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t. We investigate how Petri nets 
ould be used to provide afaithful semanti
s of rea
tion systems, a formal framework for the inves-tigation of pro
esses 
arried by bio
hemi
al rea
tions. We propose anddis
uss possible approa
hes to this problem using some existing Petrinet 
lasses and 
on
urren
y 
on
epts, su
h as maximal parallelism. Afterthat we introdu
e a new 
lass of Petri nets, 
alled set-nets, whi
h providea 
omputational model mat
hing very 
losely that exhibited by rea
tionsystems. The key di�eren
e between standard Petri nets and set-netsis that the former support multiset-based token arithmeti
, whereas thelatter support set-based operations on tokens.Keywords: rea
tion system, Petri net, living 
ell, natural 
omputing,set-net, model translation1 Introdu
tionThe investigation of the 
omputational nature of bio
hemi
al rea
tions is a re-sear
h topi
 of Natural Computing. One of the goals of this resear
h is to 
on-tribute to a 
omputational understanding of the fun
tioning of the living 
ell.Rea
tion systems [2, 3, 7�10℄ are a formal framework for the investigation ofpro
esses 
arried out by bio
hemi
al rea
tions in living 
ells. The 
entral ideaof this framework is that the fun
tioning of a living 
ell is based on intera
tionsbetween (a large number of) individual rea
tions, and moreover these intera
-tions are regulated by two main me
hanisms: fa
ilitation/a

eleration and inhi-bition/retardation. These intera
tions determine the dynami
 pro
esses takingpla
e in living 
ells, and rea
tion systems form a formal framework for developingan abstra
t theory of these pro
esses.The model of rea
tion systems is based on prin
iples remarkably di�erentfrom those underlying other existing models of 
omputation. The aim of thispaper is to develop a faithful Petri net model of rea
tion systems. The mainmotivation behind this is to establish whether Petri net based 
on
epts (su
h as
ausal pro
esses) and methods (su
h as synthesis of nets from a spe
i�
ation oftheir behaviour) 
ould be used to provide analyti
al tools for rea
tion systems.It is not the intention of this paper to provide dire
t feedba
k to the area of
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2 J.Kleijn, M.Koutny and G.Rozenbergbiologi
al appli
ations, but to establish bridges between biology and Petri netsthrough the 
onne
tion provided by rea
tion systems.As a �rst step, we propose and dis
uss four di�erent approa
hes to the mod-eling of rea
tion systems by using existing Petri net 
lasses and 
on
urren
y
on
epts. However, as it turns out, in order to obtain a good mat
h between re-a
tion systems and Petri nets, it is ne
essary to re-evaluate one of the basi
 netprin
iples, namely, token 
ounting. This leads us to the introdu
tion of a new
lass of Petri nets, 
alled set-nets, whi
h provide a net based 
omputationalmodel mat
hing very 
losely the 
omputations exhibited by rea
tion systems.The main di�eren
e between set-nets and standard Petri nets is that the lattersupport multiset-based token arithmeti
, whereas the former support set-based(boolean) operations on tokens. Thus, the 
omputational `intuition' originatingfrom rea
tion systems provides the inspiration to introdu
e a new 
lass of netswith intriguing and yet to dis
over properties. Consequently, the main 
ontribu-tion of this paper is more than just providing a bridge between rea
tion systemsand the world of Petri nets. In the future, after fully understanding and master-ing the properties of the new set-nets, one would hope to provide also a newset of tools and analyses for biologi
al appli
ations.The paper is organised in the following way. In the next se
tion, we des
ribebasi
 notions of rea
tion systems. Se
tion 3 des
ribes two methods of modellingrea
tion system using low-level Petri nets, and the next one does the same usinghigh-level Petri nets. The new 
lass of set-nets is introdu
ed in Se
tion 5, andin Se
tion 6 we explain why this new 
lass of nets 
an faithfully and elegantlymodel rea
tion systems. Comparison with related work is presented in Se
tion 7.Proofs of the results presented in this paper 
an be found in [16℄.Notation We use the standard mathemati
al notions and notation. A multisetover a set X is a fun
tion µ : X → N = {0, 1, 2, . . .}, and its support is ||µ|| =
{x ∈ X | µ(x) > 0}. The empty multiset ∅ satis�es ||∅|| = ∅. A multiset may berepresented, somewhat informally, by listing its elements with repetitions, e.g.,
µ = {y, y, z} is su
h that µ(y) = 2, µ(z) = 1, and µ(x) = 0 otherwise. We treatsets as multisets without repetitions.2 Rea
tion systemsIn this se
tion, we explain some notions relevant to rea
tion systems. It is ourintention to introdu
e enough 
on
epts to allow one to follow the subsequentdis
ussion on the relationship between rea
tion systems and Petri nets. For a
omprehensive des
ription of rea
tion systems, in
luding motivations, appli
a-tions and examples, the reader is referred to [7�9℄.De�nition 1 (rea
tion system [7�9℄). A rea
tion system is a pair: A =
(S,A), where S is a �nite ba
kground set 
omprising the entities of A, and Ais the set of rea
tions of A. Ea
h rea
tion is a triplet of the form: a = (R, I, P ),
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Modelling Rea
tion Systems with Petri Nets 3where the three 
omponents are �nite non-empty sets: R ⊆ S is the set of rea
-tants, I ⊆ S is the set of inhibitors, and P ⊆ S is the set of produ
ts.The 
omponents of a rea
tion a = (R, I, P ) are denoted by Ra, Ia and Pa,respe
tively. De�nition 1 des
ribes the stati
 stru
ture of a rea
tion system. To
apture the dynami
 behaviour of rea
tion systems, we need additional notions.De�nition 2 (state of rea
tion system). A state of a rea
tion system isany set C of its entities. Then an initialised rea
tion system is a triplet A =
(S,A,C0), where (S,A) is a rea
tion system and C0 ⊆ S is the initial state.In this and in the next se
tion, we will 
onsider as a running example theinitialised rea
tion system A0 = ({w, x, y, z}, {a, b, c}, {x, z}), with ba
kgroundset {w, x, y, z}, initial state {x, z}, and three rea
tions:

a = ({x}, {y}, {y, z}) b = ({y}, {x}, {x, z}) c = ({z}, {w}, {z}) .A rea
tion system with ba
kground set S has exa
tly 2|S| potential states.To des
ribe possible transitions between these states, we need to say what ismeant by an o

urren
e of a rea
tion or a set of rea
tions.De�nition 3 (state 
hange). A rea
tion a is enabled at a state C ⊆ S if
Ra ⊆ C and Ia∩C = ∅; the result of a rea
tion a at C is de�ned by resa(C) = Paif a is enabled at C and resa(C) = ∅ otherwise. The result of A on C, denotedby resA(C) 
onsists of the produ
ts of all rea
tions from A enabled at C, that is

resA(C) =
⋃

a∈A

resa(C) .This state 
hange is denoted by C −→ resA(C).Note that the state 
hanges 
aptured by De�nition 3 are deterministi
. More-over, all entities in C \
⋃

a∈A resa(C) disappear. As a result, and unlike in otherformal models of dynami
 systems, there is no persisten
y in a rea
tion systemin the sense that an entity present in a state disappears unless it is sustained byat least one rea
tion.For the example rea
tion system A0, we have:
{x, z} −→ {y, z} and {y, z} −→ {x, z} and {w, x, y} −→ ∅ .One may observe that there is no 
on�i
t between rea
tions in the `
lassi
'sense that the o

urren
e of one rea
tion might imply that another rea
tionwhi
h is also enabled at the 
urrent state, 
annot o

ur. This, again, is a featurenot found in most other formal models of dynami
 systems. In parti
ular, it isworthwhile to point expli
itly to the `non-
ounting' features of rea
tion systems:entities are either present or not, and produ
ed or not, and rea
tions 
an or
annot o

ur based only on the presen
e or absen
e of 
ertain entities. Thereis no representation of multiple instan
es of entities or multiple o

urren
es of
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4 J.Kleijn, M.Koutny and G.Rozenbergrea
tions. Thus rea
tion systems are a qualitative rather than a quantitativemodel.We also note that there is an alternative notion of 
on�i
t-freeness for a setof rea
tions, 
alled 
onsisten
y. A set of rea
tions R is 
onsistent if for any tworea
tions a, b ∈ R, Ra ∩ Ib = Rb ∩ Ia = ∅. Clearly, if a set of rea
tions is not
onsistent, then the rea
tions it 
omprises 
annot be exe
uted simultaneously.Although the goal of this paper is a faithful `translation' of rea
tion sys-tems into Petri nets, we 
on
lude this se
tion with a number of 
omments aboutresear
h on rea
tion systems. This resear
h happens in the framework of re-a
tion systems where a rea
tion system 
onstitutes the basi
 te
hni
al notion.Depending on the goal of a spe
i�
 resear
h theme, many other 
onstru
ts areintrodu
ed and studied (see, e.g., [2, 9, 10℄) � they form various extensions ofthe basi
 notion of rea
tion system. For example, there are many biologi
al situ-ations where one needs to assign quantitative parameters (time, 
on
entrations,. . . ) to states of a bio
hemi
al system. Although rea
tion systems are a qualita-tive model (they 
annot `
ount'), they 
an be extended so that su
h quantitativeparameters 
an be a

ommodated. This is done through the use of measurementfun
tions whi
h lead to rea
tion systems with measurements (see [2, 3, 9, 10℄),where various numeri
al parameters 
an be assigned to (
al
ulated for) 
onse
-utive states of dynami
 pro
esses.Finally, we want to point out that (be
ause living 
ells are open systems)rea
tion systems have an environment and they operate/evolve within a 
hanging
ontext (with entities 
oming from the environment in�uen
ing the transitionsof dynami
 pro
esses). In this paper, however, we will 
onsider only 
ontext-independent pro
esses de�ned by a rea
tion system with an initial state, whereea
h next state is obtained solely as the result of rea
tions taking pla
e in theprevious state (thus assuming that the environment does not in�uen
e statetransitions).3 Rea
tion systems and low-level Petri netsIn this se
tion, we dis
uss two possible ways of modelling 
ontext-independentpro
esses of rea
tion systems using low-level Petri nets (pt-nets extended withwith inhibitor and a
tivator ar
s).In addition to the standard notions of rea
tion systems, in order to betterexplain how they relate to Petri nets, throughout the rest of this paper we willsay that a set R ⊆ A is enabled at C if ea
h rea
tion of R is enabled at C. If
R ⊆ A is enabled at C, then

C
R
=⇒ resR(C) =

⋃

a∈R

Pa .denotes the e�e
t of R at C.De�nition 4 (pt-nets with inhibitor and a
tivator ar
s [14℄). A pt-netwith inhibitor and a
tivator ar
s (or ptia-net) N = (Pl ,Tr ,Flw , Inh,Act ,M0)
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Modelling Rea
tion Systems with Petri Nets 5is a tuple su
h that Pl and Tr are �nite, disjoint sets of respe
tively pla
es andtransitions, and: Flw ⊆ (Pl × Tr) ∪ (Tr × Pl), Inh ⊆ Pl × Tr , Act ⊆ Pl × Trare respe
tively the sets of �ow, inhibitor and a
tivator ar
s. Moreover, M0 isa multiset of pla
es, the initial marking of N ; in general, any multiset of pla
esis 
alled a marking.In diagrams, pla
es are drawn as 
ir
les and transitions as re
tangles. Mark-ings are the possible global 
on�gurations (states) of N . We say that a pla
e qis marked under a marking M if M(q) > 0, where M(q) denotes the numberof o

urren
es of q in M . In diagrams, markings are indi
ated by putting M(q)tokens inside the 
ir
le representing q. If (x, y) ∈ Flw , then (x, y) is an ar
 lead-ing from node x to node y. A double headed arrow between q and t indi
atesthat (q, t), (t, q) ∈ Flw . An inhibitor ar
 ends with a small open 
ir
le, while ana
tivator ar
 ends with a small bla
k 
ir
le.Given a node x, we denote by •x the set of input nodes of x, i.e., those yfor whi
h (y, x) ∈ Flw , and by x• the set of output nodes of x, i.e., those yfor whi
h (x, y) ∈ Flw . For a transition t we use: ◦t = {q | (q, t) ∈ Inh} and
�t = {q | (q, t) ∈ Act} to denote the inhibitor and a
tivator pla
es of t. All fournotations extend in the usual way to sets of nodes. As in the 
ase of rea
tionsystems, we now formalise the notion of marking (state) 
hange.De�nition 5 (marking 
hange). A multiset of transitions U (also 
alled astep) is enabled at a marking M if ◦U ∩ ||M || = ∅, �U ⊆ ||M || and, for everypla
e q, M(q) ≥

∑

t∈q• U(t) (re
all that ||M || is the set of q whi
h o

ur in M ,and U(t) is the number of o

urren
es of t in U).In su
h a 
ase, U 
an be �red with its e�e
t on M being given by the result-ing marking M ′ su
h that, for every pla
e q: M ′(q) = M(q) −
∑

t∈q• U(t) +
∑

t∈•q U(t). We denote this by M [U〉M ′. Moreover, if U is a maximal (w.r.t.multiset in
lusion) step of transitions enabled at M , then we may denote thismarking 
hange also by M [U〉maxM
′.Note that whenever a step U is enabled at marking M it must be the 
asethat all a
tivator pla
es of transitions in ||U || are marked (are in ||M ||) and noneof the inhibitor pla
es of transitions in ||U || are marked.We now make some general observations and assumptions about the rela-tionship between rea
tion systems and nets.� Entities 
an be represented by pla
es, and rea
tions by net transitions.� Sin
e there are no 
on�i
ts between rea
tions, a
tivator ar
s 
an be usedto test for the presen
e of rea
tants (rather than 
laiming resour
es for theex
lusive use as with ordinary ar
s and input pla
es).� All rea
tions that 
an o

ur in a rea
tion system do o

ur, and the only en-tities left after a state 
hange are the newly generated produ
ts. In the Petrinet framework, these features 
orrespond to maximal parallelism des
ribedat the end of De�nition 5, and pla
e resetting [6℄ des
ribed later on.
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6 J.Kleijn, M.Koutny and G.Rozenberg
(a)

NI(A0)

x

y

z

w

qa

qb

qc

rx

ry

rz

rw

a

b

c

(b)

NII (A0)
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⋆

⋆

⋆

⋆Fig. 1. Method I and II representations of the rea
tion system A0.Method I. The �rst attempt is illustrated in Figure 1(a) for the example rea
-tion system A0. Method I produ
es a ptia-net NI(A0) su
h that:� Transitions a, b and c use a
tivator ar
s and inhibitor ar
s to test respe
tivelyfor the presen
e and absen
e of tokens in the pla
es w, x, y and z.� Pla
es qa, qb and qc ensure that the three transitions modelling rea
tions,i.e., a, b and c, �re at most on
e in any step. This 
orresponds to the `non-
ounting' of o

urren
e instan
es of the same rea
tion in a rea
tion system.� Transitions rw, rx, ry and rz (in a maximal step) empty the four pla
esmodelling entities w, x, y and z. This does not have any in�uen
e on the�ring of the transitions a, b and c.� In a single maximal step, M [U〉maxM
′, the net �res a maximal multiset oftransitions U enabled at marking M and then produ
es a new marking M ′.For the net in Figure 1(a), su
h a �ring rule gives:

{x, z, qa, qb, qc} [{rx, rz , a, c}〉max {y, z, z, qa, qb, qc}
{x, x, x, z, qa, qb, qc} [{rx, rx, rx, rz , a, c}〉max {y, z, z, qa, qb, qc} .Formally, given an initialised rea
tion system A = (S,A), Method I yieldsa ptia-net NI(A) su
h that the pla
es, transitions and the initial marking are,respe
tively: Pl = {qa | a ∈ A} ∪ S, Tr = {rs | s ∈ S} ∪ A and M0 = {qa | a ∈

A}+C0. Moreover, the sets of �ow, inhibitor and a
tivator ar
s are, respe
tively:
Flw = {(s, rs) | s ∈ S} ∪ {(a, qa), (qa, a) | a ∈ A} ∪ {(a, s) | a ∈ A ∧ s ∈ Pa}
Inh = {(s, a) | a ∈ A ∧ s ∈ Ia} Act = {(s, a) | a ∈ A ∧ s ∈ Ra} .Note that this kind of modelling in 
ombination with the `resetting' of pla
es

w, x, y and z in ea
h �red step, implemented by the auxiliary transitions rw,
rx, ry and rz , means that the resulting Petri net is bounded (in every rea
hablemarking the multipli
ity of ea
h pla
e is never more than the number of rea
tionsof A if A has at least one rea
tion).In order to relate the behaviour of the original rea
tion system A and itsptia-net representationNI(A) just introdu
ed, we need two mappings. The �rst
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Modelling Rea
tion Systems with Petri Nets 7one takes a marking M of NI(A) and returns a state of A, and the other takesa step U of transitions of NI(A) and returns a set of rea
tions of A, as follows
νI(M) = S ∩ ||M || and ϕI(U) = A ∩ ||U ||. It is then possible to show a numberof results, where a marking M of the ptia-net NI(A) is 
alled well-formed if
M(qa) = 1, for every a ∈ A.First, M0 is a well-formed marking satisfying ν(M0) = C0, and if M is awell-formed marking and M [U〉M ′, then M ′ is also well-formed. Se
ond, if M isa well-formed marking, then for every rea
tion a ∈ A, a is enabled at M i� {a}is enabled at state νI(M). We then 
an show that the translation is sound.Theorem 1. If M is a well-formed marking then:1. M [U〉M ′ implies νI(M)

ϕI(U)
=⇒ νI(M

′). Moreover, if M [U〉maxM
′, then ϕI(U)
omprises all rea
tions enabled at νI(M).2. νI(M)

R
=⇒ C implies M [U〉M ′ for some U and M ′ satisfying: ϕI(U) = Rand νI(M

′) = C. Moreover, if R 
omprises all rea
tions enabled at νI(M),then M [U〉maxM
′.Thus, ea
h maximal 
omputational step in the Petri net 
orresponds to aunique exe
ution of the rea
tion system, and ea
h exe
ution in the rea
tionsystem 
orresponds to at least one maximal step in the Petri net. For example,the two exe
utions given above for the Petri net in Figure 1(a) both 
orrespondto {x, z}

{a,c}
=⇒ {y, z} in the rea
tion system A0.Note that in Figure 1(a) one 
annot simply delete the auxiliary pla
es of theform qr as then ea
h of the transitions representing rea
tions 
ould be unbound-edly enabled. To address this problem one 
ould 
hange the a
tivator ar
s frompla
es representing entities into �ow ar
s. Then, however, it would be ne
essaryto add weights |R| to the ar
s 
orresponding to the produ
tion of new entitiesin order to avoid 
on�i
ts on the pla
es representing the rea
tants.Method II. The �rst attempt to model 
ontext-independent rea
tion systemsprovides a sound translation, but it is not simple as it employs features whi
h
an make formal analysis and veri�
ation far from easy. One way of improvingMethod I 
ould be to repla
e multisets of �red transitions by sets of �red tran-sitions leading to a maximal set-semanti
s. This 
an be a
hieved by using resetar
s [6℄, 
onne
ting pla
es to transitions and indi
ated by ⋆'s in the diagrams,whi
h always empty their sour
e pla
e. Formally, reset ar
s Reset ⊆ Pl ×Tr donot have any in�uen
e on the enabledness of a step U , but the 
al
ulation of themarking of a pla
e q after the �ring of U (now a set) at marking M 
hanges to:

M ′(q) =

{

M(q)− |q• ∩ U |+ |•q ∩ U | if ({q} × U) ∩Reset = ∅

|•q ∩ U | otherwise .The resulting ptia-net with reset ar
sNII (A0) is shown in Figure 1(b). Tran-sition r is always enabled and, when �red, removes all the tokens from thepla
es modelling the entities. For the net in Figure 1(b), the new �ring rule gives
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8 J.Kleijn, M.Koutny and G.Rozenberg
{x, z} [{r, a, c}〉max {y, z, z} and {x, x, x, z} [{r, a, c}〉max {y, z, z}. One 
an thenshow that a 
ounterpart of Theorem 1 holds also in this 
ase, with νII de�ned as
νI before and ϕII (U) = U \{r}. As transition r is always enabled, we now have aone-to-one 
orresponden
e between groups of exe
uted rea
tions and transitions,at the pri
e of introdu
ing non-standard reset ar
s.To remove the need to have reset ar
s or, equivalently, to obtain a one-to-one 
orresponden
e between states and markings, one 
ould 
hange the rules forinserting tokens into pla
es, by basi
ally applying an OR-treatment for arrivingtokens. This would, of 
ourse, be a radi
al departure from the standard Petrinet approa
h, but one worth investigating. The resulting model of set-nets willbe des
ribed in Se
tion 5.4 Rea
tion systems and high-level Petri netsThe two translations des
ribed in the previous se
tion use low-level pt-nets ex-tended with reset ar
s in addition to inhibitor and a
tivator ar
s as well asmaximal parallelism. Reset ar
s are a non-standard me
hanism and, in parti
u-lar, they do not as yet support a 
ausal pro
ess semanti
s. Moreover, the e�e
t ofa reset ar
 depends on the 
urrent marking rather than on a �xed input/outputrelation with its neighbourhood. To 
ope with this problem, we will now outlinetwo translations from 
ontext-independent rea
tion systems to high-level Petrinets. We assume familiarity with the basi
 
on
epts of high-level nets [13℄, inparti
ular, ar
 ins
riptions, a
tivator and inhibitor ar
s, and simple transitionguards.Method III. The �rst translation is illustrated by the high-level net NIII (A0)shown in Figure 2(a). In this 
ase, tokens are positive integers a
ting as thoughthey were time-stamps. Intuitively, a token n is a
tive only in the n-th exe
ution
y
le of the rea
tion system. Be
ause the same token 
annot be a

essed morethan on
e in a step sequen
e evolution, reset ar
s are not needed anymore. Sin
ethe X transition �res in ea
h maximal step, the 
y
le number n held in the`
lo
k' pla
e clk is known to all transitions representing rea
tions. In the pla
esrepresenting entities, they 
he
k only for tokens n, ignoring all the other tokensprodu
ed in previous 
y
les, and then produ
e tokens with value n+1 to be usedin the next 
y
le. The initial marking M0 is formed by inserting a single token 1into pla
e clk and all the pla
es s su
h that s ∈ C0. Note that the resulting netmay be unbounded as the tokens in pla
es representing entities are not `garbage
olle
ted'. For the high-level net NIII (A0) in Figure 2(b), we have:

{x 7→ {1}, y 7→ ∅, z 7→ {1}, w 7→ ∅, clk 7→ {1}}
[{an7→1, cn7→1,Xn7→1}〉max

{x 7→ {1}, y 7→ {2}, z 7→ {1, 2, 2}, w 7→ ∅, clk 7→ {2}}
[{bn7→2, cn7→2,Xn7→2}〉max

{x 7→ {1, 3}, y 7→ {2}, z 7→ {1, 2, 2, 3, 3}, w 7→ ∅, clk 7→ {3}} .

43

Matsuno
長方形



Modelling Rea
tion Systems with Petri Nets 9

(a) NIII (A0)

1
x

y

1
z

w

1clk X

a

b

c

n

n + 1

(b) NIV (A0)

1
x

y

1
z

w

1clka

1clkb

1clkc

n

n + 1

n

n + 1

ay

ax 〈m ≥ n〉

a

b

c

n

n + 1

n

n + 1

m

n

n + 1

Fig. 2. Method III and IV representations of rea
tion system A0. Note that n and
m are net variables, and that to avoid 
lutter not all ar
s have been annotated: allthe �ow (thi
ker) ar
s to pla
es x, y, z are in fa
t annotated with n + 1, and all theunannotated inhibitor and a
tivator ar
s are annotated with n. In (b), the auxiliarypla
es for transitions b and c are omitted. Note that 〈m ≥ n〉 is the guard of transition
ax, and all other transitions have the trivial true guard.As in the 
ase of Method I, not every marking M of NIII (A) 
an represent avalid state of the rea
tion system A. We say that M is 
lo
k-
onsistent if thereis a single token k in pla
e clk , and all the tokens l in other pla
es satisfy l ≤ k.Relating the resulting net and the original rea
tion system 
an be done usingthe following two mappings: νIII (M) = {s ∈ S | ||M(clk)|| ∩ ||M(s)|| 6= ∅}and ϕIII (U) = U \ {X}. One 
an show that M0 is a 
lo
k-
onsistent markingsatisfying ν(M0) = C0, and if M is a 
lo
k-
onsistent marking and M [U〉maxM

′then M ′ is also 
lo
k-
onsistent.Theorem 2. If M is a 
lo
k-
onsistent marking then:1. M [U〉maxM
′ implies νIII (M)

ϕIII (U)
=⇒ νIII (M

′).2. νIII (M)
R
=⇒ C implies M [U〉maxM

′ for some U and M ′ satisfying: ϕIII (U) =
R and νIII (M

′) = C.Method IV. In the se
ond high-level net 
onstru
tion the aim is to eliminatethe need for maximal parallelism using information present in the time-stampedtokens. We repla
e the global clk pla
e by individual clka pla
es, whi
h are in
re-mented by transitions a representing rea
tions. Moreover, whenever a is blo
kedfrom �ring in a 
ertain 
y
le one of the auxiliary transitions 
orresponding tothe possible `reasons' for the blo
king a is �red to in
rement the token in clka.This results in an in
rement of the 
y
le number for this transition (in 
ase
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10 J.Kleijn, M.Koutny and G.Rozenbergthere is more than one reason for blo
king, an auxiliary transition is 
hosennon-deterministi
ally).There are two possible reasons why a might be blo
ked in 
y
le n. One is thepresen
e of a token n in the pla
e representing an inhibitor of a, and to 
he
k forthis we use a transition with an a
tivator ar
, e.g., ay in Figure 2(b). The other ismore 
ompli
ated as it is a la
k of token n in the pla
e representing a rea
tant sfor a, and to 
he
k for this we use a transition with an inhibitor ar
. However, wealso need to ensure that all transitions whi
h feed tokens to s have already hada 
han
e to do so, and we 
he
k this using extra a
tivator ar
s together with atransition guard whi
h evaluates to true if all su
h feeding transitions have theirlo
al 
y
le su�
iently high, e.g., transition ax in Figure 2(b). The overall resultfor the rea
tion system A0 is a high-level net NIV (A0) shown in Figure 2(b).The resulting high-level net is exe
uted a

ording to the standard sequential(interleaving) �ring rule and its behaviour 
losely simulates that of the net ob-tained by Method III, and so also the behaviour of the original rea
tion system.We skip the full des
ription of the relationship between these two nets. Intu-itively, a marking M of the se
ond translation 
orresponds dire
tly to a markingof the �rst one if all the pla
es of the form clka 
ontain the same single token
k, and all the tokens l in other pla
es satisfy l ≤ k. (Note that from ea
h rea
h-able marking of the se
ond translation one 
an exe
ute a sequen
e of transitionsleading to a marking with this property.)5 Set-netsIn our attempts to obtain a dire
t and elegant translation from rea
tion systemsinto Petri nets, a major and as far as we 
an tell insurmountable problem wasthe fa
t that several transitions may insert tokens into a pla
e representingthe presen
e of a single entity. In this se
tion, we introdu
e set-nets, a modelthat resulted from 
loser investigations into the possibilities of an OR-treatmentof arriving tokens representing the produ
tion of entities by rea
tions. Notethat OR-treatment of 
ausality has been 
onsidered in [20℄, but the underlyingprin
iple there was 
ompletely di�erent from what we are going to propose.The main idea is that in a set-net there is no 
on
ept of 
ounting. Pla
esare marked or not marked and ar
s have no weights. Set-nets resemble elemen-tary net systems (en-systems) [19℄ whi
h is a fundamental model to study basi
features of 
on
urrent systems, in
luding 
on�i
t, 
ausality and independen
e.However, their exe
ution semanti
s is di�erent. In set-nets, a marked pla
e in-di
ates the presen
e of a resour
e without any quanti�
ation. Hen
e any numberof transitions that take input from this pla
e 
an be �red at the same time.Moreover, �ring a transition empties all its input pla
es. Thus there are no 
on-�i
ts over tokens in set-nets, unlike in en-systems or pt-nets. Similarly, pla
esdo not 
ount the tokens, and the �ring of a transition simply marks ea
h of itsoutput pla
es (whether or not they were already marked). We will build up thenew model in two stages, introdu
ing �rst set-nets with only �ow ar
s.
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Modelling Rea
tion Systems with Petri Nets 11
(a)

r

q

s

r↓

q↓

s↓

a

b

(b)

q

s

r

q

r

qb

q↓

s↓

r↓

a

b

q↓Fig. 3. A set-net representing rea
tion system A1 (a); and an o

urren
e net 
on-stru
ted for its step sequen
e {b, q↓, s↓}{a, b, r↓, q↓} (b) .De�nition 6 (basi
 set-net). A tuple SN = (Pl ,Tr ,Flw ,M0) is a (basi
)set-net if the �rst three 
omponents are as in De�nition 4, and M0 ⊆ Pl is theinitial marking (in general, any set of pla
es is a marking).The graphi
al representation of set-nets is the same as in the 
ase of Petrinets. We now formalise the �ring rule for set-nets.De�nition 7 (marking 
hange). A set of transitions U (also 
alled a step)is enabled at a marking M if •U ⊆ M . In su
h a 
ase, U 
an be �red with itse�e
t on M being given by the resulting marking M ′ = (M \•U)∪U•. We denotethis by M [U〉M ′. Moreover, if U is the set of all transitions enabled at M (i.e.,all transitions t satisfying •t ⊆ M), then we may write M [U〉maxM
′.Hen
e a step U enabled at a marking M may 
ontain two distin
t transitions

t and u for whi
h •t ∩ •u 6= ∅ or t• ∩ u• 6= ∅ and yet the 
ommon pla
es willnever 
ontain more than one token. Sin
e tokens are manipulated using set-basedarithmeti
 we have 
hosen the name `set-nets' for the new 
lass of Petri nets.We have introdu
ed �rst basi
 set-nets (without inhibitor and a
tivatorar
s), as it seems that one 
an attempt to develop for them a 
ounterpart of`stru
ture theory' of pt-nets. To illustrate our point, let us 
onsider a basi
 set-net SN = (Pl ,Tr ,Flw ,M0) with at least one transition. A non-empty set ofpla
es Sphn ⊆ Pl is 
alled a siphon if •Sphn ⊆ Sphn•. Similarly, a non-emptyset of pla
es Trap ⊆ Pl is 
alled a trap if Trap• ⊆ •Trap. It 
an be easily seenthat an empty siphon 
annot a
quire a token by �ring any transition, and amarked trap 
annot be
ome empty by �ring any transition. Both type of setsof pla
es 
an be used to provide a su�
ient 
ondition for deadlo
k-freeness inpt-nets whi
h was a major motivation behind the development of their stru
turetheory. As it turns out, the same 
an be done in 
ase of set-nets.Theorem 3. If in the initial marking, every siphon 
ontains a marked trap,then the set-net is deadlo
k free.We next introdu
e set-nets with inhibitor and a
tivator ar
s.
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12 J.Kleijn, M.Koutny and G.RozenbergDe�nition 8 (set-net). A tuple SNIA = (Pl ,Tr ,Flw , Inh,Act ,M0) is a set-net if the �rst �ve 
omponents are as in De�nition 4, and the last one as inDe�nition 6.The de�nitions and notations 
on
erning the marking 
hange in SNIA are thesame as for SN in De�nition 7 with one ex
eption, namely a set of transitions Uis enabled at a marking M if •U ∪�U ⊆ M and ◦U ∩M = ∅. It is interesting toobserve that an enabled step U is always 
onsistent in the sense that (•U ∪�U)∩
◦U = ∅. Su
h a property has a natural and dire
t (as we will see) 
onne
tionwith the notion of 
onsisten
y introdu
ed for rea
tion systems.As before, given a transition t representing a rea
tion, the sets •t, ◦t and �t
orrespond to the rea
tants, inhibitors and produ
ts of this rea
tion. However,we do not require that these sets be non-empty in a set-net (at least at thispoint) as su
h an assumption is not ne
essary.6 Rea
tion systems and set-netsRea
tion systems and set-nets �t together well in the sense that both do not
ount tokens and both 
hange states on the basis of the presen
e/absen
e ofresour
es, represented by sets. Moreover, under the set-net semanti
s, ordinaryar
s (transitions) 
an be used to empty pla
es. In this semanti
s, reset ar
s withtheir e�e
t depending on the 
urrent number of tokens in a pla
e are meaningless.Finally, following the assumption that all rea
tions that 
an take pla
e do takepla
e, the maximal set-semanti
s 
an be employed.Figure 3(a) depi
ts a set-net 
orresponding to a 
ontext-independent ini-tialised rea
tion system A1 = ({r, q, s}, {a, b}, {q, s}), where a = ({r, q},∅, {r})and b = ({q},∅, {r, q}). (For reasons of 
larity, we allow in this se
tion rea
tionswithout any inhibitors.) As before, pla
es represent entities. Transitions r↓, q↓and s↓ ensure that on
e the set-net is a
tive only tokens produ
ed in the lastmaximal step are present in the 
urrent marking. For example, we have:

{q, s} [{b, q↓, s↓}〉max {r, q} [{a, b, r↓, q↓}〉max {r, q} ,and so σ = {b, q↓, s↓}{a, b, r↓, q↓} is a max-step sequen
e. Relating the behaviourof the set-net model and the original rea
tion system is easy and we obtain a
ounterpart of Theorem 1 with ν(M) = M and ν(U) = U \ {s↓ | s ∈ S}.For a set-net without inhibitor and a
tivator ar
s as in Figure 3(a), one
an investigate the 
ausality semanti
s of rea
tion systems based on the un-foldings of the 
orresponding set-nets. Figure 3(b) shows how su
h an o

ur-ren
e net 
ould be derived for the set-net in Figure 3(a) and its step sequen
e
{b, q↓, s↓}{a, b, r↓, q↓} whi
h 
orresponds of the state sequen
e {b}{a, b} of theoriginal rea
tion system. It is worth observing that the pro
ess has bran
hingpla
es whi
h is not possible, in the 
ase of pro
esses of en-systems or pt-nets.This, however, is fully 
onsistent with the exe
ution semanti
s of set-nets.
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Modelling Rea
tion Systems with Petri Nets 13Modelling inhibition aspe
ts of rea
tions is rather straightforward using in-hibitor ar
s, as illustrated by the set-net in Figure 4(a), representing the 
ontext-independent initialised rea
tion system A2 = ({r, q, s}, {a, b}, {q}), where:
a = ({r, q},∅, {r}) and b = ({q}, {s}, {r, q}) and c = ({q},∅, {s}) .Using inhibitor ar
s gives a 
ompa
t translation of rea
tion systems whi
h isin a sense minimal w.r.t. the number of pla
es, ar
s and transitions. Moreover,relating the behaviour of the resulting set-nets and the original rea
tion systems
an be done as before. Formally, the pla
es, transitions and initial marking ofthe translation are given by: Pl = S, Tr = A∪{s↓ | s ∈ S} and M0 = C0. Thereare no a
tivator ar
s, and the �ow and inhibitor ar
s are as follows:

Flw = {(s, s↓) | s ∈ S} ∪ {(s, a) | a ∈ A ∧ s ∈ Ra} ∪ {(a, s) | a ∈ A ∧ s ∈ Pa}
Inh = {(s, a) | a ∈ A ∧ s ∈ Ia} .The development of a 
ausal pro
ess semanti
s of set-nets with inhibitor ar
s ismore di�
ult. It is therefore interesting to 
onsider models of rea
tion systemsusing set-nets without any inhibitor ar
s, as outlined next.Figure 4(b) shows a set-net without inhibitor ar
s modelling A2. The way inwhi
h it does it is now more involved. More pre
isely, ea
h exe
ution step of therea
tion system is simulated in two phases by the set-net operating a

ording tothe maximal parallelism exe
ution semanti
s. To keep these two phases 
learlyseparated, they are 
ontrolled by an additional 
y
li
 subnet with two pla
es. Thekey aspe
t of the 
onstru
tion is the use of a `
omplement' scpl of the `regular'pla
e s whi
h at the time of 
he
king whether s is empty by rea
tion b 
ontainsa token i� s is empty.Figure 4(c) provides a generi
 pi
ture of how, in the proposed 
onstru
tion,a set-net (without inhibitor ar
s) handles an entity r in its role as a rea
tant,inhibitor, and produ
t. Note that r is represented by two pla
es, r and rcpl , andif rcpl is marked then the entity r in absent in the 
urrent state. Moreover, ea
hrea
tion d is represented by two transitions, d and d′. The �rst 
orresponds tothe enabling stage of d, and the se
ond to the generation of its produ
ts.The �rst phase of the simulation always starts in a 
onsistent marking Min whi
h there is a token in pla
e phI ; for every s ∈ S, s ∈ M ⇔ scpl /∈ M ,and otherwise all pla
es are empty. In this phase transitions 
orresponding torea
tions be
ome a
tive on the basis of the presen
e and absen
e of their rea
-tants and inhibitors. Simultaneously, transitions of the form r↓ and r↑ take 
arethat all the entities present in the 
urrent state 
ease to exist (their 
orrespond-ing pla
es are emptied and the 
omplement pla
es �lled). In the se
ond phase,ea
h enabled transition d′ �nishes the exe
ution of the 
orresponding rea
tion,and marks the pla
es 
orresponding to the entities produ
ed by rea
tion d andempties their 
omplements.Relating the behaviour of the set-net model and the original rea
tion systemis more 
ompli
ated, using the following two mappings:

ν(M) = M\({phI }∪{scpl | s ∈ S}) ϕ(U) = U\({I}∪{s↓ | s ∈ S}∪{s↑ | s ∈ S}) .
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14 J.Kleijn, M.Koutny and G.Rozenberg
(a)

r

q

s

r↓

q↓

s↓

a

b

c

(b)

phIphII

II

I

r

q

s

scpl

r↓

q↓

s↓

s↑

a

b

c

a′

b′

c′

(c)

r

rcpl

r↓

r↑

a

c

b

a′

c′

b′Fig. 4. Two set-nets representing A2 (a, b). Generi
 translation without inhibitor ar
s:here r is a rea
tant for rea
tion a, produ
t for b, and inhibitor for c (c). Note that notall pla
es and ar
s are shown; in parti
ular, ea
h rea
tion has at least one rea
tant andhen
e transitions like c 
an only �re in the �rst phase.One 
an then show that M0 is 
onsistent and satisfying ν(M0) = C0, and if Mis a 
onsistent marking and M [U〉maxM
′′[U ′〉maxM

′ then M ′ is also 
onsistent.Theorem 4. If M is a 
onsistent marking then:1. M [U〉M ′′[U ′〉M ′ implies ν(M)
ϕ(U)
=⇒ ν(M ′).2. ν(M)

R
=⇒ C implies M [U〉M ′′[U ′〉M ′ for some U , U ′, M ′ and M ′′ satisfy-ing: ϕ(U) = R and ν(M ′) = C7 Related work and 
on
luding remarksWhen introdu
ing a new 
lass of Petri nets, espe
ially a fundamental one, it isne
essary to put it in the 
ontext of existing formalisations. To make 
omparisonfair, we will now drop the assumption about maximal parallelism in the exe
utionof set-nets (whi
h is implied by the exe
ution mode of rea
tion systems), and
onsider semanti
s whi
h allows any set of enabled transitions to be �red.Set-nets are so simple when it 
omes to their de�nition, that it is reasonableto expe
t that there were in the past net 
lasses with similar features. Indeed, thefundamental 
lass of en-systems [19℄ extended with inhibitor as well as a
tivatorar
s [12, 17, 18℄ basi
ally have the same stati
 stru
ture as set-nets. However,their treatment of 
on�i
ts between transitions a

essing the same token, aswell blo
king a transition whi
h 
ould add a token to a marked pla
e, are totally
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(a)

q
a b

c (b)

q0 q1

a0

a1

b0

b1cFig. 5. Boolean net (set-net with sequential semanti
s) (a), and 1-safe pt-net simu-lating its (sequential) behaviour (b).di�erent. The latter issue has been noted in the past, and the 
onstraint relaxed.For example, there are variations of Petri nets, su
h as Boolean Petri nets, whereadding a token to an already marked pla
e does not add another token [4, 5, 11℄.Also, behaviour of this kind was mentioned in [1℄ in the 
ontext of net synthesis.Having said that, the semanti
s 
onsidered in prior works known to us wasbased on single transition �rings, rather than (maximal) steps as is the 
asefor set-nets. Therefore, the previous models were not 
on
erned with multipleinputs of tokens to a single pla
e something whi
h is essential if one wants tofaithfully model rea
tion systems. Furthermore, by aiming at a set-semanti
s,we had to introdu
e the non-
on�i
t feature on the �ow ar
s 
onsuming thetokens. Therefore, as far as we are aware, the model of set-nets is an original
ontribution to the �eld of Petri nets.As we already mentioned, set-nets with interleaving semanti
s are nothingbut Boolean nets used, for instan
e, in [5℄. In su
h a 
ase, the la
k of 
on�i
twhen �ring two transitions sharing an input pla
e is an irrelevant issue, and theonly non-standard aspe
ts is that �ring a transition with a marked output pla
edoes not in
rease the token 
ount in that pla
e. Su
h a feature, moreover, 
aneasily be modelled using ordinary 1-safe pt-nets, a

ording to the following idea.First, one splits ea
h pla
e q into pla
es q0 and q1, respe
tively representingthe la
k and presen
e of a token in q. Then, ea
h transition t adding tokensto pla
e q is split into t0 and t1 to a

ount for two di�erent states the pla
e
q 
an be in represented by q0 and q1. Figure 5 illustrates this 
onstru
tion.It 
an be easily seen that both nets generate the same sequential rea
habilitygraphs assuming that a0 and a1 are instan
es of a, and b0 and b1 are instan
esof a. However, on
e we start treating the net in Figure 5(a) as set-net, thesituation 
hanges radi
ally. The reason is that we then have three �rings ofthe following form: ∅[{a}〉{q}, ∅[{b}〉{q} and ∅[{a, b}〉{q}. Now, the standard
lasses of Petri nets enjoy the so-
alled subset property whi
h means that if astep U is enabled at marking M , then also any of its subsets is enabled as well.Suppose, then, that there is a Petri net N satisfying this property and su
h thatits step rea
hability graph is the same as that of the set-net in Figure 5(a),perhaps after renaming λ being applied to the transitions of the former. Thenwe have to have two transitions, t and u, in N su
h that λ(t) = a, λ(u) = b and
M0[{t, u}〉M . Then, by the subset 
losure property, we also have M0[{t}〉M

′and M0[{u}〉M
′′. Hen
e, by the rea
hability graph isomorphism, we must have
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16 J.Kleijn, M.Koutny and G.Rozenberg
M = M ′ = M ′′ as well asM0 6= M . Hen
e we have:M0[{t, u}〉M and M0[{t}〉Mand M0[{u}〉M and M0 6= M . In the standard Petri nets, in
luding variousextensions of pt-nets, M0[{t, u}〉M and M0[{t}〉M would imply that u does not
hange the 
urrent marking. Similarly,M0[{t, u}〉M andM0[{u}〉M would implythat t does not 
hange the 
urrent marking. Yet the simultaneous �ring of t and
u does 
hange the marking as M0 6= M . This would produ
e a 
ontradi
tion.What we just presented is intuition rather than proof, however, we expe
t thatdetailed arguments 
an be developed for any of the standard net 
lasses. Animportant 
onsequen
e, however, is that set-nets are semanti
ally di�erent fromthe existing net 
lasses and therefore deserve to be re
ognised as an original
ontribution.8 Con
lusionsThe main initial motivation of our investigation was to see how Petri net based
on
epts 
ould be deployed to analyse rea
tion systems. In parti
ular, we wantedto dis
over methods for 
he
king properties of rea
tion systems by relating themto the properties of the 
orresponding Petri nets and 
ausal pro
esses.We proposed modelling methods resulting both in low-level and high-levelnets. In all four 
ases, we established a 
lose 
orresponden
e between the mark-ings of Petri nets and states of the original rea
tion systems. The same was trueof the evolutions of two 
orresponding models. In fa
t, we established that theyhave essentially isomorphi
 state spa
es. All these net models, however, exhibitedde�
ien
ies w.r.t. simpli
ity and/or elegan
e and/or tra
tability of the transla-tion. For example, both high-level net models are intrinsi
ally unbounded, andthe se
ond of the low-level translations uses reset ar
s. We therefore proposeda new 
lass of Petri nets, 
alled set-nets, whi
h we feel provide a strong mat
hwith the rea
tion systems and their semanti
s.In this way we think we derived new interesting notions and 
ontributions toPetri net theory based on our experien
es with rea
tion systems in a similar wayas the 
on
epts of lo
alities and lo
ally maximal 
on
urren
y were derived fromour previous investigation of a Petri net semanti
s of membrane systems [15℄.A
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