
GReg : a domain specific language for the
modeling of genetic regulatory mechanisms

Nicolas Sedlmajer, Didier Buchs, Steve Hostettler,
Alban Linard, Edmundo Lopez, and Alexis Marechal

Université de Genève, 7 route de Drize, 1227 Carouge, Switzerland

Abstract. Chemical and biological systems have similarities with IT-
systems as they can be observed as sequences of events. Most avail-
able tools propose simulation frameworks to explore biological pathways
(i.e., sequences of events). Simulation only explores a few of the most
probable pathways in the system. On the contrary, techniques such as
model checking, coming from IT-systems analysis, explore all the possi-
ble behaviors of the modeled systems, thus helping to identify interesting
pathways. A main drawback from most model checking tools in the life
sciences domain is that they take as input a language designed for com-
puter scientists, that is not easily understood by non-expert users. We
propose in this article an approach based on Domain Specific Languages.
It provides a comprehensible language to describe the system while al-
lowing the use of complex and powerful underlying model checking tech-
niques.

1 Introduction

Because of their stochastic and combinatorial nature, many biological systems
such as cellular and supra-cellular interactions are very hard to investigate. Cur-
rent practice is mainly limited to the use of in vivo and in vitro experiments.
Investigation through formal models of biological systems is currently a rather
restricted research field, unlike what has been done in other natural sciences
such as chemistry and physics. There is clearly an emerging field of research
where future experiments can be partially performed in silico, i.e., by means
of techniques from computer science. One of the main approaches of biological
modeling is the so-called regulatory networks [17,5]. The main idea of biological
modeling according to the regulatory network approach is to model interbiologi-
cal reactions through a set of interdependent biological rules. This can be seen as
a set of discrete modules having strong interconnections. The occurrence of in-
teresting events in the biological system can be represented as logical properties
expressed on the state of these modules. This is very similar to the kind of prop-
erties computer scientists validate on hardware and software systems (deadlocks,
error states,. . .).

Among the tools available in this domain, the main analysis approach for reg-
ulatory networks is simulation. Simulation is generating and analyzing a limited
sample of possible system behaviors. This technique is not convenient when the

 Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN2011)
 online: http://ceur-ws.org/Vol-724 pp.21-35

21

main purpose of the research is to look for rare or abnormal behaviors (e.g., can-
cer). The main approach in this case is to use model checking instead of simu-
lation. Model checking consists in generating and analyzing the complete set of
possible states of the system. Naturally, this technique suffers from the drawback
of the enormous number of possible states of biological systems.

It is interesting to note that this problem is well-known to the model checking
community in computer science, where it is called the state space explosion [18].
There is a parallel between cellular interactions and software systems in that the
state space explosion is mainly due to their concurrent nature. Therefore, we can
apply techniques that have been developed for the model checking of hardware
and software systems to biological interactions. Approaches based on a symbolic
encoding of the state space are particularly well-suited for this [4,9].

In this paper we show a work in progress in our group. We present Gene
Regulation Language (GReg), our first attempt to build a framework for mod-
eling and analyzing biological systems based on formal modeling and reasoning.
Advanced techniques for defining Domain Specific Languages, giving their se-
mantics and analyzing them using symbolic model checking are presented. First,
Section 2 describes precisely the biological domain considered by GReg, then
Section 3 outlines the state of the current research in the field and Section 4
describes in detail the creation and usage of Domain Specific Languages. The
following two chapters describe GReg itself. Section 5 describes the language de-
signed for expressing biological mechanisms and the corresponding queries, and
Section 6 provides a simple example taken from the literature. Finally, Section 7
concludes the article and discusses the future research perspectives in this area.

2 Chemical and biological models covered by GReg

tra
nscription splicing tra

nslation

DNA pre-mRNA mRNA protein

Fig. 1: DNA to protein process

The purpose of GReg is to describe genetic regulatory mechanisms control-
ling the DNA to protein process (Figure 1). This process comprises three steps:
transcription, splicing and translation. The regulation of each step can be mod-
eled using standard chemical reactions, presented in Section 2.1. For the tran-
scription initiation we use the genetic regulatory mechanism model, presented
in Section 2.2. Finally we define a cell network in Section 2.3. We separate these
three domain models to clearly distinguish chemical from biological concepts.

We use the same definition of molecule level as presented in [17], if a molecule
has n distinct actions, we define (n + 1) levels. This allows us to use a discrete
formalism to efficiently model the gene expression [17], which is in fact the

22

concentration of the gene products. The lowest level is the lowest transcription
rate of a gene.

2.1 Chemical compartment model

A chemical compartment κ = 〈Mκ,R〉 ∈ K , is composed of a non-empty set of
molecules (∅ 6= Mκ ⊆ Molecules) and a set of reactions (R ⊆ Reactions). Two
compartments may be separated by a membrane (i.e., selective barrier), thus
allowing molecule transfer between them.

A chemical reaction ρ = 〈Re,Pr ,Ca, k, typeρ〉 ∈ R, where Re,Pr ,Ca ⊆
M(Mκ)×K , the reactants (Re), products (Pr) and catalysts (Ca) are defined as
the association of a multiset of one molecule (M(Mκ)) with a given compartment
(κ ∈ K).

Catalysts (Ca) have the particularity to appear as reactants and products
in a chemical reaction. We have chosen to define the catalysts in a distinct set,
therefore no catalyst can appear as reactant or product:
∀m ∈ Mκ,m ∈ Ca =⇒ m /∈ Re ∧m /∈ Pr .

A reaction may be either irreversible or reversible, typeρ ∈ {irr, rev}. In
reversible reactions an equilibrium constant (k) is defined with the ratio of both
direction rates.

2.2 Genetic regulatory mechanism model

A genetic regulatory mechanism µ = 〈Γµ,C 〉, is composed of a non-empty set of
genes (Γµ). Genes are organized into one or more chromosomes (C). A genetic
regulatory mechanism is contained in a chemical compartment, this specification
will be presented in Section 2.3.

A chromosome c = λ1, . . . λn ∈ C is a sequence of loci. A gene may have
different version (i.e., alleles) at a given chromosome location (i.e., locus). And a
locus λ = 〈Γλ〉 defines a non-empty set of genes (∅ 6= Γλ ⊆ Γµ) that are located
at a given locus. Then the set of all possible chromosomes in a mechanism is the
Cartesian product of the set of genes at each locus:
Chromosomes = Γλ1 × · · · × Γλn .

A gene γ = 〈Mγ , Σ〉 ∈ Γµ is a portion of DNA that codes for at least one
molecule (∅ 6= Mγ ⊆ Mκ), and may contain some regulation sites (Σ ⊆ Sites).

A regulation site σ = 〈Mσ, typeσ〉 ∈ Σ defines the non-empty set of regula-
tory molecules (∅ 6= Mσ ⊆ Mκ) associated to the regulation site σ of a given
gene. Note that when using anti-termination sites, genes order matters, therefore
chromosomes must be defined.

I1 O1 In On start A1 T1 An Tn stop

promoter region transcribed region

Fig. 2: Idealized gene structure

23

Our idealized gene structure (Figure 2) is composed of two regions: promoter
and transcribed. Note that the exact position in the gene of each regulatory site
is not specified, i.e.,we are mainly interested in its regulatory role. The type of
a regulation site is typeσ ∈ {I,O,A,T}.

Initiation (I) the portion of DNA where bound activators increase the rate of
the transcription process. It is located in the promoter region;

Operator (O) the portion of DNA where bound repressors block the transcrip-
tion process. It is located in the promoter region;

Anti-termination (A) the portion of DNA where activators continue the tran-
scription process. It is located in the transcribed region. These sites may also
allow the transcription of the next gene;

Termination (T) (also called attenuator) the portion of DNA where repressors
stop the transcription process. It is located in the transcribed region; thus,
it produces a reduced RNA.

2.3 Cell network

The cell network model is designed to model the interactions of different cells
with their environment and also with their inner components (i.e., organelles).
This model authorizes the construction of currently not observed cells, e.g.,
prokaryote with nucleus, eukaryote with multiple nuclei, etc. The validity of the
specification is delegated to the user (i.e., domain expert).

This model defines three chemical compartments, therefore they inherit both
sets Mκ and R.

Organelle, ω = 〈Mκ,R, µ〉 is the lowest compartment in the compartment hi-
erarchy. An organelle may contain a mechanism (µ), e.g., nucleus, mitochon-
drial DNA, etc.

Cell, φ = 〈Mκ,R, µ,Ω〉 contains a possibly empty set of organelles (Ω). The
model of a prokaryote cell would define a mechanism (µ), by cons an eukary-
ote cell would define instead an organelle with a mechanism (i.e., nucleus).

Network, ν = 〈Mκ,R, Φ〉 represents the environment and contains one or more
cells (Φ).

3 Related work

In this section we compare three well-known tools with our approach. We first
define a few criteria such as the kind of analysis, the supported formalism and
the supported exchange format. Table 1 presents a summary of the resulting
comparison.

Domain language To be productive, the syntax of the input language should
be as close as possible to the actual domain of the user. This input lan-
guage can be textual (like in tools that use Systems Biology Markup Lan-
guage (SBML) [8]) or graphical (like Systems Biology Graphical Notation
(SBGN) [11]).

24

Simulation & Model Checking Although there are many tools adapted to
biological process design and simulation, only a few of them allow exhaustive
exploration of the state space. While simulation is very useful during model
elaboration, an exhaustive search may help to discover pathological cases
that would have never been explored by simulation.

Discrete & continuous Continuous models are closer to the real biological
systems than discrete models, but unlike the latter they are not adapted for
model checking techniques. Discrete formalisms allow a complete exploration
of the state space while preserving the qualitative properties of the system,
as mentioned in [17].

Exchange format The supported interchange format is an important feature
as it allows us to bridge the gap between different tools and therefore enables
the user to use the most adapted tool to hand. SBML is a common inter-
change format based on XML. It is used to describe biochemical reactions,
gene regulation and many other topics.

Cell Illustrator [16] is an example of a commercial simulation tool for continuous
and discrete domains. The graphical formalism is based on PN, called Hybrid
Functional Petri Nets with extensions (HFPNe), which adds the notions of con-
tinuous and generic processes and quantities [12]. The XML-based exchange file
format used in Cell Illustrator is called CSML.

Gene Interaction Network simulation a.k.a. GinSim [14] is a tool for the model-
ing and simulation of genetic regulatory networks. It models genetic regulatory
networks based on a discrete formalism [6,13]. These models are stored using
the XML-based format ginml. The simulation computes a state transition graph
representing the dynamical behavior network. GINsim uses a graphical Domain
Specific Language (DSL) called Logical Regulatory Graph (LRG) [5]. Models
in LRG are graphs, where nodes are regulatory components (i.e.,molecules and
genes) and arcs are regulatory interactions (i.e., activation and repression) be-
tween the nodes.

Cytoscape [7,15] is an open source software platform for visualizing complex net-
works and integrating these with any type of attribute data. Cytoscape supports
many file formats including PSI-MI and SBML. It has the advantage of adding
features through a plug-in system. Many plug-ins are available for various do-
mains such as biology, bioinformatics, social network analysis and the semantic
web. Over 100 plug-ins are listed on the official website.

4 DSL approach

Model checking involves verifying whether a property holds on the whole set of
possible states of a given model. To generate this complete state space, the model
must be expressed in a formal language intended for this operation, like Petri
Nets (PNs). This makes the model checking approach impractical for people who
do not master these formal languages. We propose using DSLs for this purpose.

25

Tool Cell Illustrator GINsim Cytoscape GReg
Domain language 3 3 3 3

Simulation 3 5 3 5

State space 5 3 5 3

Model checking 5 5 5 3

Discrete 3 3 3 3

Continuous 3 5 3 5

Exchange format CSML GINML SBML,. . . GReg

Table 1: Tool comparison table.

A DSL is a programming or specification language tailored for a given do-
main; it presents a reduced set of instructions closely related to this domain.
Using a DSL has two main objectives. First, learning the language should be
easy for someone with enough knowledge about the domain, even if this person
does not have previous knowledge of other languages. Second, the number of
errors made by a novice user should be drastically reduced as the expressivity
of the language is reduced to the minimum.

The DSL semantics are defined by transformation into a target language,
which is a formal language where complex operations (like model checking) can
be performed. Usually, the scope of the target language is broader than the scope
of the DSL. This allows using the same target language and its associated tools
for different DSLs. Moreover, while creating a new DSL, it is often possible to use
an already-existing language as a target, thus facilitating the language creation
process. The results obtained in the target language are translated again into
the DSL and returned to the user. This process is described in Figure 3. After
the creation of the initial model, all the following steps must be fully automatic,
to hide the underlying complexity from the end user.

Domain
expert

Computation tool

Transform
ation Tr

an
sf

or
m

at
io

n

Domain Specific
Language

Model of the system

Model of the system

Formal language

Counter-example

Counter-example

Domain Specific
Language

Formal language

Automatic
processing

Manual
intervention

Fig. 3: DSL computational process

26

Concrete
Syntax

Transform.

Meta
Model

Language
engineer

Domain
expert

Fig. 4: DSL creation process

The person in charge of the DSL creation is a language engineer. This person
should obviously have a certain knowledge about the language creation process,
but he should also master the target platform language, in order to define efficient
and correct transformations. Furthermore, he should be in contact with at least
one domain expert, in order to settle the requirements and verify the correctness
and completeness of the language created. The creation of a DSL follows a set of
specific steps. First, the language engineer must identify the abstract concepts
of the domain. These concepts include the basic elements of the domain, the
interactions between these elements and the precise boundaries of the domain
considered. Based on these concepts, the language engineer must define a set of
expressions used to create a specific model in the domain, i.e., a concrete syntax.
Finally, the language engineer must define the semantics of the language created,
usually by transformation to an existing platform. The whole process must be
validated by one or more domain experts. Domain experts must validate the
three steps of the DSL creation process: the domain must have been correctly
defined, the expressions of the concrete syntax must be close to the already
existing languages in the domain, and the execution must return the expected
results. This creation/validation process often leads to an iterative development
of the language. We show this entire process in Figure 4.

There exist various DSLs tailored for the biological processes, e.g., SBML [8]
and SBGN [11]. These two well-known languages cover a wide range of systems,
mainly in the bio-chemical domain. GReg, instead, focuses on a more specific
domain, which is genetic regulatory mechanisms. This domain has been described
in Section 2.

While creating GReg, we used the Eclipse Modeling Project (EMP)[1] ap-
proach. We first created a metamodel of the domain using the Eclipse Model-
ing Framework (EMF), and we defined a concrete syntax with XText. XText
provides a set of tools to create an editor for a given language, with some user-
friendly features such as syntax highlighting, on the fly syntax checking (see Fig-
ure 5) and auto-completion. As a target platform we chose AlPiNA. AlPiNA[3]

27

is a model checking tool for Algebraic Petri Nets (APNs). It aims to perform
efficient model checking on models with extremely large state spaces, using De-
cision Diagrams (DDs) to tackle the state explosion problem. AlPiNA’s input
languages were also defined using the EMP approach. This allowed us to use At-
las Transformation Language (ATL) transformations, which is a tool dedicated
to define model to model transformations. GReg is thus fully integrated in the
Eclipse/EMP framework.

The modular structure of GReg’s definition would allow us to replace the
target domain while keeping exactly the same language. If needed, we could, for
example, define a transformation to SBML using a model to text transformation
tool like XPand.

5 GReg : Gene Regulation Language

GReg is a Domain Specific Language designed to describe genetic regulatory
mechanisms. We built it in order to illustrate the DSL approach, and the benefits
it provides to research in the life sciences domain. Throughout this section, we
introduce the GReg language using an excerpt of the lac operon model [10]. We
also introduce the GReg Query Language (GQL) language, used to specify the
queries to be executed in the model specified in GReg.

We first show how to describe a regulation mechanism. Listing 1 shows the
overall structure of a GReg mechanism specification. The mechanism is named
(lac_operon). It specifies the molecules occurring in the mechanism, and the
chemical reactions between these molecules. The GReg description also specifies
the genes with their properties and organization into chromosomes.

mechanism lac_operon i s
molecules
−− d e c l a r a t i o n o f mo l e c u l e s
reactions
−− d e c l a r a t i o n o f c h em i c a l r e a c t i o n s
chromosomes
−− d e c l a r a t i o n o f chromosomes
gene −− d e c l a r a t i o n o f a gene
−− d e c l a r a t i o n o f o t h e r gene s

end lac_operon

Listing 1: GReg mechanism specification

mechanism lac_operon i s
molecules

lactose , allolactose ,
lacI , lacZ , lacY , lacA ,
cAMP , CAP

...
end lac_operon

Listing 2: Molecules declaration

The molecules section of a GReg
description specifies the molecules oc-
curring in the mechanism. For in-
stance, in Listing 2, the lac_operon
mechanism uses molecules lactose,
allolactose, lacI, lacZ, etc.

Molecules are only described by
their names, as it is the only infor-
mation relevant in our language. The DSL approach emphasizes specification of

28

only the required information for the particular domain. No molecules other than
the ones described here can be used in the mechanism. This constraint is useful
for the user creating a GReg specification: spelling errors in molecule names are
detected, see Figure 5.

Fig. 5: Example of a spelling error in a molecule name (allolactose).

After the molecules declaration, a GReg description specifies the chemical
reactions that take part in the mechanism. Listing 3 presents the reactions part
of the mechanism.

mechanism lac_operon i s
...
reactions

induction : lacI + allolactose → _
allo : lactose → allolactose cat lacZ

...
end lac_operon

Listing 3: Reactions declaration

In GReg, each reaction has a name, for instance induction. As usual in chemical
notations, a reaction is a relation among (weighted) molecules. The molecule
weight is usually called the stoichiometric coefficient. By default, stoichiometric
coefficients are valued 1.

A reaction can be either irreversible (→) or reversible (↔). In our example,
the reaction induction is a degradation of lacI and allolactose. A degradation
is an irreversible reaction where products are not interesting, thus the reactants
are simply removed from the system.

If needed, each direction of the reaction can be given a reaction rate (i.e., prob-
ability). Each reaction can also have catalysts specified using the keyword cat.
For instance allo is a reaction catalyzed by lacZ.

mechanism lac_operon i s
...
gene rep

codes lacI
end rep
gene lac

codes lacZ , lacY , lacA
s i t e s

I : cAMP and CAP = 1
O : lacI @ 2

end lac
end lac_operon

Listing 4: Genes declaration

Listing 4 presents the genes spec-
ification. For instance, rep is a mini-
mal gene (i.e., not regulated). A mini-
mal gene defines at least the molecules
it codes. If they are relevant, regula-
tion sites are also specified in a section
with the sites keyword. The lac gene
defines a regulated gene with two reg-
ulation sites I and O , together with
the molecule acting on them. Note
that GReg also allows us to define sev-
eral regulation sites for I, O, A, T.

29

As molecules may be present at different levels, the @ keyword allows the spec-
ification of the required molecules levels acting at a regulation site. By default,
molecule levels are valued 1. As several molecules can act on one regulation site,
GReg allows to combine molecules with Boolean operators for a regulation site.
There are two operators defined : and and or. For instance the I site of lac gene
specifies that cAMP and CAP are required to activate this site. The = keyword
allows to specify the target level attributed to the gene once this site is active.

Note that for A sites, it is also possible to specify the next gene target level.
As the role of a T site is to interrupt the transcription process, we allow the
specification of the reduced set of produced molecules when these sites are active.

mechanism lac_operon i s
...
chromosomes

c : {rep}, {lac ,lac ’}
...

end lac_operon

Listing 5: Chromosomes declaration

The chromosomes section is used
to specify one or more chromosomes.
A chromosome defines the sequence of
loci. A locus is defined between two
braces. Note that genes’order in each
locus does not matter. This section is
mandatory when taking into account
A sites.

Listing 6 shows an example of GQL specification. The use keyword im-
ports the lac_operon mechanism from another file, allowing us to reference the
molecules declared in lac_operon mechanism from a query specification. A GQL
file specifies the levels and the queries.

use "lac_operon.greg"
l eve l s

l1 : lacZ = 1
l2 : lacZ = 0, lacI = 2

queries
bool a : exists l1
paths b : paths l1, l2
paths c : paths l1 .. l2

Listing 6: GQL queries specification

The levels section is used to de-
fine the combination of levels. A com-
bination of levels is a partial or to-
tal definition of molecule levels, while
unspecified molecules may match any
possible value. For instance l1 speci-
fies only the level of lacZ among all
molecules defined in lac_operon. The
exists query returns true if predefined
level exists. The paths query is used to retrieve all paths from the state space
matching the sequence of predefined levels. The query b returns the path where
l2 is a direct successor of l1. But query c does not require that l2 is a direct
successor of l1.

use "lac_operon.greg"
use "lac_operon.gql"
i n i t i a l l y lac_operon has

lactose = 1
lacI = 1

execute
i f a then (b and c)

Listing 7: GReg specification

Listing 7 shows an example of
a GReg configuration specification
given outside the mechanism, usually
in a separate file. This allows to eas-
ily repeat experiments for the same
mechanism with several initial quan-
tities. The first section starts with
the initially keyword and defines the
genes or molecules initial levels. The second section starts with the execute

30

keyword and is used to specify which queries will be executed by the model
checker.

6 Example

We present a simple example of a genetic regulatory mechanism taken from [17]
with three genes. Gene Y is activated by the product of gene X. Genes X and
Z are repressed by the products of genes Z and Y respectively. The products
of genes X, Y and Z are molecules x, y and z respectively. Graphical (LRG)
and textual (GReg) models derived from this example are given at Figure 6 and
Listing 8 respectively.

X Y

Z

Fig. 6: LRG model of example

mechanism example i s
molecules x, y, z
gene X codes x

s i t e s O : z
end X
gene Y codes y

s i t e s I : x
end Y
gene Z codes z

s i t e s O : y
end Z

end example

Listing 8: GReg model of Figure 6

GReg models are transformed into APN models usable by AlPiNA. Note
that the obtained APNs can always be unfolded into Place/Transition Petri
Nets (P/Ts). We propose two different transformations:

– the first transformation produces a P/T shown in Figure 7, called Multi-level
Regulatory Petri net (MRPN) in [5] ;

– the second transformation produces an APN shown in Figure 8, which is the
folding of the corresponding MRPN and thus more compact.

From theses models AlPiNA is able to compute the state space and to identify
all deadlock without requiring any additional input from the user.

A deadlock is a situation where no more events can occur in the system.
Strictly speaking, in real biological systems there are no deadlocks but livelocks,
a situation where events still occur but without changing the state of the sys-
tem. The states where such situations occur are usually called stable states or
attractors.

But we can also search for specific properties of the biological system. As pre-
viously mentioned, the state space might contain too many states to be used as
it is. Therefore we propose a way to extract portions of state space (e.g., subsets

31

Xpre Zpre Ypre

Xabs Xabs Yabs

Xrep Zrep

Xact Zact

Yrep

Yact

Fig. 7: PN model of example in Figure 6 and Listing 8

X 0 Z 0 Y 0

Xrep

x

x− 1

z

Xact

x

x+ 1

z

Zrep

z y

z − 1

Zact

z y

z + 1

Yact

x
y

y + 1

Yrep

x y

y − 1

Fig. 8: APN model of example in Figure 6 and Listing 8

32

of states, paths, cycles, ...) through GQL queries. In Listing 9, we have defined
one level (l1) and one query (at).

use "example.greg"
l eve l s

l1 : x = 1, y = 1
queries

states s1 : at l1

Listing 9: GReg query example

This query returns the subset (s1) of states from the state space where the
level of x and y is equal to one. To compute the set of states s1, the query is
transformed into an AlPiNA property, shown in Listing 10.

s1 : exists ($x in x, $y in y, $z in z :
(($x equals suc(zero)) and ($y equals suc(zero))) = false

Listing 10: AlPiNA property expression of query in Listing 9

The example in Figure 6 and Listing 8 has eight states reachable from the
initial marking, where all molecules are initially at level zero (x,y,z) = (0,0,0),
see Figure 9. Model checking of the example PN finds two stable states: (1,1,0)
and (0,0,1) and returns for s1 the two states: (1,1,0) and (1,1,1).

x = 0
y = 0
z = 0

x = 0
y = 0
z = 1

x = 0
y = 1
z = 0

x = 0
y = 1
z = 1

x = 1
y = 0
z = 0

x = 1
y = 0
z = 1

x = 1
y = 1
z = 0

x = 1
y = 1
z = 1

Zact

Xact

Zact

Yact

Xrep Yact

Zrep

Xrep

Zrep

Yrep

Xact

Yrep

Legend

Initial
state

Stable
state

Fig. 9: State space of example in Figure 6 and Listing 8

7 Conclusion & future work

This paper introduces Gene Regulation Language (GReg), a language dedicated
to the modeling of regulatory mechanisms. We explain the need to explore com-
pletely the sets of possible behaviors of a given model in order to detect rare
events. GReg includes a query language used to express the properties of such
events.

33

From a technical point of view, we explain that the techniques proposed
are based on general principles borrowed from software modeling and verifica-
tion. These techniques include the use of a dedicated DSL defined with a meta-
modeling approach and the translation of this language into a formal verification
platform called AlPiNA.

The languages and transformations shown in this article have been imple-
mented and tested on several toy examples. We also asked biologists to assess
the expressivity and usability of the language. Although the first feedback seems
promising, there is much room for improvement. We foresee three main axes of
future development: improving the expressivity of the modeling and query lan-
guages, assessing the usability of the approach and exploring the mitigation of
the state space explosion.

Extending the expressivity of GReg Concepts such as time and probabil-
ities play an important role in biology and are therefore good candidates
for a language extension. As the current underlying formalism, APNs, does
not support these notions, such extension would require changing the tar-
get platform. Good examples of target formalisms are timed Petri nets and
stochastic Petri nets. As mentioned in 4, the techniques used to create GReg
allow changing the target language without changing the language itself.
Note that we do not plan to add continuous concepts, used in languages
such as HFPNe.

Improving the usability of our tool Textual domain specific languages con-
stitute a first step towards democratization of formal methods. Although
highly efficient, textual languages are usually not as intuitive as graphical
languages. On the other hand, graphical domain specific languages are espe-
cially good in the early phase of the modeling as well as for documentation,
but they are often less practical when the model grows. The tools in EMP
that were used to create GReg allow us to define a graphical version of the
same language, thus keeping the best of both worlds.
Another way to ease the modeling phase is to allow import/export of models
from/to other formalisms and standards such as SBML and to integrate it
with Cytoscape through its plug-in mechanism.

Mitigating the state space explosion So far, we have done little experimen-
tation in this area for biological processes. Nevertheless, we conducted several
studies on usual IT protocols and software models that show that AlPiNA
can handle huge state spaces[2]. This suggests promising results in the reg-
ulatory mechanisms domain.

The development of GReg is a work in progress, we would like to set up more
collaborations with biologists interested in exploiting formal techniques from
computer science to discover rare events. We think that we can make, in the
near future, a useful contribution to life sciences based on advanced techniques
borrowed from computer science.

34

References

1. Eclipse Modeling Project. http://www.eclipse.org/modeling/.
2. D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. AlPiNA: A Symbolic Model

Checker. In Petri Nets’2010: Applications and Theory of Petri Nets, Braga, Por-
tugal, volume 6128 of Lecture Notes in Computer Science, pages 287–296, 2010.

3. D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. AlPiNA: An Algebraic Petri
Net Analyzer. In TACAS’2010: Tools and Algorithms for the Construction and
Analysis of Systems, Paphos, Cyprus, volume 6015 of Lecture Notes in Computer
Science, pages 349–352, 2010.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. Information and Computation, 98, 1992.

5. C. Chaouiya, H. Klaudel, and F. Pommereau. A Modular, Qualitative Modeling of
Regulatory Networks Using Petri Nets. In Modeling in Systems Biology, volume 16
of Computational Biology, pages 253–279. Springer London, 2011.

6. C. Chaouiya, E. Remy, B. Mossé, and D. Thieffry. Qualitative Analysis of Reg-
ulatory Graphs: A Computational Tool Based on a Discrete Formal Framework.
In Positive Systems, volume 294 of Lecture Notes in Control and Information Sci-
ences, pages 830–832. 2003.

7. Cytoscape Consortium and Funding Agencies. http://www.cytoscape.org/.
8. M. Hucka, F. Bergmann, S. Hoops, S. Keating, S. Sahle, J. Schaff, L. Smith,

and B. Wilkinson. The Systems Biology Markup Language (SBML): Language
Specification for Level 3 Version 1 Core, 2010. Available from Nature Precedings
http://dx.doi.org/10.1038/npre.2010.4959.1.

9. J-M. Couvreur and E. Encrenaz and E. Paviot-Adet and D. Poitrenaud and P-
A. Wacrenier. Data Decision Diagrams for Petri Net Analysis. In ATPN’02:
International Conference on Application and Theory of Petri Nets, volume 2360 of
Lecture Notes in Computer Science, pages 101–120, 2002.

10. F. Jacob and J. Monod. Genetic Regulatory Mechanisms in the Synthesis of Pro-
teins. Journal of molecular biology, 3:318–356, 1961.

11. S. Moodie, N. Le Novere, E. Demir, H. Mi, and A. Villeger. Systems Biology
Graphical Notation: Process Description language Level 1, 2011. Available from
Nature Precedings http://dx.doi.org/10.1038/npre.2011.3721.4.

12. M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. A Versatile Petri Net Based Ar-
chitecture for Modeling and Simulation of Complex Biological Processes. Genome
Informatics, 15(1):180–197, 2004.

13. A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya. Logical
Modelling of Regulatory Networks with GINsim 2.3. Biosystems, 97(2), 2009.

14. A. Naldi, C. Chaouiya, and D. Thieffry. GINsim. http://gin.univ-mrs.fr/.
15. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin,

B. Schwikowski, and T. Ideker. Cytoscape: a Software Environment for Integrated
Models of Biomolecular Interaction Networks. Genome Research, 13, 2003.

16. The University of Tokyo. CellIllustrator. http://www.cellillustrator.com/.
17. R. Thomas. Regulatory Networks seen as Asynchronous Automata: a Logical

Description. Journal of Theoretical Biology, 153:1–23, 1991.
18. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic

Models, Advances in Petri Nets, pages 429–528, 1998.

35

http://www.eclipse.org/modeling/
http://www.cytoscape.org/
http://dx.doi.org/10.1038/npre.2010.4959.1
http://dx.doi.org/10.1038/npre.2011.3721.4
http://gin.univ-mrs.fr/
http://www.cellillustrator.com/

	greg:a domain specific language for the modeling of genetic regulatory mechanisms

