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3 Department of Computer Siene, University of Colorado at Boulder430 UCB Boulder, CO 80309-0430, U.S.A.Abstrat. We investigate how Petri nets ould be used to provide afaithful semantis of reation systems, a formal framework for the inves-tigation of proesses arried by biohemial reations. We propose anddisuss possible approahes to this problem using some existing Petrinet lasses and onurreny onepts, suh as maximal parallelism. Afterthat we introdue a new lass of Petri nets, alled set-nets, whih providea omputational model mathing very losely that exhibited by reationsystems. The key di�erene between standard Petri nets and set-netsis that the former support multiset-based token arithmeti, whereas thelatter support set-based operations on tokens.Keywords: reation system, Petri net, living ell, natural omputing,set-net, model translation1 IntrodutionThe investigation of the omputational nature of biohemial reations is a re-searh topi of Natural Computing. One of the goals of this researh is to on-tribute to a omputational understanding of the funtioning of the living ell.Reation systems [2, 3, 7�10℄ are a formal framework for the investigation ofproesses arried out by biohemial reations in living ells. The entral ideaof this framework is that the funtioning of a living ell is based on interationsbetween (a large number of) individual reations, and moreover these intera-tions are regulated by two main mehanisms: failitation/aeleration and inhi-bition/retardation. These interations determine the dynami proesses takingplae in living ells, and reation systems form a formal framework for developingan abstrat theory of these proesses.The model of reation systems is based on priniples remarkably di�erentfrom those underlying other existing models of omputation. The aim of thispaper is to develop a faithful Petri net model of reation systems. The mainmotivation behind this is to establish whether Petri net based onepts (suh asausal proesses) and methods (suh as synthesis of nets from a spei�ation oftheir behaviour) ould be used to provide analytial tools for reation systems.It is not the intention of this paper to provide diret feedbak to the area of
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2 J.Kleijn, M.Koutny and G.Rozenbergbiologial appliations, but to establish bridges between biology and Petri netsthrough the onnetion provided by reation systems.As a �rst step, we propose and disuss four di�erent approahes to the mod-eling of reation systems by using existing Petri net lasses and onurrenyonepts. However, as it turns out, in order to obtain a good math between re-ation systems and Petri nets, it is neessary to re-evaluate one of the basi netpriniples, namely, token ounting. This leads us to the introdution of a newlass of Petri nets, alled set-nets, whih provide a net based omputationalmodel mathing very losely the omputations exhibited by reation systems.The main di�erene between set-nets and standard Petri nets is that the lattersupport multiset-based token arithmeti, whereas the former support set-based(boolean) operations on tokens. Thus, the omputational `intuition' originatingfrom reation systems provides the inspiration to introdue a new lass of netswith intriguing and yet to disover properties. Consequently, the main ontribu-tion of this paper is more than just providing a bridge between reation systemsand the world of Petri nets. In the future, after fully understanding and master-ing the properties of the new set-nets, one would hope to provide also a newset of tools and analyses for biologial appliations.The paper is organised in the following way. In the next setion, we desribebasi notions of reation systems. Setion 3 desribes two methods of modellingreation system using low-level Petri nets, and the next one does the same usinghigh-level Petri nets. The new lass of set-nets is introdued in Setion 5, andin Setion 6 we explain why this new lass of nets an faithfully and elegantlymodel reation systems. Comparison with related work is presented in Setion 7.Proofs of the results presented in this paper an be found in [16℄.Notation We use the standard mathematial notions and notation. A multisetover a set X is a funtion µ : X → N = {0, 1, 2, . . .}, and its support is ||µ|| =
{x ∈ X | µ(x) > 0}. The empty multiset ∅ satis�es ||∅|| = ∅. A multiset may berepresented, somewhat informally, by listing its elements with repetitions, e.g.,
µ = {y, y, z} is suh that µ(y) = 2, µ(z) = 1, and µ(x) = 0 otherwise. We treatsets as multisets without repetitions.2 Reation systemsIn this setion, we explain some notions relevant to reation systems. It is ourintention to introdue enough onepts to allow one to follow the subsequentdisussion on the relationship between reation systems and Petri nets. For aomprehensive desription of reation systems, inluding motivations, applia-tions and examples, the reader is referred to [7�9℄.De�nition 1 (reation system [7�9℄). A reation system is a pair: A =
(S,A), where S is a �nite bakground set omprising the entities of A, and Ais the set of reations of A. Eah reation is a triplet of the form: a = (R, I, P ),
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Modelling Reation Systems with Petri Nets 3where the three omponents are �nite non-empty sets: R ⊆ S is the set of rea-tants, I ⊆ S is the set of inhibitors, and P ⊆ S is the set of produts.The omponents of a reation a = (R, I, P ) are denoted by Ra, Ia and Pa,respetively. De�nition 1 desribes the stati struture of a reation system. Toapture the dynami behaviour of reation systems, we need additional notions.De�nition 2 (state of reation system). A state of a reation system isany set C of its entities. Then an initialised reation system is a triplet A =
(S,A,C0), where (S,A) is a reation system and C0 ⊆ S is the initial state.In this and in the next setion, we will onsider as a running example theinitialised reation system A0 = ({w, x, y, z}, {a, b, c}, {x, z}), with bakgroundset {w, x, y, z}, initial state {x, z}, and three reations:

a = ({x}, {y}, {y, z}) b = ({y}, {x}, {x, z}) c = ({z}, {w}, {z}) .A reation system with bakground set S has exatly 2|S| potential states.To desribe possible transitions between these states, we need to say what ismeant by an ourrene of a reation or a set of reations.De�nition 3 (state hange). A reation a is enabled at a state C ⊆ S if
Ra ⊆ C and Ia∩C = ∅; the result of a reation a at C is de�ned by resa(C) = Paif a is enabled at C and resa(C) = ∅ otherwise. The result of A on C, denotedby resA(C) onsists of the produts of all reations from A enabled at C, that is

resA(C) =
⋃

a∈A

resa(C) .This state hange is denoted by C −→ resA(C).Note that the state hanges aptured by De�nition 3 are deterministi. More-over, all entities in C \
⋃

a∈A resa(C) disappear. As a result, and unlike in otherformal models of dynami systems, there is no persisteny in a reation systemin the sense that an entity present in a state disappears unless it is sustained byat least one reation.For the example reation system A0, we have:
{x, z} −→ {y, z} and {y, z} −→ {x, z} and {w, x, y} −→ ∅ .One may observe that there is no on�it between reations in the `lassi'sense that the ourrene of one reation might imply that another reationwhih is also enabled at the urrent state, annot our. This, again, is a featurenot found in most other formal models of dynami systems. In partiular, it isworthwhile to point expliitly to the `non-ounting' features of reation systems:entities are either present or not, and produed or not, and reations an orannot our based only on the presene or absene of ertain entities. Thereis no representation of multiple instanes of entities or multiple ourrenes of
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4 J.Kleijn, M.Koutny and G.Rozenbergreations. Thus reation systems are a qualitative rather than a quantitativemodel.We also note that there is an alternative notion of on�it-freeness for a setof reations, alled onsisteny. A set of reations R is onsistent if for any tworeations a, b ∈ R, Ra ∩ Ib = Rb ∩ Ia = ∅. Clearly, if a set of reations is notonsistent, then the reations it omprises annot be exeuted simultaneously.Although the goal of this paper is a faithful `translation' of reation sys-tems into Petri nets, we onlude this setion with a number of omments aboutresearh on reation systems. This researh happens in the framework of re-ation systems where a reation system onstitutes the basi tehnial notion.Depending on the goal of a spei� researh theme, many other onstruts areintrodued and studied (see, e.g., [2, 9, 10℄) � they form various extensions ofthe basi notion of reation system. For example, there are many biologial situ-ations where one needs to assign quantitative parameters (time, onentrations,. . . ) to states of a biohemial system. Although reation systems are a qualita-tive model (they annot `ount'), they an be extended so that suh quantitativeparameters an be aommodated. This is done through the use of measurementfuntions whih lead to reation systems with measurements (see [2, 3, 9, 10℄),where various numerial parameters an be assigned to (alulated for) onse-utive states of dynami proesses.Finally, we want to point out that (beause living ells are open systems)reation systems have an environment and they operate/evolve within a hangingontext (with entities oming from the environment in�uening the transitionsof dynami proesses). In this paper, however, we will onsider only ontext-independent proesses de�ned by a reation system with an initial state, whereeah next state is obtained solely as the result of reations taking plae in theprevious state (thus assuming that the environment does not in�uene statetransitions).3 Reation systems and low-level Petri netsIn this setion, we disuss two possible ways of modelling ontext-independentproesses of reation systems using low-level Petri nets (pt-nets extended withwith inhibitor and ativator ars).In addition to the standard notions of reation systems, in order to betterexplain how they relate to Petri nets, throughout the rest of this paper we willsay that a set R ⊆ A is enabled at C if eah reation of R is enabled at C. If
R ⊆ A is enabled at C, then

C
R
=⇒ resR(C) =

⋃

a∈R

Pa .denotes the e�et of R at C.De�nition 4 (pt-nets with inhibitor and ativator ars [14℄). A pt-netwith inhibitor and ativator ars (or ptia-net) N = (Pl ,Tr ,Flw , Inh,Act ,M0)
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Modelling Reation Systems with Petri Nets 5is a tuple suh that Pl and Tr are �nite, disjoint sets of respetively plaes andtransitions, and: Flw ⊆ (Pl × Tr) ∪ (Tr × Pl), Inh ⊆ Pl × Tr , Act ⊆ Pl × Trare respetively the sets of �ow, inhibitor and ativator ars. Moreover, M0 isa multiset of plaes, the initial marking of N ; in general, any multiset of plaesis alled a marking.In diagrams, plaes are drawn as irles and transitions as retangles. Mark-ings are the possible global on�gurations (states) of N . We say that a plae qis marked under a marking M if M(q) > 0, where M(q) denotes the numberof ourrenes of q in M . In diagrams, markings are indiated by putting M(q)tokens inside the irle representing q. If (x, y) ∈ Flw , then (x, y) is an ar lead-ing from node x to node y. A double headed arrow between q and t indiatesthat (q, t), (t, q) ∈ Flw . An inhibitor ar ends with a small open irle, while anativator ar ends with a small blak irle.Given a node x, we denote by •x the set of input nodes of x, i.e., those yfor whih (y, x) ∈ Flw , and by x• the set of output nodes of x, i.e., those yfor whih (x, y) ∈ Flw . For a transition t we use: ◦t = {q | (q, t) ∈ Inh} and
�t = {q | (q, t) ∈ Act} to denote the inhibitor and ativator plaes of t. All fournotations extend in the usual way to sets of nodes. As in the ase of reationsystems, we now formalise the notion of marking (state) hange.De�nition 5 (marking hange). A multiset of transitions U (also alled astep) is enabled at a marking M if ◦U ∩ ||M || = ∅, �U ⊆ ||M || and, for everyplae q, M(q) ≥

∑

t∈q• U(t) (reall that ||M || is the set of q whih our in M ,and U(t) is the number of ourrenes of t in U).In suh a ase, U an be �red with its e�et on M being given by the result-ing marking M ′ suh that, for every plae q: M ′(q) = M(q) −
∑

t∈q• U(t) +
∑

t∈•q U(t). We denote this by M [U〉M ′. Moreover, if U is a maximal (w.r.t.multiset inlusion) step of transitions enabled at M , then we may denote thismarking hange also by M [U〉maxM
′.Note that whenever a step U is enabled at marking M it must be the asethat all ativator plaes of transitions in ||U || are marked (are in ||M ||) and noneof the inhibitor plaes of transitions in ||U || are marked.We now make some general observations and assumptions about the rela-tionship between reation systems and nets.� Entities an be represented by plaes, and reations by net transitions.� Sine there are no on�its between reations, ativator ars an be usedto test for the presene of reatants (rather than laiming resoures for theexlusive use as with ordinary ars and input plaes).� All reations that an our in a reation system do our, and the only en-tities left after a state hange are the newly generated produts. In the Petrinet framework, these features orrespond to maximal parallelism desribedat the end of De�nition 5, and plae resetting [6℄ desribed later on.
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6 J.Kleijn, M.Koutny and G.Rozenberg
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⋆Fig. 1. Method I and II representations of the reation system A0.Method I. The �rst attempt is illustrated in Figure 1(a) for the example rea-tion system A0. Method I produes a ptia-net NI(A0) suh that:� Transitions a, b and c use ativator ars and inhibitor ars to test respetivelyfor the presene and absene of tokens in the plaes w, x, y and z.� Plaes qa, qb and qc ensure that the three transitions modelling reations,i.e., a, b and c, �re at most one in any step. This orresponds to the `non-ounting' of ourrene instanes of the same reation in a reation system.� Transitions rw, rx, ry and rz (in a maximal step) empty the four plaesmodelling entities w, x, y and z. This does not have any in�uene on the�ring of the transitions a, b and c.� In a single maximal step, M [U〉maxM
′, the net �res a maximal multiset oftransitions U enabled at marking M and then produes a new marking M ′.For the net in Figure 1(a), suh a �ring rule gives:

{x, z, qa, qb, qc} [{rx, rz , a, c}〉max {y, z, z, qa, qb, qc}
{x, x, x, z, qa, qb, qc} [{rx, rx, rx, rz , a, c}〉max {y, z, z, qa, qb, qc} .Formally, given an initialised reation system A = (S,A), Method I yieldsa ptia-net NI(A) suh that the plaes, transitions and the initial marking are,respetively: Pl = {qa | a ∈ A} ∪ S, Tr = {rs | s ∈ S} ∪ A and M0 = {qa | a ∈

A}+C0. Moreover, the sets of �ow, inhibitor and ativator ars are, respetively:
Flw = {(s, rs) | s ∈ S} ∪ {(a, qa), (qa, a) | a ∈ A} ∪ {(a, s) | a ∈ A ∧ s ∈ Pa}
Inh = {(s, a) | a ∈ A ∧ s ∈ Ia} Act = {(s, a) | a ∈ A ∧ s ∈ Ra} .Note that this kind of modelling in ombination with the `resetting' of plaes

w, x, y and z in eah �red step, implemented by the auxiliary transitions rw,
rx, ry and rz , means that the resulting Petri net is bounded (in every reahablemarking the multipliity of eah plae is never more than the number of reationsof A if A has at least one reation).In order to relate the behaviour of the original reation system A and itsptia-net representationNI(A) just introdued, we need two mappings. The �rst
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Modelling Reation Systems with Petri Nets 7one takes a marking M of NI(A) and returns a state of A, and the other takesa step U of transitions of NI(A) and returns a set of reations of A, as follows
νI(M) = S ∩ ||M || and ϕI(U) = A ∩ ||U ||. It is then possible to show a numberof results, where a marking M of the ptia-net NI(A) is alled well-formed if
M(qa) = 1, for every a ∈ A.First, M0 is a well-formed marking satisfying ν(M0) = C0, and if M is awell-formed marking and M [U〉M ′, then M ′ is also well-formed. Seond, if M isa well-formed marking, then for every reation a ∈ A, a is enabled at M i� {a}is enabled at state νI(M). We then an show that the translation is sound.Theorem 1. If M is a well-formed marking then:1. M [U〉M ′ implies νI(M)

ϕI(U)
=⇒ νI(M

′). Moreover, if M [U〉maxM
′, then ϕI(U)omprises all reations enabled at νI(M).2. νI(M)

R
=⇒ C implies M [U〉M ′ for some U and M ′ satisfying: ϕI(U) = Rand νI(M

′) = C. Moreover, if R omprises all reations enabled at νI(M),then M [U〉maxM
′.Thus, eah maximal omputational step in the Petri net orresponds to aunique exeution of the reation system, and eah exeution in the reationsystem orresponds to at least one maximal step in the Petri net. For example,the two exeutions given above for the Petri net in Figure 1(a) both orrespondto {x, z}

{a,c}
=⇒ {y, z} in the reation system A0.Note that in Figure 1(a) one annot simply delete the auxiliary plaes of theform qr as then eah of the transitions representing reations ould be unbound-edly enabled. To address this problem one ould hange the ativator ars fromplaes representing entities into �ow ars. Then, however, it would be neessaryto add weights |R| to the ars orresponding to the prodution of new entitiesin order to avoid on�its on the plaes representing the reatants.Method II. The �rst attempt to model ontext-independent reation systemsprovides a sound translation, but it is not simple as it employs features whihan make formal analysis and veri�ation far from easy. One way of improvingMethod I ould be to replae multisets of �red transitions by sets of �red tran-sitions leading to a maximal set-semantis. This an be ahieved by using resetars [6℄, onneting plaes to transitions and indiated by ⋆'s in the diagrams,whih always empty their soure plae. Formally, reset ars Reset ⊆ Pl ×Tr donot have any in�uene on the enabledness of a step U , but the alulation of themarking of a plae q after the �ring of U (now a set) at marking M hanges to:

M ′(q) =

{

M(q)− |q• ∩ U |+ |•q ∩ U | if ({q} × U) ∩Reset = ∅

|•q ∩ U | otherwise .The resulting ptia-net with reset arsNII (A0) is shown in Figure 1(b). Tran-sition r is always enabled and, when �red, removes all the tokens from theplaes modelling the entities. For the net in Figure 1(b), the new �ring rule gives
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8 J.Kleijn, M.Koutny and G.Rozenberg
{x, z} [{r, a, c}〉max {y, z, z} and {x, x, x, z} [{r, a, c}〉max {y, z, z}. One an thenshow that a ounterpart of Theorem 1 holds also in this ase, with νII de�ned as
νI before and ϕII (U) = U \{r}. As transition r is always enabled, we now have aone-to-one orrespondene between groups of exeuted reations and transitions,at the prie of introduing non-standard reset ars.To remove the need to have reset ars or, equivalently, to obtain a one-to-one orrespondene between states and markings, one ould hange the rules forinserting tokens into plaes, by basially applying an OR-treatment for arrivingtokens. This would, of ourse, be a radial departure from the standard Petrinet approah, but one worth investigating. The resulting model of set-nets willbe desribed in Setion 5.4 Reation systems and high-level Petri netsThe two translations desribed in the previous setion use low-level pt-nets ex-tended with reset ars in addition to inhibitor and ativator ars as well asmaximal parallelism. Reset ars are a non-standard mehanism and, in partiu-lar, they do not as yet support a ausal proess semantis. Moreover, the e�et ofa reset ar depends on the urrent marking rather than on a �xed input/outputrelation with its neighbourhood. To ope with this problem, we will now outlinetwo translations from ontext-independent reation systems to high-level Petrinets. We assume familiarity with the basi onepts of high-level nets [13℄, inpartiular, ar insriptions, ativator and inhibitor ars, and simple transitionguards.Method III. The �rst translation is illustrated by the high-level net NIII (A0)shown in Figure 2(a). In this ase, tokens are positive integers ating as thoughthey were time-stamps. Intuitively, a token n is ative only in the n-th exeutionyle of the reation system. Beause the same token annot be aessed morethan one in a step sequene evolution, reset ars are not needed anymore. Sinethe X transition �res in eah maximal step, the yle number n held in the`lok' plae clk is known to all transitions representing reations. In the plaesrepresenting entities, they hek only for tokens n, ignoring all the other tokensprodued in previous yles, and then produe tokens with value n+1 to be usedin the next yle. The initial marking M0 is formed by inserting a single token 1into plae clk and all the plaes s suh that s ∈ C0. Note that the resulting netmay be unbounded as the tokens in plaes representing entities are not `garbageolleted'. For the high-level net NIII (A0) in Figure 2(b), we have:

{x 7→ {1}, y 7→ ∅, z 7→ {1}, w 7→ ∅, clk 7→ {1}}
[{an7→1, cn7→1,Xn7→1}〉max

{x 7→ {1}, y 7→ {2}, z 7→ {1, 2, 2}, w 7→ ∅, clk 7→ {2}}
[{bn7→2, cn7→2,Xn7→2}〉max

{x 7→ {1, 3}, y 7→ {2}, z 7→ {1, 2, 2, 3, 3}, w 7→ ∅, clk 7→ {3}} .
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Modelling Reation Systems with Petri Nets 9
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Fig. 2. Method III and IV representations of reation system A0. Note that n and
m are net variables, and that to avoid lutter not all ars have been annotated: allthe �ow (thiker) ars to plaes x, y, z are in fat annotated with n + 1, and all theunannotated inhibitor and ativator ars are annotated with n. In (b), the auxiliaryplaes for transitions b and c are omitted. Note that 〈m ≥ n〉 is the guard of transition
ax, and all other transitions have the trivial true guard.As in the ase of Method I, not every marking M of NIII (A) an represent avalid state of the reation system A. We say that M is lok-onsistent if thereis a single token k in plae clk , and all the tokens l in other plaes satisfy l ≤ k.Relating the resulting net and the original reation system an be done usingthe following two mappings: νIII (M) = {s ∈ S | ||M(clk)|| ∩ ||M(s)|| 6= ∅}and ϕIII (U) = U \ {X}. One an show that M0 is a lok-onsistent markingsatisfying ν(M0) = C0, and if M is a lok-onsistent marking and M [U〉maxM

′then M ′ is also lok-onsistent.Theorem 2. If M is a lok-onsistent marking then:1. M [U〉maxM
′ implies νIII (M)

ϕIII (U)
=⇒ νIII (M

′).2. νIII (M)
R
=⇒ C implies M [U〉maxM

′ for some U and M ′ satisfying: ϕIII (U) =
R and νIII (M

′) = C.Method IV. In the seond high-level net onstrution the aim is to eliminatethe need for maximal parallelism using information present in the time-stampedtokens. We replae the global clk plae by individual clka plaes, whih are inre-mented by transitions a representing reations. Moreover, whenever a is blokedfrom �ring in a ertain yle one of the auxiliary transitions orresponding tothe possible `reasons' for the bloking a is �red to inrement the token in clka.This results in an inrement of the yle number for this transition (in ase
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10 J.Kleijn, M.Koutny and G.Rozenbergthere is more than one reason for bloking, an auxiliary transition is hosennon-deterministially).There are two possible reasons why a might be bloked in yle n. One is thepresene of a token n in the plae representing an inhibitor of a, and to hek forthis we use a transition with an ativator ar, e.g., ay in Figure 2(b). The other ismore ompliated as it is a lak of token n in the plae representing a reatant sfor a, and to hek for this we use a transition with an inhibitor ar. However, wealso need to ensure that all transitions whih feed tokens to s have already hada hane to do so, and we hek this using extra ativator ars together with atransition guard whih evaluates to true if all suh feeding transitions have theirloal yle su�iently high, e.g., transition ax in Figure 2(b). The overall resultfor the reation system A0 is a high-level net NIV (A0) shown in Figure 2(b).The resulting high-level net is exeuted aording to the standard sequential(interleaving) �ring rule and its behaviour losely simulates that of the net ob-tained by Method III, and so also the behaviour of the original reation system.We skip the full desription of the relationship between these two nets. Intu-itively, a marking M of the seond translation orresponds diretly to a markingof the �rst one if all the plaes of the form clka ontain the same single token
k, and all the tokens l in other plaes satisfy l ≤ k. (Note that from eah reah-able marking of the seond translation one an exeute a sequene of transitionsleading to a marking with this property.)5 Set-netsIn our attempts to obtain a diret and elegant translation from reation systemsinto Petri nets, a major and as far as we an tell insurmountable problem wasthe fat that several transitions may insert tokens into a plae representingthe presene of a single entity. In this setion, we introdue set-nets, a modelthat resulted from loser investigations into the possibilities of an OR-treatmentof arriving tokens representing the prodution of entities by reations. Notethat OR-treatment of ausality has been onsidered in [20℄, but the underlyingpriniple there was ompletely di�erent from what we are going to propose.The main idea is that in a set-net there is no onept of ounting. Plaesare marked or not marked and ars have no weights. Set-nets resemble elemen-tary net systems (en-systems) [19℄ whih is a fundamental model to study basifeatures of onurrent systems, inluding on�it, ausality and independene.However, their exeution semantis is di�erent. In set-nets, a marked plae in-diates the presene of a resoure without any quanti�ation. Hene any numberof transitions that take input from this plae an be �red at the same time.Moreover, �ring a transition empties all its input plaes. Thus there are no on-�its over tokens in set-nets, unlike in en-systems or pt-nets. Similarly, plaesdo not ount the tokens, and the �ring of a transition simply marks eah of itsoutput plaes (whether or not they were already marked). We will build up thenew model in two stages, introduing �rst set-nets with only �ow ars.
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Modelling Reation Systems with Petri Nets 11
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q↓Fig. 3. A set-net representing reation system A1 (a); and an ourrene net on-struted for its step sequene {b, q↓, s↓}{a, b, r↓, q↓} (b) .De�nition 6 (basi set-net). A tuple SN = (Pl ,Tr ,Flw ,M0) is a (basi)set-net if the �rst three omponents are as in De�nition 4, and M0 ⊆ Pl is theinitial marking (in general, any set of plaes is a marking).The graphial representation of set-nets is the same as in the ase of Petrinets. We now formalise the �ring rule for set-nets.De�nition 7 (marking hange). A set of transitions U (also alled a step)is enabled at a marking M if •U ⊆ M . In suh a ase, U an be �red with itse�et on M being given by the resulting marking M ′ = (M \•U)∪U•. We denotethis by M [U〉M ′. Moreover, if U is the set of all transitions enabled at M (i.e.,all transitions t satisfying •t ⊆ M), then we may write M [U〉maxM
′.Hene a step U enabled at a marking M may ontain two distint transitions

t and u for whih •t ∩ •u 6= ∅ or t• ∩ u• 6= ∅ and yet the ommon plaes willnever ontain more than one token. Sine tokens are manipulated using set-basedarithmeti we have hosen the name `set-nets' for the new lass of Petri nets.We have introdued �rst basi set-nets (without inhibitor and ativatorars), as it seems that one an attempt to develop for them a ounterpart of`struture theory' of pt-nets. To illustrate our point, let us onsider a basi set-net SN = (Pl ,Tr ,Flw ,M0) with at least one transition. A non-empty set ofplaes Sphn ⊆ Pl is alled a siphon if •Sphn ⊆ Sphn•. Similarly, a non-emptyset of plaes Trap ⊆ Pl is alled a trap if Trap• ⊆ •Trap. It an be easily seenthat an empty siphon annot aquire a token by �ring any transition, and amarked trap annot beome empty by �ring any transition. Both type of setsof plaes an be used to provide a su�ient ondition for deadlok-freeness inpt-nets whih was a major motivation behind the development of their struturetheory. As it turns out, the same an be done in ase of set-nets.Theorem 3. If in the initial marking, every siphon ontains a marked trap,then the set-net is deadlok free.We next introdue set-nets with inhibitor and ativator ars.
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12 J.Kleijn, M.Koutny and G.RozenbergDe�nition 8 (set-net). A tuple SNIA = (Pl ,Tr ,Flw , Inh,Act ,M0) is a set-net if the �rst �ve omponents are as in De�nition 4, and the last one as inDe�nition 6.The de�nitions and notations onerning the marking hange in SNIA are thesame as for SN in De�nition 7 with one exeption, namely a set of transitions Uis enabled at a marking M if •U ∪�U ⊆ M and ◦U ∩M = ∅. It is interesting toobserve that an enabled step U is always onsistent in the sense that (•U ∪�U)∩
◦U = ∅. Suh a property has a natural and diret (as we will see) onnetionwith the notion of onsisteny introdued for reation systems.As before, given a transition t representing a reation, the sets •t, ◦t and �torrespond to the reatants, inhibitors and produts of this reation. However,we do not require that these sets be non-empty in a set-net (at least at thispoint) as suh an assumption is not neessary.6 Reation systems and set-netsReation systems and set-nets �t together well in the sense that both do notount tokens and both hange states on the basis of the presene/absene ofresoures, represented by sets. Moreover, under the set-net semantis, ordinaryars (transitions) an be used to empty plaes. In this semantis, reset ars withtheir e�et depending on the urrent number of tokens in a plae are meaningless.Finally, following the assumption that all reations that an take plae do takeplae, the maximal set-semantis an be employed.Figure 3(a) depits a set-net orresponding to a ontext-independent ini-tialised reation system A1 = ({r, q, s}, {a, b}, {q, s}), where a = ({r, q},∅, {r})and b = ({q},∅, {r, q}). (For reasons of larity, we allow in this setion reationswithout any inhibitors.) As before, plaes represent entities. Transitions r↓, q↓and s↓ ensure that one the set-net is ative only tokens produed in the lastmaximal step are present in the urrent marking. For example, we have:

{q, s} [{b, q↓, s↓}〉max {r, q} [{a, b, r↓, q↓}〉max {r, q} ,and so σ = {b, q↓, s↓}{a, b, r↓, q↓} is a max-step sequene. Relating the behaviourof the set-net model and the original reation system is easy and we obtain aounterpart of Theorem 1 with ν(M) = M and ν(U) = U \ {s↓ | s ∈ S}.For a set-net without inhibitor and ativator ars as in Figure 3(a), onean investigate the ausality semantis of reation systems based on the un-foldings of the orresponding set-nets. Figure 3(b) shows how suh an our-rene net ould be derived for the set-net in Figure 3(a) and its step sequene
{b, q↓, s↓}{a, b, r↓, q↓} whih orresponds of the state sequene {b}{a, b} of theoriginal reation system. It is worth observing that the proess has branhingplaes whih is not possible, in the ase of proesses of en-systems or pt-nets.This, however, is fully onsistent with the exeution semantis of set-nets.
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Modelling Reation Systems with Petri Nets 13Modelling inhibition aspets of reations is rather straightforward using in-hibitor ars, as illustrated by the set-net in Figure 4(a), representing the ontext-independent initialised reation system A2 = ({r, q, s}, {a, b}, {q}), where:
a = ({r, q},∅, {r}) and b = ({q}, {s}, {r, q}) and c = ({q},∅, {s}) .Using inhibitor ars gives a ompat translation of reation systems whih isin a sense minimal w.r.t. the number of plaes, ars and transitions. Moreover,relating the behaviour of the resulting set-nets and the original reation systemsan be done as before. Formally, the plaes, transitions and initial marking ofthe translation are given by: Pl = S, Tr = A∪{s↓ | s ∈ S} and M0 = C0. Thereare no ativator ars, and the �ow and inhibitor ars are as follows:

Flw = {(s, s↓) | s ∈ S} ∪ {(s, a) | a ∈ A ∧ s ∈ Ra} ∪ {(a, s) | a ∈ A ∧ s ∈ Pa}
Inh = {(s, a) | a ∈ A ∧ s ∈ Ia} .The development of a ausal proess semantis of set-nets with inhibitor ars ismore di�ult. It is therefore interesting to onsider models of reation systemsusing set-nets without any inhibitor ars, as outlined next.Figure 4(b) shows a set-net without inhibitor ars modelling A2. The way inwhih it does it is now more involved. More preisely, eah exeution step of thereation system is simulated in two phases by the set-net operating aording tothe maximal parallelism exeution semantis. To keep these two phases learlyseparated, they are ontrolled by an additional yli subnet with two plaes. Thekey aspet of the onstrution is the use of a `omplement' scpl of the `regular'plae s whih at the time of heking whether s is empty by reation b ontainsa token i� s is empty.Figure 4(c) provides a generi piture of how, in the proposed onstrution,a set-net (without inhibitor ars) handles an entity r in its role as a reatant,inhibitor, and produt. Note that r is represented by two plaes, r and rcpl , andif rcpl is marked then the entity r in absent in the urrent state. Moreover, eahreation d is represented by two transitions, d and d′. The �rst orresponds tothe enabling stage of d, and the seond to the generation of its produts.The �rst phase of the simulation always starts in a onsistent marking Min whih there is a token in plae phI ; for every s ∈ S, s ∈ M ⇔ scpl /∈ M ,and otherwise all plaes are empty. In this phase transitions orresponding toreations beome ative on the basis of the presene and absene of their rea-tants and inhibitors. Simultaneously, transitions of the form r↓ and r↑ take arethat all the entities present in the urrent state ease to exist (their orrespond-ing plaes are emptied and the omplement plaes �lled). In the seond phase,eah enabled transition d′ �nishes the exeution of the orresponding reation,and marks the plaes orresponding to the entities produed by reation d andempties their omplements.Relating the behaviour of the set-net model and the original reation systemis more ompliated, using the following two mappings:

ν(M) = M\({phI }∪{scpl | s ∈ S}) ϕ(U) = U\({I}∪{s↓ | s ∈ S}∪{s↑ | s ∈ S}) .
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14 J.Kleijn, M.Koutny and G.Rozenberg
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b′Fig. 4. Two set-nets representing A2 (a, b). Generi translation without inhibitor ars:here r is a reatant for reation a, produt for b, and inhibitor for c (c). Note that notall plaes and ars are shown; in partiular, eah reation has at least one reatant andhene transitions like c an only �re in the �rst phase.One an then show that M0 is onsistent and satisfying ν(M0) = C0, and if Mis a onsistent marking and M [U〉maxM
′′[U ′〉maxM

′ then M ′ is also onsistent.Theorem 4. If M is a onsistent marking then:1. M [U〉M ′′[U ′〉M ′ implies ν(M)
ϕ(U)
=⇒ ν(M ′).2. ν(M)

R
=⇒ C implies M [U〉M ′′[U ′〉M ′ for some U , U ′, M ′ and M ′′ satisfy-ing: ϕ(U) = R and ν(M ′) = C7 Related work and onluding remarksWhen introduing a new lass of Petri nets, espeially a fundamental one, it isneessary to put it in the ontext of existing formalisations. To make omparisonfair, we will now drop the assumption about maximal parallelism in the exeutionof set-nets (whih is implied by the exeution mode of reation systems), andonsider semantis whih allows any set of enabled transitions to be �red.Set-nets are so simple when it omes to their de�nition, that it is reasonableto expet that there were in the past net lasses with similar features. Indeed, thefundamental lass of en-systems [19℄ extended with inhibitor as well as ativatorars [12, 17, 18℄ basially have the same stati struture as set-nets. However,their treatment of on�its between transitions aessing the same token, aswell bloking a transition whih ould add a token to a marked plae, are totally
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Modelling Reation Systems with Petri Nets 15
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b1cFig. 5. Boolean net (set-net with sequential semantis) (a), and 1-safe pt-net simu-lating its (sequential) behaviour (b).di�erent. The latter issue has been noted in the past, and the onstraint relaxed.For example, there are variations of Petri nets, suh as Boolean Petri nets, whereadding a token to an already marked plae does not add another token [4, 5, 11℄.Also, behaviour of this kind was mentioned in [1℄ in the ontext of net synthesis.Having said that, the semantis onsidered in prior works known to us wasbased on single transition �rings, rather than (maximal) steps as is the asefor set-nets. Therefore, the previous models were not onerned with multipleinputs of tokens to a single plae something whih is essential if one wants tofaithfully model reation systems. Furthermore, by aiming at a set-semantis,we had to introdue the non-on�it feature on the �ow ars onsuming thetokens. Therefore, as far as we are aware, the model of set-nets is an originalontribution to the �eld of Petri nets.As we already mentioned, set-nets with interleaving semantis are nothingbut Boolean nets used, for instane, in [5℄. In suh a ase, the lak of on�itwhen �ring two transitions sharing an input plae is an irrelevant issue, and theonly non-standard aspets is that �ring a transition with a marked output plaedoes not inrease the token ount in that plae. Suh a feature, moreover, aneasily be modelled using ordinary 1-safe pt-nets, aording to the following idea.First, one splits eah plae q into plaes q0 and q1, respetively representingthe lak and presene of a token in q. Then, eah transition t adding tokensto plae q is split into t0 and t1 to aount for two di�erent states the plae
q an be in represented by q0 and q1. Figure 5 illustrates this onstrution.It an be easily seen that both nets generate the same sequential reahabilitygraphs assuming that a0 and a1 are instanes of a, and b0 and b1 are instanesof a. However, one we start treating the net in Figure 5(a) as set-net, thesituation hanges radially. The reason is that we then have three �rings ofthe following form: ∅[{a}〉{q}, ∅[{b}〉{q} and ∅[{a, b}〉{q}. Now, the standardlasses of Petri nets enjoy the so-alled subset property whih means that if astep U is enabled at marking M , then also any of its subsets is enabled as well.Suppose, then, that there is a Petri net N satisfying this property and suh thatits step reahability graph is the same as that of the set-net in Figure 5(a),perhaps after renaming λ being applied to the transitions of the former. Thenwe have to have two transitions, t and u, in N suh that λ(t) = a, λ(u) = b and
M0[{t, u}〉M . Then, by the subset losure property, we also have M0[{t}〉M

′and M0[{u}〉M
′′. Hene, by the reahability graph isomorphism, we must have
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16 J.Kleijn, M.Koutny and G.Rozenberg
M = M ′ = M ′′ as well asM0 6= M . Hene we have:M0[{t, u}〉M and M0[{t}〉Mand M0[{u}〉M and M0 6= M . In the standard Petri nets, inluding variousextensions of pt-nets, M0[{t, u}〉M and M0[{t}〉M would imply that u does nothange the urrent marking. Similarly,M0[{t, u}〉M andM0[{u}〉M would implythat t does not hange the urrent marking. Yet the simultaneous �ring of t and
u does hange the marking as M0 6= M . This would produe a ontradition.What we just presented is intuition rather than proof, however, we expet thatdetailed arguments an be developed for any of the standard net lasses. Animportant onsequene, however, is that set-nets are semantially di�erent fromthe existing net lasses and therefore deserve to be reognised as an originalontribution.8 ConlusionsThe main initial motivation of our investigation was to see how Petri net basedonepts ould be deployed to analyse reation systems. In partiular, we wantedto disover methods for heking properties of reation systems by relating themto the properties of the orresponding Petri nets and ausal proesses.We proposed modelling methods resulting both in low-level and high-levelnets. In all four ases, we established a lose orrespondene between the mark-ings of Petri nets and states of the original reation systems. The same was trueof the evolutions of two orresponding models. In fat, we established that theyhave essentially isomorphi state spaes. All these net models, however, exhibitedde�ienies w.r.t. simpliity and/or elegane and/or tratability of the transla-tion. For example, both high-level net models are intrinsially unbounded, andthe seond of the low-level translations uses reset ars. We therefore proposeda new lass of Petri nets, alled set-nets, whih we feel provide a strong mathwith the reation systems and their semantis.In this way we think we derived new interesting notions and ontributions toPetri net theory based on our experienes with reation systems in a similar wayas the onepts of loalities and loally maximal onurreny were derived fromour previous investigation of a Petri net semantis of membrane systems [15℄.Aknowledgement We would like to thank the anonymous reviewers for theirsuggestions and omments. This researh was supported by the Pasal Chairaward from Leiden University and the Epsr Verdad projet.Referenes1. E.Badouel and P.Darondeau: Theory of regions. Leture Notes in Computer Siene1491 (1998) 529�5862. R.Brijder, A.Ehrenfeuht, M.G.Main and G.Rozenberg: Reation systems with du-ration. Leture Notes in Computer Siene 6610 (2011) 191�2023. R.Brijder, A.Ehrenfeuht, M.G.Main and G.Rozenberg: A Tour of Reation Sys-tems. Int. Journal of Foundations of Computer Siene (2011)
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