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Abstract. A Boolean network model is one of the models of gene reg-
ulatory networks, and is widely used in analysis and control. Although
a Boolean network is a class of discrete-time nonlinear systems and ex-
presses the synchronous behavior, it is important to consider the asyn-
chronous behavior. In this paper, using a Petri net, a new modeling
method of asynchronous Boolean networks with control inputs is pro-
posed. Furthermore, the optimal control problem of Petri nets expressing
asynchronous Boolean networks is formulated, and a solution method is
proposed. The proposed approach provides us a new control method of
gene regulatory networks.

1 Introduction

In recent years, there have been a lot of studies on modeling, analysis, and
control of gene regulatory networks in both the control community and the the-
oretical biology community. Gene regulatory networks are in general expressed
by ordinary/partial differential equations with high nonlinearity and high di-
mensionality. In order to deal with such a system, it is important to consider a
simple model, and various models such as Bayesian networks, Boolean networks,
hybrid systems (piecewise affine models), and Petri nets have been developed so
far (see e.g., [14]). In control problems, Boolean networks and hybrid systems are
frequently used [1, 3, 4, 17, 18]. However, in the hybrid systems-based approach,
a class of gene regulatory networks are limited to low-dimensional systems, be-
cause the computation time to solve the control problem is too long. In Boolean
networks, dynamics such as interactions between genes are expressed by Boolean
functions [15]. Although there is a criticism that a Boolean network is too simple
as a model of gene regulatory networks, this model can be relatively applied to
large-scale systems. Furthermore, since the behavior of gene regulatory networks
is probabilistic by the effects of noise, a probabilistic Boolean network (PBN)
has been proposed in [20].

Although a Boolean network is a class of discrete-time nonlinear systems and
expresses the synchronous behavior, it is important to consider the asynchronous
behavior. Asynchronous Boolean networks have been proposed in [12, 22]. In
[12], we assume that the updating time of the concentration level of each gene
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is given in advance. In [22], asynchronous Boolean networks are modeled by
non-deterministic dynamical systems. Furthermore, the asynchronous behavior
is expressed as the probabilistic behavior. However, in these two methods, the
asynchronous behavior is not directly modeled.

On the other hand, a Petri net is well known as a model expressing the asyn-
chronous behavior [25]. A Petri net is a class of directed bipartite graphs, in
which the nodes represent transitions and places. The methods to express asyn-
chronous Boolean networks as Petri nets have been proposed in [8, 21]. However,
in these methods, the control input is not considered, and these methods can-
not be directly applied to the control problem. The control input in biological
networks has the following significance. For example, the value of the control
input expresses whether a stimulus is given to a cell. Then the control input is
designed to obtain the state trajectory that transits from the initial state to the
desired one. So the control input can represent the current status of therapeutic
interventions, which are realized by radiation, chemotherapy, and so on. In order
to develop gene therapy technologies (see e.g., [16, 19]) in future, it is important
to consider control methods of Boolean networks.

Thus in this paper, the optimal control problem of asynchronous Boolean
networks modeled by Petri nets is discussed. First, based on the method proposed
in [8] and the notation of external input places [13, 23], we propose a new method
to transform asynchronous Boolean networks with control inputs into Petri nets
with external input places. Furthermore, the obtained Petri net is transformed
into a logical dynamical system, which is a class of linear systems with binary
states and binary inputs. Next, the optimal control problem is formulated, and
the biological significance is also discussed by using a simple example. Finally,
the solution method of the optimal control problem is proposed. In the proposed
solution method, the optimal control problem is reduced to an integer linear
programming (ILP) problem. The proposed approach provides us a new control
method of gene regulatory networks.

This paper is organized as follows. In Section 2, synchronous Boolean net-
works and asynchronous Boolean networks are introduced. In Section 3, Petri
nets expressing asynchronous Boolean networks are derived. In Section 4, we
explain the method to transform the obtained Petri net into a logical dynamical
system. In Section 5, the optimal control problem is formulated, and in Section
6, a solution method is proposed. In Section 7, we conclude this paper.
Notation: Let R denote the set of real numbers. Let {0, 1}m×n denote the set
of m× n matrices, which consists of elements 0 and 1. For the finite set M , let
|M | denote the number of elements. Let In and 0m×n denote the n× n identity
matrix and the m × n zero matrix, respectively. For simplicity of notation, we
sometimes use the symbol 0 instead of 0m×n, and the symbol I instead of In.
For a matrix M , let MT denote the transpose of M .

2 Synchronous/Asynchronous Boolean Networks

First, we explain synchronous Boolean networks (SBNs).
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Consider the following SBN:

x(k + 1) = fa(x(k)) (1)

where x ∈ {0, 1}n is the state (e.g., the concentration of genes), k = 0, 1, 2, . . .
is the discrete time. fa : {0, 1}n → {0, 1}n is a given Boolean function with
logical operators such as AND (∧), OR (∨), and NOT (¬). Since the SBN (1) is
deterministic, x(k + 1) is uniquely determined for a given x(k).

To consider the control problems, we add the control input to the SBN (1)
as follows:

x(k + 1) = f(x(k), u(k)) (2)

where u ∈ {0, 1}m is the control input, i.e., the value of u (e.g., the concentration
of genes) can be arbitrarily given, and f : {0, 1}n × {0, 1}m → {0, 1}n is a given
Boolean function. The i-th element of the state x, the i-th element of the control
input u and the i-th element of the Boolean function f are denoted by xi, ui

and fi, respectively. Also in the SBN (2), x(k + 1) is uniquely determined for
given x(k) and u(k).

Next, we explain asynchronous Boolean networks (ABNs). Some methods
for expressing ABNs have proposed so far [12, 22]. In this section, we explain
a method in [22] for expressing ABNs as nondeterministic systems. A Petri
net-based approach will be explained in Section 3. In the case that ABNs are
expressed as nondeterministic systems, the behavior of ABNs is obtained by the
union of the behaviors of the following n SBNs:

Σi :

{
xi(k + 1) = fi(x(k), u(k)),
xj(k + 1) = xj(k), ∀j ∈ {1, 2, . . . , n} \ {i}, (3)

where i = 1, 2, . . . , n.
We show an example of SBNs and ABNs.

Example 1. As a simple example, consider the following SBN of an apoptosis
network [9]: ⎧⎨

⎩
x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x2(k) ∨ u(k)

(4)

where the concentration level (high or low) of the inhibitor of apoptosis proteins
(IAP) is denoted by x1, the concentration level of the active caspase 3 (C3a)
by x2, and the concentration level of the active caspase 8 (C8a) by x3. The
concentration level of the tumor necrosis factor (TNF, a stimulus) is denoted by
u, and is regarded as the control input.

In the case of synchronous Boolean dynamics, state transitions can be com-
puted by directly using (4). For example, for x(0) = [ 1 1 1 ]T and u(k) = 0,
we obtain x(1) = [ 0 0 1 ]T . By computing the transition from each state, we
obtain the state transition diagram in Fig. 1 (left). In Fig. 1 (left), the number
assigned to each node denotes x1, x2, x3 (elements of the state),
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Fig. 1. (Left) State transition diagram of (4) and u(k) = 0, (Right) State transition
diagram of (5), (6), (7) and u(k) = 0.

In the case of asynchronous Boolean dynamics, we consider the following
three SBNs

Σ1 :

⎧⎨
⎩

x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = x2(k),
x3(k + 1) = x3(k),

(5)

Σ2 :

⎧⎨
⎩

x1(k + 1) = x1(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x3(k)

(6)

Σ3 :

⎧⎨
⎩

x1(k + 1) = x1(k),
x2(k + 1) = x2(k),
x3(k + 1) = x2(k) ∨ u(k)

(7)

State transitions can be computed by using (5), (6), (7). For example, for x(0) =
[ 1 1 1 ]T and u(k) = 0, we obtain x(1) = {[ 0 1 1 ]T , [ 1 0 1 ]T , [ 1 1 1 ]T }.
In a similar way, by computing the transition from each state, we obtain the
state transition diagram in Fig. 1 (right).

Comparing the left figure with the right figure in Fig. 1, we see that a part
of behaviors is clearly different. ��

In this paper, ABNs are modeled by Petri nets, not multiple SBNs. By us-
ing Petri nets, we can consider several situations. For example, although each
xi is independently activated in (3), activation of combinations of xi can be
considered.

3 Transformation of Boolean Networks into Petri Nets

Using each Boolean function fi in the SBN (2), consider to express an ABN
as a Petri net. Based on a complementary-place transformation, a Petri net
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expressing an ABN has been proposed in [8], but the control input has not been
considered. In this paper, as an extension of the method in [8], we propose a
modeling method of a Petri net expressing an ABN with the control input.

First, some notations are prepared. By I(j), j = 1, 2, . . . , n, denote the state
and the control input included in the Boolean function fj . In the example of (4),
we obtain I(1) = {x2, u}, I(2) = {x1, x3}, and I(3) = {x2, u}. Next, we define
a logical parameter Kj(X) ∈ {0, 1}, X ⊆ I(j), j = 1, 2, . . . , n. If the value of
each element included in X is ‘1’, and the value of the other element is ‘0’, then
either Kj(X) = 1 or Kj(X) = 0 is determined. In the example of (4), we obtain

K1(∅) = 0, K1({x2}) = 0, K1({u}) = 1, K1({x2, u}) = 0,

K2(∅) = 0, K2({x1}) = 0, K2({x3}) = 1, K2({x1, x3}) = 0,

K3(∅) = 0, K3({x2}) = 1, K3({u}) = 1, K3({x2, u}) = 1.

Next, consider to derive a Petri net expressing Boolean networks. In the
derived Petri net, the number of places is given as 2(n+m), that is, for each xi

in (2), two places xi and xi are prepared. In a similar way, for each ui in (2),
two places ui and ui are prepared. xi and ui are called complementary places
[8]. The number of transitions is given as

∑n
i=1 2

|I(i)|. In the example of (4),
the number of transitions is given as 22 + 22 + 22 = 12. From the property of
Boolean networks, the following assumptions are made.

Assumption 1 The maximum number of tokens in each place is equal to 1.

Assumption 2 A sum of the number of tokens in xi (ui) and that in xi (ui)
is equal to 1.

In addition, suppose that ui and ui are given as an external input place [13,
23]. In ui and ui, a token is arbitrary generated, but the above two assumptions
must be satisfied.

Under the above preparations, we define a Petri net expressing an ABN. In
[8], the Petri net expressing an ABN without the control input is defined. The
following definition gives the Petri net expressing an ABN with the control input,
and is an extension of the definition in [8].

Definition 1. For a given SBN (2), the Petri net expressing an ABN is defined
as follows:

Nc = (P ∪ Pc, T, Pre, Post) (8)

where

• P = {x1, x1, x2, x2, . . . , xn, xn} is the set of places,
• Pc = {u1, u1, u2, u2, . . . , um, um} is the set of external input places,
• T = {txi,X , i = 1, 2, . . . , n,X ⊆ I(i)} is the set of transitions,
• Pre : (P ∪ Pc) × T → {0, 1} is the mapping defining arcs between places
and transitions,
• Post : T ×P → {0, 1} is the mapping defining arcs between transitions and
transitions.
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The functions Pre and Post are defined as follows:

(i) Case of xi �∈ I(i) (xi is not a self-regulator): For a given transition txi,X ,
the following terms are defined (all the other terms are equal to zero):

Pre(xi, txi,X) = Post(txi,X , xi) = 1−Ki(X),

P re(xi, txi,X) = Post(txi,X , xi) = 1−Ki(X),

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ X,

Pre(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ I(i)−X,

Pre(uj , txi,X) = 1, ∀uj ∈ X,

Pre(uj , txi,X) = 1, ∀uj ∈ I(i)−X.

(ii) Case of xi ∈ I(i) (xi is a self-regulator): Consider a given transition txi,X .

if xi ∈ X, then only the case of Ki(X) = 0 is considered. Therefore, the following
terms are defined:

Pre(xi, txi,X) = Post(txi,X , xj) = 1,

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ X, xj �= xi,

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ I(i)−X,

Pre(uj , txi,X) = 1, ∀uj ∈ X,

Pre(uj , txi,X) = 1, ∀uj ∈ I(i)−X.

if xi �∈ X, then only the case of Ki(X) = 1 is considered. Therefore, the following
terms are defined:

Pre(xi, txi,X) = Post(txi,X , xj) = 1,

P re(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ X,

Pre(xj , txi,X) = Post(txi,X , xj) = 1, ∀xj ∈ I(i)−X, xj �= xi,

P re(uj , txi,X) = 1, ∀uj ∈ I(i)−X,

Pre(uj , txi,X) = 1, ∀uj ∈ X.

In the above definition, a sum of the number of tokens in ui and that in ūi

becomes zero by firing some transition. In this case, to satisfy Assumption 1 and
Assumption 2, a token is generated in either ui or ūi.

We show a simple example.

Example 2. Consider the following simple SBN:

{
x1(k + 1) = x2(k),
x2(k + 1) = u(k)

(9)

From x1(k + 1) = x2(k), we obtain K1(∅) = 0 and K1({x2}) = 1. In a similar
way, from x1(k + 1) = u(k), we obtain K2(∅) = 0 and K1({u}) = 1. Then
we consider four transitions tx1,∅, tx1,{x2}, tx2,∅, and tx2,{u}. We denote these
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Fig. 2. Petri net expressing an ABN

transitions by tx1
, tx1,x2

, tx2
, and tx2,u, respectively. Then we obtain the Petri

net in Fig. 2. In addition, Pre and Post in (8) are obtained as follows:

Pre =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tx1
tx1,x2

tx2
tx2,u

x1 1 0 0 0
x̄1 0 1 0 0
x2 0 1 1 0
x̄2 1 0 0 1
u 0 0 0 1
ū 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Post =

⎡
⎢⎢⎢⎢⎣

x1 x̄1 x2 x̄2

tx1
0 1 0 1

tx1,x2
1 0 1 0

tx2
0 0 0 1

tx2,u 0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

Suppose that one token is included in place x̄1, x̄2, and u. Then the transition
tx2,u may fire. If the transition tx2,u fire, then one token is moved from x̄2 and u
to x2. A pair of x2 and x̄2 satisfies Assumption 1 and Assumption 2, but a pair
of u and ū does not satisfy Assumption 2. So one token must be added in either
u and ū with fire. ��

4 Transformation of Petri Nets into Logical Dynamical
Systems

To consider the optimal control problem, it is desirable to transform a Petri net
(8) into some linear form. In this section, based on a framework on modeling of
hybrid dynamical systems [5], logical dynamical systems expressing Petri nets
are derived.

Logical dynamical systems are given as a pair of linear state equations and
linear inequality constraints with binary state variables and binary control input
variables. A general form of logical dynamical systems is defined as follows.

Definition 2. A logical dynamical system is given as

x(k + 1) = Ax(k) +Bv(k), (10)

Cx(k) +Dv(k) ≤ E (11)

where x(k) ∈ {0, 1}nd is the state variable, and v(k) ∈ {0, 1}md is the input
variable including auxiliary variables,
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In modeling of hybrid dynamical systems, a mixed logical dynamical (MLD)
system [5] is well known. The MLD system can be derived by replacing x(k) ∈
{0, 1}nd and v(k) ∈ {0, 1}md in (10), (11) with x(k) ∈ Rnc × {0, 1}nd and
v(k) ∈ Rmc ×{0, 1}md . Since a Petri net is a class of discrete event systems, the
MLD system is not used, and the logical dynamical system (10), (11) is used.

Let us consider to transform the Petri net (8) into the logical dynamical
system (10), (11). Some notations are prepared. By xi(k), x̄i(k), ui(k), ūi(k) ∈
{0, 1}, denote existence or non-existence of a token in place xi, x̄i, ui, ūi ∈ {0, 1}
at time k. k may be regarded as the k-th firing in a firing sequence. Since
xi(k), x̄i(k), ui(k), ūi(k) are binary variables, Assumption 1 satisfies. To satisfy
Assumption 2, xi(k) + x̄i(k) = 1 and ui(k) + ūi(k) = 1 are imposed. Next, by
txi,Xj

(k) ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , 2|I(i)|, denote fire in the transition
txi,Xj

. If txi,Xj
(k) = 1, then the transition txi,Xj

fires at time k. Otherwise, txi,Xj

does not fire. By using these notations, Petri nets (8) is transformed into logical
dynamical systems.

First, a simple example is shown.

Example 3. Consider the Petri net in Fig. 2. From the property of fire, we obtain
the following system expressing the Petri net in Fig. 2:

x1(k + 1) = tx1,x2
(k)x̄1(k)x2(k) + (1− tx1,x2

(k))x1(k)

−tx1
(k)x1(k)x̄2(k), (12)

x̄1(k + 1) = tx1
(k)x1(k)x̄2(k) + (1− tx1

(k))x̄1(k)

−tx1,x2
(k)x̄1(k)x2(k), (13)

x2(k + 1) = tx1,x2
(k)x̄1(k)x2(k) + tx2,u(k)x̄2(k)u(k)

+(1− tx1,x2
(k)− tx2,u(k))x2(k)− tx2

(k)x2(k)ū(k), (14)

x̄2(k + 1) = tx1
(k)x1(k)x̄2(k) + tx2

(k)x2(k)ū(k)

+(1− tx1
(k)− tx2

(k))x̄2(k)

−tx1
(k)x1(k)x̄2(k)− tx2,u(k)x̄2(k)u(k). (15)

If the number of firing transitions at each time is limited to 1, then the inequality
condition

tx1
(k) + tx1,x2

(k) + tx2
(k) + tx2,u(k) ≤ 1 (16)

is imposed. Then x1(k), x̄1(k), x2(k), x̄2(k) ∈ {0, 1}, x1(k) + x̄1(k) = 1, and
x2(k) + x̄2(k) = 1 hold thanks to the condition (16), u(k), ū(k) ∈ {0, 1}, u(k) +
ū(k) = 1, and the initial condition x1(0), x̄1(0), x2(0), x̄2(0) ∈ {0, 1}, x1(0) +
x̄1(0) = 1, x2(0) + x̄2(0) = 1. The system (12)–(15) is a nonlinear system,
and can be linearized by using Lemma 1 in Appendix A. For example, z1(k) =
tx1,x2

(k)x̄1(k)x2(k) is equivalent to

tx1,x2
(k) + x̄1(k) + x2(k)− z1(k) ≤ 2,

−tx1,x2
(k)− x̄1(k)− x2(k) + 3z1(k) ≤ 0.

By applying Lemma 1 to the other terms, we can obtain the logical dynamical
system expressing the Petri net in Fig. 2. ��
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From this example, we see that the Petri net (8) can be expressed by the
logical dynamical system (10), (11). Furthermore, when the Petri net (8) is
expressed by the logical dynamical system (10), (11), variables x, v are given as

x(k) = [ x1(k) x̄1(k) x2(k) x̄2(k) · · · xn(k) x̄n(k) ]
T
,

v(k) = [ U(k) T (k) Z(k) ]
T
,

U(k) = [ u1(k) ū1(k) u2(k) ū2(k) · · · um(k) ūm(k) ]
T
,

T (k) =
[
tx1,X1

(k) · · · tx1,X2|I(1)| (k) · · · txn,X1
(k) · · · txn,X2|I(n)| (k)

]T
where Z(k) is a auxiliary binary variable obtained by applying Lemma 1. Ma-
trices/vectors A,B,C,D,E in (10), (11) can be derived from Pre, Post in the
Petri net (8) and Lemma 1.

Remark 1. One of the simple methods for modeling of ABNs is to express ABNs
as switched systems with 2n subsystems. 2n subsystems are derived by all com-
binations of Boolean functions f1, f2, . . . , fn in (2). In the case of (9) in Example
2, the following 2n = 4 subsystems:

Σ1 : x1(k + 1) = x1(k), x2(k + 1) = x2(k),

Σ2 : x1(k + 1) = x2(k), x2(k + 1) = x2(k),

Σ3 : x1(k + 1) = x1(k), x2(k + 1) = u(k),

Σ4 : x1(k + 1) = x2(k), x2(k + 1) = u(k)

are obtained. From these subsystems, we can obtain the following system ex-
pressing an ABN:

x1(k + 1) = (δ1(k) + δ3(k))x1(k) + (1− δ1(k)− δ3(k))x2(k), (17)

x2(k + 1) = (δ1(k) + δ2(k))x2(k) + (1− δ1(k)− δ2(k))u(k) (18)

where δ1(k), δ2(k), δ3(k) are binary variables satisfying δ1(k)+δ2(k)+δ3(k) ≤ 1,
and correspond to Σ1, Σ2, Σ3, respectively. Furthermore, z1 := δ1x1, z2 := δ3x1,
z3 := δ1x2, z4 := δ3x2, z5 := δ2x2, z6 := δ1u, and z7 := δ2u are defined, and
Lemma 1 is applied to z1, z2, . . . , z7. Thus we can obtain the logical dynamical
system (10), (11). This method is called here a direct approach.

Comparing (17), (18) with (12)–(15), we see that the system (17), (18) is
simpler than the system (12)–(15). However, for general cases, this fact does
not hold. Here, we focus on the dimension of binary variables to switch Boolean
functions. In (12)–(15), this dimension corresponds to the dimension of binary
variables assigned to transitions, and is given as 4. In (17), (18), this dimen-
sion is given as 3. In general, in the direct approach, the dimension of binary
variables to switch Boolean functions is given as 2n − 1. In the proposed Petri
net-based approach, this dimension, i.e., |T (k)| is given as

∑n
i=1 2

|I(i)|. In real
gene regulatory networks, it is well known that |I(i)| is relatively smaller than
n (see e.g., [2]). For example, in the case of n = 10 and |I(i)| = 3, 2n− 1 = 1023
and

∑n
i=1 2

|I(i)| = 80 are obtained. Thus, in modeling of real gene regulatory
networks, it is not appropriate to use the direct approach, and the proposed
Petri net-based method provides us a simpler modeling method of ABNs. ��
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5 Optimal Control Problem

For the logical dynamical system (10), (11) expressing the Petri net (8), consider
the following optimal control problem.

Problem 1. For the logical dynamical system (10), (11) expressing the Petri net
(8), suppose that the initial state x(0) = x0 satisfying Assumption 1 is given.
Then find an input sequence v(0), v(1), . . . , v(N − 1) minimizing the linear cost
function

J =

N−1∑
k=0

{Qx(k) +Rv(k)}+Qfx(N) (19)

where Q,Qf ∈ R1×nd , R ∈ R1×md are weighting vectors whose element is a
non-negative real number.

For simplicity of discussion, a linear function with respect to x and u is con-
sidered as a cost function, but a quadratic cost function may be used. In addition,
using the offset vector xd ∈ {0, 1}nd and vd ∈ {0, 1}md , x(k) and v(k) may be
replaced to x̂(k) := x(k)−xd and v̂(k) := v(k)−vd. Then it is necessary that the

cost function (19) is also replaced to J =
∑N−1

i=0 {Q|x̂(i)|+R|v̂(i)|}+Qf |x̂(N)|.
In addition, N must be determined according to a given biological network. Al-
though a longer N is desirable, the computation time to solve Problem 1 must
be also considered. For a small N , Problem 1 may be repeatedly solved at each
time. This policy is well known as model predictive control [6].

In Problem 1, we assume that an input sequence v(0), v(1), . . . , v(N − 1) is
arbitrarily determined. However, there is a possibility that a given biological
system does not satisfy this assumption. Then suppose that some candidates of
input sequences are given. In Problem 1, the optimal input sequence minimizing
the cost function (19) is selected among the set of the candidates B ⊆ {0, 1}mdN .
This extension is easy. In this sense, Problem 1 can be applied to optimal control
of asynchronous Boolean networks such that the updating time of each state is
given in advance [12]. Of course, this problem can also be applied to optimal
control of SBNs. Thus Problem 1 includes several situations.

Next, we show an example for setting weighting vectors from the biological
viewpoint.

Example 4. Consider the Boolean network expressing an apoptosis network in
Example 1 again. From (4), we obtain the Petri net (8) with 6 places, 2 exter-
nal input places, and 12 transitions. In addition, from the obtained Petri net,
we obtain the logical dynamical system (10), (11). For the obtained logical dy-
namical system, we consider to find a control strategy such that a stimulus is
not applied as much as possible, and cell survival is achieved. u(k) = 0 implies
that a stimulus is not applied to the system, and x1(k) = 1, x2(k) = 0 express
cell survival [9]. Then as one of appropriate cost functions, we can consider the
following cost function

J =
N−1∑
k=0

{10|x1(k)− 1|+ 10|x2(k)− 0|+ u(k)}
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+100|x1(N)− 1|+ 100|x2(N)− 0|.

By the appropriate coordinate transformation, this cost function can be rewrit-
ten as the form of (19). See also [10–12] for biological examples on the optimal
control problems. ��

6 Reduction to an Integer Linear Programming Problem

Finally, let us consider to reduce Problem 1 to an integer linear programming
(ILP) problem.

Problem 1 can be rewritten by using (10), (11). First, by using

x(k) = Akx0 +

k∑
i=1

Ai−1Bv(k − i)

obtained from the state equation (10), we obtain

x̄ = Āx0 + B̄v̄ (20)

where x̄ := [ xT (0) xT (1) · · · xT (N) ]T , v̄ := [ vT (0) vT (1) · · · vT (N −1) ]T

and

Ā :=

⎡
⎢⎢⎢⎢⎢⎣

Ind

A
A2

...
AN

⎤
⎥⎥⎥⎥⎥⎦
, B̄ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0nd×md
0 · · · 0

B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
AN−1B · · · AB B

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, from the linear inequality (11), we obtain

C̄x̄+ D̄v̄ ≤ Ē (21)

where

C̄ := [ block-diag(C,C, . . . , C) 0 ] ,

D̄ := block-diag(D,D, . . . ,D),

Ē :=
[
ET ET · · · ET

]T
.

Next, the cost function (19) can also be rewritten as

J = Q̄x̄+ R̄v̄ (22)

where Q̄ := [ Q · · · Q Qf ] and R̄ := [ R · · · R ]. By substituting (20) into
(21) and (22), we obtain the following theorem.
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Theorem 1. Problem 1 is equivalent to the following ILP problem.

Problem A:

find v̄ ∈ {0, 1}mdN ,

min (R̄+ Q̄B̄)v̄ + Q̄Āx0,

subject to

[
C̄B̄ + C̄
−L̄W̄

]
v̄ ≤

[
Ē − C̄Āx0

−ln ρ

]
.

Problem A can be solved by using a suitable ILP solver such as IBM ILOG
CPLEX Optimizer [24].

7 Conclusion

In this paper, we have discussed optimal control of asynchronous Boolean net-
works with control inputs. First, we have proposed a method to transform
Boolean networks with control inputs into Petri net with external input places.
Next, after the obtained Petri net is transformed into a logical dynamical sys-
tem, the optimal control problem has been formulated. This problem is a general
formulation including several biological situations. Finally, the optimal control
problem has been reduced to an integer linear programming problem. The pro-
posed approach will be effective for control of several biological systems modeled
by Boolean networks.

One of the future works is to apply the proposed approach to biological
Boolean networks. From the practical viewpoint, an extension to probabilistic
Boolean networks is also important. In addition, for large-scale Boolean net-
works, the computation time to solve the problem will be long. So it is signifi-
cant to consider to reduce the computation time to solve the problem. Then one
of methods to overcome this difficulty is to use a SAT (satisfiability problem)
solver such as zChaff [26]. It is also important to consider approximate solution
methods.

This work was supported by Grant-in-Aid for Young Scientists (B) 23760387
and Scientific Research (C) 21500009.

A Linearization of The Product of Binary Variables

The product of binary variables can be linearized by using the following lemma
[7].

Lemma 1. Suppose that binary variables δj ∈ {0, 1}, j ∈ J are given, where
J is some index set. Then z =

∏
j∈J δj is equivalent to the following linear

inequalities ∑
j∈J

δj − z ≤ |J | − 1, −
∑
j∈J

δj + |J |z ≤ 0

where |J | is the cardinality of J .
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