed in the respective module. In

this case, the module has boundary places.
The following properties cannot be fulfilled if

a module has at least one boundary place:

– Strongly connected
– Non-blocking multiplicity

– Covered with T-Invariants

– Siphon-Trap Property
– Liveness

All of these properties can be
transfered to the modular

network, if at least one

module in the modular
network has at least one

boundary place that does not

gain a pretransition after
module coupling.

3.2 Validation of a Module

The topological properties can be used for the validation of each module and
locating inconsistencies in the module structure [2]. Each topological property
has a significant biological interpretation. A set of those properties must be ful-
filled, another set must not be fulfilled and a third set is variable depending
on the unique function and structure of each module Table 1 (see [2] for fur-
ther explanations). After the construction of a module, its structure is checked
whether it obeys the given criteria given in Table 1. Each module is also sub-
jected to stochastic simulation studies. The kinetic function of each transition
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can be defined by known kinetic parameters (binding, dissociations, and affinity
constants) or more complex kinetic equations (michaelis menten, hill kinetic). If
kinetic information are not available, the kinetic parameters can be determined
by trial and error or by more sophisticated parameter estimation methods. The
observed dynamic behavior, i.e. the time-dependent token-flow (see also refer-
ences [4,5,6]), must in principle reflect the modeled effector function. A module
is valid if its structure confirms the given topological properties and the dynamic
behavior reflects the experimental obtained time curves.

3.3 Generation of a Modular Network

Next, the modules are connected by identical places of non-proteins and identical
matching subnets among the modules. All shared elements have to be indicated
as such in each module by declaring the included transitions and places as log-
ical nodes (connection interface). Afterwards, the modules can be combined to
one comprehensive simulative model. No further interventions are required. The
coupling procedure does not affect the structure and properties of each module.
Even the kinetic of the modules are kept and inherited to the resulting modular
network. Hence, simulation with the modular network can be performed right
after its generation.

3.4 Properties of the Modular Network

A new important achievement of the modular modeling concept is the deter-
mination of properties of the complex network from submodels, which might
also be interesting for other Petri net applications. Due to the defined structure,
the resulting uniform topological properties and defined connection interface
of the modules, we are able to predict the properties of the modular network.
Obviously, the respective non-variable properties among the modules can be
transferred one-on-one to the modular network Table 1. From the comparison
of the fulfillment of each variable property among the modules it can be de-
duced, whether the respective property holds for the modular network (see also
Table 1 for more details). Therefore, all properties of the modular network are
derivable from the respective set of modules that assemble the modular network.
Computational analyses with the place/transition analyzer Charlie [7] confirm
the predicted properties (not shown here, see [6] for more details).

4 A Model Relevant for Pain Signaling

Pain signaling comprises complex and diverse processes. Therefore, a plethora of
proteins and other components participate in the molecular regulation of painful
sensations (see also Figure 1). Several members of the G-protein-coupled recep-
tor family (GPCRs) are involved in pain signaling like opioid, cannabinoid, mus-
carinic, prostaglandine and β-2-adrenergic receptors. The GPCRs act through
their G-proteins on adenylyl cyclases (Type VIII, V, I), phospholipase Cβ and
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Figure 2: Activation of the Gi-protein by µ-opioid receptor. Morphine binds
to the extracellular site of the µ-opioid receptor (muOR) 1. Therefore, muOR changes
its conformation and binds the Gi-protein 2. GDP is exchanged by GTP at the Giα-
subunit which in turn activates the Gi-protein 3. The active Gi-protein dissociates into
the Giα and Giβ/γ-subunit 4. The Gi-protein subunits can now interact with their
downstream targets 5. GTP is hydrolyzed by the intrinsic GTPase of the Giα-subunit
due to stimulation by a GTPase activating protein (GAP) 6. The G-protein subunits
reassociate if the Giα-subunit is inactive 7. Figure 3 and 4 show these mechanisms
translated into two respective modules of muOR and the Gi-Protein.

Figure 3: Module of the µ-opioid receptor. The module represents the regulation
of the µ-opioid receptor as shown in Figure 2. The top-level of the µ-opioid receptor
module is shown in the red rectangle on the left site. The macro transitions (black boxed
squares) contain subnets on a deeper level. The corresponding subnets are shown on
the right site and below. The blue arcs and blue framed places mark inputs from places
shown on the top level. Green filled nodes indicate the connections interface that is
used to connect the module of the µ-opioid receptor with the module of the Gi-protein
Figure 4. Actions of the respective transitions are given in Table 2.
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Figure 4: Module of the Gi-protein. The module represents the regulation of the
Gi-protein as shown in Figure 2. The top-level of the Gi-protein is shown in the
red rectangle on the left site. The macro transitions (black boxed squares) contain
subnets on a deeper level. The corresponding subnets are shown on the right site and
below. The blue arcs and blue framed places mark inputs from places shown on the
top level. Green filled nodes indicate the connections interface that is used to connect
the module of Gi-protein with the module of the µ-opioid receptor Figure 3. Actions
of the respective transitions are given in Table 2.
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Figure 5: Modular Network Explaining Molecular Pain Mechanisms. Each
macro place (boxed circles) contains a module of a pain-related protein. Figure 3 and
4 (red circles) show two examples in detail. The grey shaded (logical) places represent
the involved non-proteins (exceptions AKAP and GAP). The modules are arranged
according to their localization (intracellular, membrane components, extracellular).
The dashed arcs (no Petri net elements) indicate the interactions among all pain-
related molecules.

ion-channels. Numerous protein kinases regulate pain signaling among them are
different isoforms of PKA (RIIβ), PKC (α, ε, ζ), CaMK (II, IV). Opponents of
the protein kinases are protein phosphatase 2A and calcineurin. Calmodulin is
an important calcium-binding protein interacting with other pain-related pro-
tein like the voltage dependent calcium channels (CaV1.2, CaV1.3, CaV3.3) and
the capsaicin receptor (TRPV1). Second messenger like DAG, Ca2+ and cAMP
are also important components in the context of pain signaling and indirectly
link proteins [3].
Each of those pain-relevant proteins is represented by its respective module. In
total, 38 modules of pain-relevant proteins have been derived from clinical pain
literature (all references can be found in [6]). New modules have been added and
old modules have been updated by formulating the mechanisms in more detail
since last year (e.g. compare the modules in Figure 3 and 4 with the respec-
tive module shown in [4]). Exemplary, we show the mechanisms of the Gi-protein
activation by the µ-opioid receptor Figure 2. Both, the µ-opioid receptor and
the Gi-protein are represented by functional connectable modules (see Figure
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3 and 4). The biological meaning of each transition refering to the steps shown
in Figure 2 are given in Table 2.

Table 2: Biological interpretation of transitions contained in the modules of the
µ-opioid receptor and Gi-Protein (compare Figure 3 and 4)

muOR t1 - Binding of morphine to the ligand binding site of muOR

muOR t2 - Dissociation of morphine from the ligand binding site of muOR

muOR t3 - Conformational changes in the Giα binding site of muOR due to the bound
morphine (= activation)

muOR t4 - Reverse conformational changes of the Giα binding site of muOR if morphine

is not bound to muOR (= inactivation)
Gi muOR t1 - Binding of the Giα subunit (in complex with Giβ/γ) to the active Giα bind-

ing site of muOR

Gi muOR t2 - Dissociation of the Giα subunit from the active Giα binding site of muOR if
GDP is exchanged by GTP at the Giα subunit

Gi t1 - Dissociation of GDP from the GTP/GDP binding site of Giα if Giα is bound

to muOR
Gi t2 - Binding of GTP to the GTP/GDP binding domain of Giα if Giα is still

bound to muOR
Gi t3 - Hydrolysis of the bound GTP to GDP by the GPTase domain of Giα if GAP

is bound to Giα

Gi t4 - Dissociation of the Giα-Giβ/γ complex if GTP if bound to Giα
Gi t5 - Reassociation of the Giα and Giβ/γ subunits if the Giα subunit is loaded

with GDP

Gi t6 - Binding of GAP to the GAP binding site of Giα
Gi t7 - Dissociation of GAP from the GAP binding site of Giα

AC8 Gi t1 - Binding of Giβ/γ subunit to AC8 at an unknown binding domian

AC8 Gi t2 - Dissociation of Giβ/γ subunit from AC8
AC8 Gi t3 - Binding of Giβ/γ subunit to AC1 at the C1a domain

AC8 Gi t4 - Dissociation of Giβ/γ subunit from AC1
AC8 Gi t5 - Binding of Giα subunit to AC1 at the C1 domain

AC8 Gi t6 - Dissociation of Giα subunit from AC1

AC8 Gi t7 - Binding of Giα subunit to AC5 at the C1 domain
AC8 Gi t8 - Dissociation of Giα subunit from AC5

The resulting modular network Figure 5 generated from the set of modules of
pain-relevant proteins consists of 713 places and 775 transitions spread over 325
pages with a nesting depth of 4. The top level of the modular network shown in
Figure 5 contains all non-proteins (logic places in grey) and modules of pain-
relevant proteins represented by single macro places (boxed circles). Figure 3
and 4 depict two of these modules exemplarily. All components are arranged
by their localization in the nociceptor. Due to the complexity of the regulation
events, the modules are hierarchically designed to conserve the neat-arrangement
offered by Petri nets. The modules communicate through identical matching
subnets among them on lower levels and non-proteins. Therefore, the interaction
among the displayed components are not visible on the top level of the modular
network in Figure 5.
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Here, we added arcs (no Petri net element) to the top-level shown in Figure 5
to indicate the interactions among the components involved in pain signaling.
Figure 5 illustrates the high degree of interactivity among the components
which was not obvious from the literature. The authors of reference [3] discuss
whether the pathways involved in pain signaling are parallel or convergent. The
interaction scheme in Figure 5 clearly indicates that the involved pathways are
highly convergent and influence each other. Several feedback loops are contained
(not shown here) to regulate the cAMP- and Ca2+- level and the membrane
voltage, which are important for the sensitization of the nociceptor and the
initiation of action potentials resulting into painful sensations. Therefore, the
regulation of pain signaling is very complex and the resulting dynamic behavior
is not trivial at all. The modules of the pain-relevant proteins are still in the
curation process by the pain community. Since kinetic data is still rare in the
pain signaling context, we have not been yet able to parameterize the modules
and therefore to perform reliable simulation studies. The topological properties
of the achieved modular network confirm the predicted properties of a common
modular network given in Table 2.

5 Work in Progress: Establishing a Protein-Module
Platform

We developed first basic ideas of a new protein-orientated modeling platform to
open our modular Petri net modeling concept and the modules to the scientific
community. This platform and the modular Petri net modeling concept provide
the framework to organize the connectable modules in a database and to gen-
erate computational models of molecular networks from a central collection of
approved curated modules.
Additionally to the Petri net of each module, a dataset will be provided in our
database to characterize each module and the represented protein. The dataset
contains information about the author and curator, the names of all places and
transitions and their meaning, references to relevant literature used for the con-
struction of the module, a list of open issues and information about the protein
(accession number, gene symbol, synonyms, taxonomic classification, involved
pathways etc.) extracted from the UniProt database [8].
The strict obedience of a naming convention for each node is the most impor-
tant prerequisite to correctly link the modules by identical matching subnets
and logical places of non-proteins. The identity of each module is determined by
the unique accession number for proteins provided by UniProt [8]. The accession
number will be used as prefix for all nodes but is not shown in the graph. More
readable gene symbols for each protein, which are also provided from UniProt
[8], are used as nicknames combined with common abbreviations of domains and
their states to define a unique name for each place. The unique name of a transi-
tion is created from the gene symbols of the involved proteins and a counter. As
a consequence, the module coupling is insensitive against author and version of
a module, but sensitive against the organism. Also, the name of each node can
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Figure 6: Public Protein Module Platform. The protein-module platform allows
to organize the modules and opens our modular Petri net modeling concept as well as
the constructed modules to the scientific community. Based on shared nodes among
the modules, an interaction matrix is created to control the module coupling (shown
here on pain signaling).

be automatically generated. Checks will be integrated to prove the correctness
of the names and thereby the connectivity of the module to its interactants.
To control the generation of a network from modules an interaction matrix is
provided Figure 6. An interaction matrix, derived from the places of all mod-
ules, indicates which modules can be coupled by a common set of nodes. Thus,
it controls the module coupling. First of all, the user adjusts the stringency at
the organism level. Based on the interaction matrix, the generation of a modu-
lar network from modules might now occur in two ways: (a) pathway-oriented
suggestion of a set interacting proteins, (b) iterative search of interactants from
a chosen start protein. The pathway-oriented generation of modular networks
will be achieved by tags that are added to the dataset of each module referring
to involved pathways (e.g. pain signaling) and localization (e.g. DRG neuron,
nociceptor). In a next step the connectivity of the modules has to be proven
by the interaction matrix. Figure 7 illustrates the application of the iterative
search algorithm to generate a submodel of the model shown in Figure 5. Both
possibilities lead to a list of interacting proteins showing all suitable modules.
The user chooses for every protein the preferred module, if different versions of
a module for one protein exist. Based on the module selection a comprehensive
modular network is generated. The user can now execute simulations with the
model and apply advanced structural analysis methods to investigate the model
of the molecular network.
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Figure 7: Iterative Generation of a Modular Network Before generating a mod-
ular network, the stringency is set by the user. A Start-protein must be chosen if the
iterative search is applied to generate a network. Based on the interaction matrix Fig-
ure 6, the algorithm suggests new interaction partners step by step. After stopping
the search, a list of all chosen proteins is created. Due to different opinions, there might
exist different modules for one protein. In those cases, the user can choose the preferred
module. Next, the modular network is generated from the chosen set of modules and
exported.

6 Conclusion

The model relevant for pain signaling integrates the knowledge of approximately
320 scientific articles within 38 valid modules of important molecular pain actors
in the nociceptor. The application of the modular modeling concept to the com-
plex network of pain signaling proves its ability to cope with the specific demands
of large and complex molecular networks. Our experience with biologists confirm
the need of a molecule-oriented modeling concept. So far, the explained modular
modeling concept is appreciated by our cooperation partners. It supports their
work and improves the modeling of molecular networks. The concept is suited
to test different hypothesis by exchanging different versions of a module in the
modular network. Thus, the approach shed new light on molecular mechanisms.
In a next straightforward step, the modules and therewith the complete modular
network can be parameterized by experimental data, which are at the moment
unfortunately still rare. After parameterization the model will be investigated
by in silico experiments. The analysis of effects of systematic perturbation on
the dynamic behavior of the model will help to pinpoint promising targets for
the pain therapy. The extension of the model to colored Petri nets [9] enables the
consideration of multiple copies of the pain-related proteins and of DRG neuron
populations. The application of hybrid Petri nets [10] allows the combination of
the current model with continuous models describing the generation of action
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potentials in neurons. Sophisticated structural analysis methods will be applied
to the model to screen for non-obvious properties that are defined by the Petri
net structure. By this, we expect new information about multiple steady states,
bifurcations and feedback loops that mainly determine the dynamic behavior of
a network. At least, the validated and parameterized model and the mentioned
investigations should contribute to the development of a mechanism-based pain
therapy.
The modular modeling concept as such offers a lot of promising advantages and
opportunities. All constructed modules can be easily reused in any other bio-
logical systems. Hence, the extension of the modular modeling concept to other
biological systems is worthwhile. Every module by itself pools the currently
spread knowledge about a protein and its interactants. The process of translat-
ing information about a protein into a module reveals missing interrelations. The
modular modeling concept avoids inconsistencies in the entire complex modu-
lar network by constructing and validating first small independent submodels.
The coupling procedure of the modules to an entire modular network by natural
matching nodes is effortless. For different reasons, monolithic pathway models
organized for example in the BioModels database [11] cannot be easily updated
and combined with each other to give a more comprehensive model. Advanta-
geously, the properties of the modular network can be deduced from the defined
properties of the modules. The modeler and the curator just need to concentrate
on one protein and its interactants. Also, the user has not inevitably to deal
with the whole pathway and the theoretical concept itself.
The Petri net formalism itself offers quite few advantages against ODE models.
As mentioned before, qualitative, continuous, stochastic and hybrid Petri nets
as well as their colored counterparts are convertible in to each other without
changing the qualitative structure. ODE systems do not offer the possibility to
consider a model from such a range of corresponding sites without reconstructing
the set of equations. Due to the graphical visualization of molecular networks by
Petri nets, a bioscientist can intuitively understand the modeled mechanisms.
This does not count for the mathematical representation of ODE systems. In
case of ODE systems, the user has to deal with three different representations
of a molecular network which do not obviously correspond to each other: (a)
structure of the biological network, (b) the mathematical equations and (c) the
implementation of those. Besides, the transformation of ODE systems into Petri
nets is not unique. Various Petri nets can be constructed based on an ODE
system [12]. The compact mathematical structure of an ODE might hide impor-
tant biological information. Structural analysis techniques are sensitive to the
respective structure of a Petri net. Therefore, the application of those techniques
to Petri nets obtained from the variable transformation of ODEs leads also to
variable results, which have to be treated with care [12].
The modular principle of the modeling concept offers some more possibilities to
apply and extend the concept. The generated modular core network can be ex-
tended by gene expression, degradation and translocation modules. Even homo-
and hetero-multimeric protein complexes can be modeled in detail with an ex-
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tension modular modeling concept. Further, we plan to couple the network re-
construction for Petri nets [13] with the modular modeling concept. Here, nodes
of the reconstructed network can be matched with corresponding modules. In
addition, the minimal causal Petri nets reconstructed from experimental time
series are extended with modules of the involved proteins.
The establishment of a platform for protein-modules and the opportunity to
generate models of molecular networks form approved curated modules sup-
ports the switch from monolithic modeling to modular modeling of biological
systems. Such a platform simplifies the exchange of data and knowledge among
bioscientists by concentrating biological information about proteins and their in-
teractants in the structure of the modules. Thereby, easing the access to systems
biology for wetlab bioscientist.
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Abstract. Modelling across multiple scales is a current challenge in Sys-
tems Biology. In this paper we present an approach to model at different
spatial scales, applied to a tissue comprising multiple hexagonally packed
cells in a honeycomb formation in order to describe the phenomenon of
Planar Cell Polarity (PCP).
PCP occurs in the epithelia of many animals and can lead to the align-
ment of hairs and bristles. Here, we present an approach to model this
phenomenon by applying coloured Petri Nets (CPN). The aim is to dis-
cover the basic principles of implementing CPN to model a multi-cellular
system with a hierarchical structure while keeping the model mathemat-
ically tractable. We describe a method to represent a spatially defined
multi-scale biological system in an abstract form as a CPN model, in
which all reactions within a cell are categorised into two main types,
each cell is sub-divided into seven logical compartments and adjacent
cells are coupled via the formation of intercellular complexes. This work
illustrates the issues that need to be considered when modelling a multi-
cellular system using CPNs. Moreover, we illustrate different levels of
abstraction that can be used in order to simplify such a complex system
and perform sophisticated high level analysis. Some preliminary analysis
results from animation and stochastic simulation are included in this pa-
per to demonstrate what kinds of sequential analysis can be performed
over a CPN model.

Keywords: coloured Petri nets, modelling, planar cell polarity

1 Introduction

With the rapid growth of data being generated in the biological field, it has be-
come necessary to organise the data into coherent models that describe system
behaviour, which are subsequently used for simulation, analysis or prediction.
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Modelling plays a crucial role in facilitating the understanding of complex bio-
logical mechanisms from an holistic viewpoint.

A large variety of modelling approaches have already been applied to model
a wide array of biological systems (see [1] for a review). Among them, Petri
nets are particularly suitable for representing and modelling the concurrent,
asynchronous and dynamic behaviour of biological systems. Since Reddy et al.
[2] introduced the application of qualitative Petri nets to modelling of metabolic
pathways, a large variety of applications of Petri nets (e.g. stochastic Petri nets,
timed Petri nets, continuous Petri nets, and hybrid Petri nets, etc.) have been
developed for modelling and simulating different types of biological systems [3],
[4].

Modelling across multiple scales is a current challenge in Systems Biology.
There is the need to model at different spatial scales to describe, for example,
intracellular locality in compartments, organelles and vacuoles, as well as inter-
cellular locality in terms of intercellular communication by complex formation
across cell gaps, and by cytokines (intercellular messengers), and higher levels of
organisation into tissues and organs composed of many cells. However, standard
Petri nets do not readily scale to meet these challenges, and current attempts to
simulate biological systems by standard Petri nets have been mainly restricted so
far to relatively small models. Standard Petri nets tend to grow quickly for mod-
elling complex systems, which makes it more difficult to manage and understand
the nets, thus increasing the risk of modelling errors. Two known modelling con-
cepts improving this situation are hierarchy and colour. Hierarchical structuring
has been discussed a lot, e.g. in [5], while the colour has gained little attention
so far.

While there is a lot of reported work on the application of different classes
of standard Petri nets to a variety of biochemical networks, see [4] for a recent
review, there are only a few which take advantage of the additional power and
ease of modelling offered by coloured Petri nets (CPN). To our knowledge, the
existing applications of CPN in systems biology can only be seen in [6], [7], [8], [9],
[10], [11], [12], [13]. Moreover, these existing studies usually resort to Design/CPN
[14] or its successor CPN Tools [15] in order to model and analyse biological
systems. However neither tool was specifically designed with the requirements of
Systems Biology in mind. Thus they are not suitable in many aspects, e.g. they
do not directly support stochastic or continuous modelling, nor the simulative
analysis of the models by stochastic or deterministic simulation.

Building upon the lessons learnt so far, we extend our software tool Snoopy
[16], [17] by specific functionalities and features to support editing, simulating
and analysing of biological models based on coloured qualitative, stochastic and
continuous Petri nets. By doing so, we not only provide compact and readable
representations of complex biological systems, but also do not lose the analysis
capabilities of standard Petri nets, which can still be supported by automatic
unfolding. Moreover, another attractive advantage of CPN for a biological mod-
eller is that they provide the possibility to easily increase the size of a model
consisting of many similar subnets just by adding new colours.
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Modelling in Biology tends to emphasise molecular details. Yet in biological
networks that involve more than a few components the typical situation is that
many details are unknown, and it is imperative to devise an approach that can
be insightful and predictive even in the absence of complete knowledge. Our
strategy was based on building an abstract model of PCP which attempts to
identify the key biological aspects (e.g. formation of intercellular complexes),
and then constructing a more detailed but simple model which parameterises
the many unknowns.

In this paper, our aim is to use CPN to describe an intercellular and intra-
cellular signalling model that replicates the phenomenon of PCP in Drosophila
wing. The epithelial cells in this organ are hexagonally packed in a 2-dimensional
honeycomb lattice. The model incorporates an abstract description of informa-
tion flow within the cell, and a representation of inter-cellular communication
through the formation of protein complexes, so that local (transmembrane) sig-
nalling produces a global effect over the entire organ. It should be noted that
approach presented in this paper is applied to an abstract model of PCP in order
to illustrate the application of CPN to PCP signalling. Specifically, we focus on
the way to include the honeycomb structure and logical compartments into the
construction of our multi-cellular model.

This paper is structured as follows: in Subsection 1.1 we introduced the bio-
logical background of planar cell polarity, followed by Subsection 1.2 briefly de-
scribing coloured Petri Nets and Section 2 describing our model and approaches,
followed by the conclusion.

1.1 Planar Cell Polarity

Planar cell polarity (PCP) refers to the orientation of cells within the plane
of the epithelium, orthogonal to the apical-basal polarity of the cells. This po-
larisation is required for many developmental events in both vertebrates and
non-vertebrates. Defects in PCP in vertebrates underlie developmental abnor-
malities in multiple tissues including the neural tube, the kidney and the inner
ear (reviewed in [18]). The signalling mechanisms underlying PCP have been
studied most extensively in the epithelia of the fruit fly Drosophila melanogaster
including the wing, the abdomen, the eye, and the bristles of the thorax. Genetic
studies in the wing and eye in the 1990s led to the proposal of a PCP signalling
pathway involving the PCP proteins Frizzled (Fz), Dishevelled (Dsh) and Prickle
(Pk) (reviewed in [19]). In the late 1990s and 2000 further genetic analysis, in-
cluding the discovery of more PCP proteins, e.g. Flamingo (Fmi) and Van-Gogh
(Vang), and data on the sub-cellular localisation of these proteins in normal and
mutant situations, have led to the formulation of more complex models of PCP
signalling. In this paper we apply CPN to the models formulated in the fly wing
as a means to gain insight into mechanism of PCP.

The adult Drosophila wing comprises about 300,000 hexagonal cells each of
which contain a single hair which points in an invariant distal direction, see
Figure 1. This hair comprises actin bundles and is extruded from the membrane
at the distal edge of the cell during pupal development at the conclusion of
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PCP signalling. Preceding this ultimate manifestation of PCP, PCP signalling
occurs such that the proteins adopt an asymmetric localisation within each cell.
At the initiation of PCP signalling Fmi, Fz, Dsh, Vang and Pk are all present
symmetrically at the cell membrane. At the conclusion of PCP signalling Fmi
is found at both the proximal and distal cell membrane, Fz and Dsh are found
exclusively at the distal cell membrane and Vang and Pk are found exclusively
at the proximal cell membrane. Through the interpretation of various genetic
experiments a consensus view of the signalling events has been formulated that
centres on the communication between these proteins at cell boundaries. The
distally localised Fmi, Fz and Dsh recruit Fmi, Vang and Pk to the proximal
cell boundary and vice versa. Since the localisation of the distal and proximal
proteins appear to be mutually exclusive a completely polarised arrangement
of protein localisation results. The PCP proteins are thus thought to mediate
the cell-cell communication that comprises PCP signalling and that they are
involved in establishing the molecular asymmetry within and between cells which
is subsequently transformed into the polarisation of the wing hairs (reviewed
in [20]). The result is a polarisation of individual cells and local alignment of
polarity between neighbouring cells.

(a) (b)

Fig. 1. Drosophila: (a) Whole wing; (b) Schematic of hexagonal cells with hairs

Systems biology and mathematical modelling have been applied to PCP sig-
nalling by Amonlirdviman et al. [21] (extended in [22]) and Le Garrec et al. [23]
(applied to the Drosophila eye in [24]). Both models centre around the idea of
amplification of polarity via asymmetric complex formation of the core proteins.
Both models rely on numerical simulations in two dimensions for fields of hexag-
onal or approximately hexagonal cells. Therefore, they tend to be rather complex
and do not lend themselves to mathematical analysis very easily. Furthermore,
because of the lack of appropriate biological data, the feedback mechanisms in
these models are mainly based on assumptions.
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In this paper, we apply CPN to PCP signalling in a generic setting that
encompasses a broad class of specific models, ranging from a single cell model
to a multi-cellular model. To this end, we have developed an abstract model for
the generation of PCP to investigate the signalling by implementing animation
analysis and stochastic simulation analysis.

1.2 Coloured Petri Nets

Coloured Petri nets (CPN) [25], [26] are a discrete event modelling formalism
combining the strengths of Petri nets with the expressive power of program-
ming languages. Petri nets provide the graphical notation and constructions for
modelling systems with concurrency, communication and synchronisation. The
programming languages offer the constructions for the definition of data types,
then used for creating compact models. This is the greatest advantage of CPN.

CPN consist, as do standard Petri nets, of places, transitions and arcs. In
systems biology, places also represent species (chemical compounds) while transi-
tions represent any kind of chemical reactions. Each place gets assigned a colour
set and contains distinguishable coloured tokens. A distribution of coloured to-
kens on all places together constitutes a marking of a CPN. Each transition may
have a guard, which is a Boolean expression over defined variables. The guard
must be evaluated to true for the enabling of the transition if it is present. Each
arc gets assigned an expression, which is a multiset type of the colour set of the
connected place.

The variables associated with a transition consist of the variables in the guard
of the transition and in the expressions of arcs connected to the transition. Be-
fore the expressions are evaluated, the variables must get values assigned with
suitable data types, which is called binding [26]. A binding of a transition cor-
responds to a transition instance in the unfolded net. Enabling and firing of a
transition instance are based on the evaluation of its guard and arc expressions.
If the guard is evaluated to true and the preplaces have sufficient tokens, the
transition instance is enabled and may fire. When a transition instance fires, it
removes coloured tokens from its preplaces and adds tokens to its postplaces,
i.e. it changes the current marking to a new reachable one. The colours of the
tokens that are removed from preplaces and added to postplaces are decided by
arc expressions. The set of markings reachable from the initial marking consti-
tutes the state space of a given net. These reachable markings and instances of
transitions between them constitute the reachability graph of the net.

Thus CPN has the ability to tackle the challenges arising from modelling
biological systems beyond one spatial scale, for example, repetition of compo-
nents, which is the need to describe multiple cells each of which has a similar
definition; and organisation of components, which refers to how cells are organ-
ised into regular or irregular patterns over spatial networks in one, two or three
dimensions.

In the following, we give the formal definition of CPN and briefly describe
the tool for modelling CPN.
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Definition In CPN, there are different types of expressions, arc expressions,
guards and expressions for defining initial markings. An expression is built up
from variables, constants, and operation symbols. It is not only associated with
a particular colour set, but also written in terms of a predefined syntax. In the
following, we denote by EXP a set of expressions that comply with a predefined
syntax. The formal definition for coloured Petri nets is as follows [25], [26].

Definition 1 (coloured Petri net). A coloured Petri net is a tuple
N =< P, T, F,

∑
, C, g, f, m0 >, where:

– P is a finite, non-empty set of places.
– T is a finite, non-empty set of transitions.
– F is a finite set of directed arcs.
–

∑
is a finite, non-empty set of colour sets.

– C : P → ∑
is a colour function that assigns to each place p ∈ P a colour

set C(p) ∈ ∑
.

– g : T → EXP is a guard function that assigns to each transition t ∈ T a
guard expression of the Boolean type.

– f : F → EXP is an arc function that assigns to each arc a ∈ F an arc
expression of a multiset type C(p)MS, where p is the place connected to the
arc a.

– m0 : P → EXP is an initialisation function that assigns to each place p ∈ P
an initialisation expression of a multiset type C(p)MS.

If we consider special arcs, e.g. read arcs or inhibitor arcs, we can get coloured
qualitative (extended) Petri nets. If the transitions are associated with random
(or deterministic) firing rates, we will get coloured stochastic (or continuous)
Petri nets [17].

Modelling tool In Snoopy, we have implemented functionalities for edit-
ing, and animating/simulating coloured qualitative Petri nets (QPNC), coloured
stochastic Petri nets (SPNC) and coloured continuous Petri nets (CPNC) [17],
[27]. In our implementation, QPNC is a coloured extension of extended qual-
itative place/transition net (extended by different types of arcs, e.g. inhibitor
arc, read arc, reset arc and equal arc [28]), SPNC is a coloured extension of
biochemically interpreted stochastic Petri nets introduced in [28] and [29], and
CPNC is a coloured extension of continuous Petri nets introduced in [28]. In
this paper, the drawing, animation and simulation of coloured Petri net models
for PCP are all done by Snoopy.

2 Modelling approach to apply CPN to PCP

We build an abstract model of PCP which only contains the key biological
aspects and other relevant information which are essential for the construction of
our models. Our study is obviously incomplete, as it does not explicitly identify
all relevant genes and molecules, but it provides a useful framework permitting
the future undertaking of further research to fulfil the understanding of PCP.
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2.1 Abstract model of PCP

In this paper we model the dynamics of the regulatory protein network which
controls PCP at two stages of refinement regarding the details of localisation
and communication. In the first stage we represent the cell by a highly abstract
model, encoded as a (non-coloured) Petri net. The second stage model is more
refined and is encoded by a coloured Petri net. Both models describe the cytosol
as well as the proximal and distal regions of the cell.

We assume that production of key signalling proteins occurs only in the cy-
tosol and these are degraded constitutively throughout the cell. However, the
proteins are distributed asymmetrically within the cell due to an internal trans-
port network. Drosophila wing cells are approximately hexagonal and form a
regular honeycomb lattice. The core machinery which controls PCP signalling
is uniform across the Drosophila wing. Our model is an abstract description of
PCP which includes only the key structure and biological aspects of PCP in
order to establish the colour sets principles for each cell, and each compartment
within a cell. Therefore, our abstract model is an extremely simplified version
of PCP to begin with which only includes essential components and structure
and eliminates the duplication of molecular species (places) at the distal and
proximal edges of a cell. For example, Fz, Dsh, Pk and Vang exist at both edges
of a cell but asymmetrically distribute at a particular edge of the cell, Fz and
Dsh at the distal edge while Pk and Vang at the proximal edge. However, they
occur only at the particular side of a cell in our abstract model in order to obtain
a minimal simplified model which still satisfies the essential need to process the
signalling. Thus, in our model, the polarity will be arisen by this asymmetrical
distribution of proteins at the distal and proximal edges of each cell together
with the intercellular communication. However the power of coloured Petri nets
facilitates the construction of a large scale model of PCP in the wing, based on
a pattern describing a single cell communicating with its neighbours.

2.2 Simple Petri net model for a single cell

We categorise all reactions involved in each cell into two main types: (1) pro-
duction and transport of proteins; (2) transformation of proteins (reactions that
process the signal). These describe the key biological aspects of PCP and also
satisfy our requirement for a simple pattern model which can be used to establish
CPN colours for the modelling problem. We firstly sub-divide each cell into four
spatial regions: (1) the extracellular space (labelled as communication), where
the intercellular complexes form, to the (2) proximal edge (left-hand side of each
cell) in order to process intercellular signal between two adjacent neighbouring
cells, (3) transport, and (4) distal (right-hand side of each cell). As a result, one
cell contains five places (molecular species, A, B, C, D, E), three transitions
(reactions, e.g. r1) and four spatial regions (e.g. proximal in the blue text box),
see Figure 2 for details. In the model, places D left and E left indicate that
these two molecular species are from the left-hand side neighbouring cell(s).
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DBD_left

C

A

E_left

r3

r4

r1

 transport proximalcommunication distal

Fig. 2. Petri net model for a single cell: (a) Four spatial regions of a cell: they are
labelled as communication, proximal, transport and distal; (b) Places (circle) and tran-
sitions (square): they are an abstract representation of the reactions involved in PCP.
Production and transport of proteins is represented by places and transitions labelled
in green, transformation of proteins is labelled in other colours. It should be noted that
the labelled colours here do not provide any information about CPN coloursets , they
are only used for demonstration purpose.

2.3 CPN model for pipeline of simple cells

Since PCP exhibits a high replication in terms of reactions and structure, we
can simply use the single cell model from the first step as the pattern for the
construction of our model of a pipeline of linked simple cells. Thus we create
a model which is capable of folding any number of adjacent neighbouring cells
using CPN in which a different colour is assigned for each individual cell.

We use the single cell model to start with and then assign a constant N to
generate N adjacent cells. A simple colour set named CS with N colours is
created to assign to each place, and a variable x with the type CS is assigned for
each arc except the one from place D to transition r4, which gets the expression
[x > 1] − x, read as ”if x is greater than 1, then it will return the predecessor
of x”, and meaning that the N cells are linked in a linear pipeline rather than a
circuit, see Figure 3 for details.

C

CS

B

CS

A

3

1‘all()

CS

D

CS
E

CS

r4

r1 r3

x

x

[x>1]−x

x

x

x

x x

Fig. 3. CPN model for cells linked in a pipeline. The declarations are as follows:
colourset CS = int with 1−N , variable x: CS. The arc expression [x > 1]−x indicates
that the first cell is not linked to the last, meaning cells are linked in a linear pipeline.
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2.4 Refined Petri net model for a single cell

Our refined model exploits the power of CPN to describe repeated structures,
and is inspired by Noe et al. [30] who proposed the idea of compartmental ki-
netic modelling. As described in Section 1.1, the transmission of signalling mainly
occurs at the distal and proximal edges of each cell, whereas, the cytosol only in-
volves proteins production and transport. Thus, we need a central compartments
to represent the cytosol and several compartments for the distal and proximal
edge in each cell. Moreover, we does not consider the communication between
the current cell and its north and south neighbouring cells in our model. As a re-
sult, we sub-divide each biological cell into seven virtual compartments (labelled
as number 1, 2, ...7 in blue in Figure 4), three compartments each for the prox-
imal and distal membrane edges, and one compartment for the cytosol, whilst
each compartment involves all reactions in the single cell model. Here we aim
to establish the framework of applying CPN to PCP signalling – this division
of compartments is an initial approach, which will then be further developed in
a more sophisticated manner if required. Because Drosophila wing cells form a
regular honeycomb lattice there is the need to impose a hierarchical structure
over the model, which we express as a regular hexagonal array of cells, each of
which comprises seven virtual compartments, see Figure 4.

Fig. 4. Compartmentalised Drosophila wing epithelial cell in the context of a frag-
ment of the wing tissue: (1) The coordinate in each cell represents the locality of its
corresponding cell in the honeycomb lattice; (2) Each virtual compartment in a cell is
labelled by number 1 to 7, illustrated by cell (3, 2).

Next we re-construct a Petri net model for a single cell by considering the
seven virtual compartments (Figure 5). In this model, each place or transition
belongs to a specific compartment, e.g. places D and E are located in three
compartments 2, 3, 4 (labelled as vc2, vc3, vc4 in Figure 5) .
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B_5 D_2

D_3B_6

D_4_NW

E_4_NW

E_3_SW

C_7

D_3_SW

B_7 D_4

D_2_SW

C_6

E_2_SW

r1_5

r4_5

r3_2

r3_3

r4_6

r1_6

r1_7

r4_7

r3_4

r4_6

�v�c� �5

�v�c� �6

�v�c� �7

�v�c� �2

�v�c� �3

�v�c� �4

�v�c� �1

Fig. 5. Refined Petri net model for a single cell with seven compartments (labelled vc1,
vc2,..., vc7). Each place or transition belongs to a specific compartment, indicated by
a number given as a suffix in place or transition names. NW and SW denote two left
neighbours of the current cell.

2.5 CPN model for honeycomb lattice of refined cells

We now describe the construction of a CPN model for PCP with compartment
division, following the procedure below.

First, we code cells of PCP as colours of a colour set, i.e. representing the
locality of each cell using colours. We have chosen to model a 12-cell fragment
of the wing tissue, see Figure 4, as this will give us an adequate size over which
to explore the behaviour of our model. From the figure we can see that it is
easy to use two-dimensional coordinates e.g. (x, y) to represent the cells in the
rectangular honeycomb lattice, which can be defined by the compound colour set
product in Snoopy. For this, we define two simple colour sets Row and Column,
denoting the row and column of the lattice respectively, based on which we define
a product colour set CS1 to represent the coordinates of cells.

Second, we code the virtual compartments as colours. We do not represent
them as numbers 1,2,...,7 without considering their localisation within the cell,
but use a matrix for compartments, i.e. by using a pair of coordinates (a, b) to
denote the location of each compartment in the matrix so that we can clearly
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distinguish between them. It should be noted that the middle compartment
(cytosol) is represented as three rectangles in the matrix in order to conform
with the overall matrix structure, whereas, only one colour set is used for this
compartment rather than three colour sets.

Third, we create variables that are used in the guard of transitions and in
the expression of arcs connected to transitions. In six virtual compartments
for the proximal and distal edges, each arc has been assigned an expression
which includes two pairs of coordinate (x, y, a, b), meaning that the arc links the
associated place to a particular transition in (a, b) compartment of (x, y) cell. In
the middle virtual compartments, the arc expression changes to (x, y, a + 1, 2)
and (x, y, a− 1, 2) which indicates the arcs which associate place A to transition
r1 in proximal (left-hand) compartments are denoted as a + 1, while, those link
A to the transition r3 in distal (right-hand) compartments are denoted as a− 1.

Next, we represent the neighbourhood between neighbouring cells. For this,
we define two neighbour functions, NW and SW , denoting two left neighbours
of the current cell.

Finally, we generate a CPN model for PCP, illustrated in Figure 6. See Table
1 for all declarations.

A

30

1‘all()

CSmiddle

B

CSproximal

D

CSdistal

D

CSdistal

E

CSdistal

C

CSproximal

r3

r4

r1

(x,y,a,b)

NW(x,y,a,b,r4) ++

 SW(x,y,a,b,r4)
(x,y,a,b)(x,y,a,b)(x,y,a,b)

NW(x,y,a,b,r4) ++

 SW(x,y,a,b,r4)

(x,y,a−1,2)(x,y,a+1,2)

Fig. 6. CPN model describing cells with seven compartments in a 2-D matrix.

Based on what has been obtained from the above models, we will in the future
be able to build a more sophisticated model of PCP which includes all detailed
reactions according to our current understanding of the biological system. This
will facilitate our ability to better understand mechanism of PCP signalling and
provide reliable predictions to help guide the design of biological experiments
which can help to fill in gaps in our knowledge of the system.

3 Analysis

CPNs enjoy a large variety of analysis techniques, ranging from informal ani-
mation or simulation to formal structural analysis or state space analysis. As
the models constructed in this paper are still very abstract, we only use anima-
tion and stochastic simulation. The analysis reported here was performed on the
model which comprises multiple cells and a matrix representing compartments
within each cell.
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Table 1. Declarations for the coloured Petri net model in Figure 6.

Declaration

colourset Row = int with 1−M ;
colourset Column = int with 1−N ;
colourset ComR = int with 1−R;
colourset ComC = int with 1− C;
colourset CSr4 = enum with c5, c6 1, c6 1, c7;
colourset CS1 = product with Row × Column;
colourset CS2 = CS1 with x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1;
colourset CS = product with Row × Column× ComR× ComC;
colourset CS4 = CS3 with x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1;
colourset CSdistal = CS4 with b = 3;
colourset CSproximal = CS4 with b = 1;
colourset CSmiddle = CS4 with b = 2;
variable x : Row;
variable y : Column;
variable a : ComR;
variable b : ComC;
variable r4 : CSr4;
constant M = int with 5;
constant N = int with 5;
constant C = int with 3;
constant R = int with 3;
function CSproximal NW (Row x,Column y,ComR a,ComC b);
function CSproximal SW (Row x,Column y,ComR a,ComC b);

3.1 Animation analysis

We first performed animation analysis (i.e. at the level of the token game) over
our CPN model. Our expectation is that protein diffusion is fast. The relevant
time-scale in this context is the typical time for diffusion of a membrane protein
from one side of a cell to the opposite side which is of the order of 10 minutes. In
comparison, the asymmetric pattern of protein localisation arises on a time scale
of several hours. This is exactly what our model has shown when we manipulate
automatic animation in Snoopy. Thus, it illustrates the reliability of applying
CPN to model PCP.

3.2 Stochastic simulation analysis

We use the Gillespie stochastic simulation algorithm (SSA) [31] for the CPN
model of PCP in Figure 6. Some of the results that have been produced over an
interval of 180 per run are illustrated in Figure 8. The current understanding of
the biological system is that the production of the hair is related to the concen-
tration of several species, including actin which is believed to be responsible for
the formation of the hair itself. We wish to validate our model by demonstrat-
ing that at an abstract level actin is concentrated at the most distal part of a
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cell, designated as the future site for prehair formation. In our model, place E
represents actin and other key proteins, distributed at the distal edge of the cell
(virtual compartments vc2, vc3 and vc4) during signalling. Figure 7 shows how
E changes over time in the three distal compartments (vc2, vc3 and vc4) of cell
(3, 4) and Figure 8 displays the final concentration of the coloured place E in
virtual compartments vc2, vc3 and vc4 for each of the 12 cells (refer to Figure 4
for mappings). The results clearly show that the major accumulation of actin
occurs in virtual compartment vc3 for each of the cells except for cells (2,5) and
(4,5) which do not have distal neighbours and thus lack inter-cellular communi-
cation in that direction. The accumulation of actin in vc3 corresponds exactly to
the location of the prehair formation at the most distal vertex of each cell, see
Figure 1, and we find that it is highest in vc3 for cells (3,2) and (3,4) which have
the maximum number of neighbouring cells (6 each) in the honeycomb lattice.

Fig. 7. Stochastic simulation result: time course plots for the value of E within cell
(3, 4) in the three virtual compartments vc2 (3,4,1,3), vc3 (3,4,2,3) and vc4 (3,4,3,3).
Refer to Figure 4 for mappings.

Fig. 8. Stochastic simulation result: final values for E in virtual compartments vc2,
vc3 and vc4 for each of the 12 cells which are labelled by their identification tuple,
refer to Figure 4 for mappings.
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4 Conclusion

In this paper, we have presented our current work applying CPN techniques to
construct a PCP model in order to explore the mechanisms that drive PCP.
Our aim has been to provide a proof of principle for the use of CPN to model
a multi-cellular system with a hierarchical structure while keeping the model
mathematically tractable.

The model we have developed has allowed us to generate behaviours as a
first step to explaining the complex behaviours observed in the biological system
and to explore the implications of variations in the model. Our analysis confirms
that the behaviour of the model correctly shows the major accumulation of actin
occurring in the most distal part of the cell, corresponding to the location of the
prehair formation in wing cells of Drosophila.

However, the ability of the current model to make predictions and provide an
accurate picture of PCP signalling is limited by its lack of biological detail. In on-
going work we are refining this abstract model into a more detailed model, which
includes exploring alternative ways in which to model the cellular machinery of
PCP signalling. With this refined model we will be able not only to perform
simulations of PCP signalling in wild-type cells but also on patches of mutant
cells in a wild-type background. Our long term goal is to facilitate a better
understanding of the mechanisms that drive PCP, and to make predictions about
the behaviour of the system when it is perturbed by the mutation of specific
genetic components.
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