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pelz@u-pec.fr

Abstract. Biochemical reaction systems are usually modeled by ordi-
nary differential equations (ODEs). For further analysis, they are of-
ten transformed into stochastic Petri nets (SPN), whose state space (or
reachability graph) then can be studied to deduce properties.
If a biochemical reaction system is in a steady state, from now on called
steady situation,1 then the rates of the reactions and the concentra-
tions of the species are constant. These concentrations and rates can be
established by simulation of the SPN-model. A steady situation,1 signifies
also that on the model level only a subset of all possible reachable states
is pertinent to this situation. It would be of interest to isolate formally
and constructively this subset of states. To our knowledge there is no
way to achieve this using the SPN-model or the ODE-model.
In this article we propose an approach to calculate the part of the state
space corresponding to a steady situation1. To do so, we map the SPN-
model onto a Time Petri Net-model (TPN) with the same behaviour as
that in the steady situation1 observed in the SPN simulation.
Using reduction methods for TPNs we can extract the part of the reacha-
bility graph of the SPN-model which is relevant for the steady-situation1.
We show that this is exactly the reduced reachability graph of the con-
structed TPN-model. Finally, the later one can be analyzed qualitatively
and quantitatively.
In addition, this approach helps for validating the correctness of the
calculated (and used) rates in the steady situation1and of the parameters
used in the original ODEs, fixed by experiments in the wet labs, both
being -a priori- subject to a certain degree of uncertainty.

1 Introduction

When considering biochemical reaction systems we emphasize the interactions
between different species during time and we do not take a momentary snap-
shot of the system. This means that time is an indispensable component in each

1 to avoid confusion, between state in the biochemical system and states or state
space in the models, the biological steady state will be called throughout the
whole paper steady situation
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model of such a system. Furthermore, the repetitive occurrence of reactions in
the system during a certain time, expressed by their reaction rates, defines the
behaviour of the system. It is obvious, that the rates depend on the concentra-
tions of the species involved in the reactions: the higher the concentration the
higher the reaction rate. This is the case until the concentrations of the involved
species achieve certain levels. Then the concentrations of the species do no longer
change, i.e., the reaction rates stay constant. This situation is the so called steady
situation1 in an biochemical reaction system. Finally, the occurrence (or taking
place) of biochemical reactions is a stochastical one.

The taking place of a particular reaction can be modeled by an ordinary
differential equation (ODE), the causal relationship between the interactions
is often modeled by some graph. Both aspects can be represented in a unique
model, by using some variant of Petri Nets, such as e.g. Hybrid Functional Petri
Nets [9, 10] or Continuous Petri Nets [16] or Stochastic Petri Nets (SPNs) [8].
The last ones model the stochastic nature of a reaction system especially well.
The ODE model can be obtained by means of punctual measured data and using
interpolation, cf. [4], or from a first established Modular Interaction Network,
cf. [18]. The SPN model, as graph models in general, can be obtained from a
system of ODEs which describes the reaction system; such translations are well
explained in e.g. [6,9,10]. In general, a system of ODEs defines a unique SPN but
it is possible that different systems of ODEs define the same SPN. Conditions
for one-to-one and onto mappings between ODEs and SPNs are given in [16].

Please note that an essential point while constructing an SPN-model is the
definition of its initial marking. It should faithfully map the initial concentrations
of all species involved in the reaction system.

Considering the models quoted above, it is not possible by formally analyzing
it, to extract the steady situation1 in which the reaction system may stay after
some time. The only thing which can be done, and which is done in general, is to
simulate the model (over a very high number of runs) until being able to deduce
properties concerning the steady situation1, with some remaining uncertainty.

In this paper we are using the uncertain data obtained by simulation of the
SPN, and also uncertain parameters estimated by measures and interpolation,
and prove analytically if they present in fact those of a steady situation1. For this
reason, we first observe the SPN-model during a high number of runs which yield
mean values corresponding to the concentration of species and reaction rates in
the steady situation1. In function of these values, we map the SPN onto a Time
Petri Net-model (TPN), having the same skeleton, such that the behaviour (that
of the observed steady situation1) stays the same.

This works, because TPNs have the same semantics as SPNs with constant
rates, and we dispose of a well established theory [11–13] for studying analytically
their behaviour. In particular, our reduction results concerning state spaces of
TPNs [12, 13] will be of good use in the presented work. When the simulated
reaction rates in the steady situation1 are exactly the rates in the real situation,
then the reduced reachability graph of the TPN should consist of cycles only
- up to some initiation part. By contraposition we may conclude, that a non
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cyclic form of the reduced state space indicates severe problems in the set of
data used to build the TPN, and by consequence, in the initially established
data from experiences in the wet labs. Furthermore, we are able to calculate the
time-length of the cycle(s), a data which cannot be measured within the SPN
model. The last one can be compared with measures from the wet labs, if there
are any. Thus once more, we bridge back to the original data. Thus our method
offers a way of validating a complex modeling process of biochemical reaction
systems.

This paper is organized as follows: in the next section we recall some basic
notions and notations of the used Petri Net classes together with the reduction
results of TPN state spaces. In section 3 we introduce the mapping from an
SPN in the steady situation1 onto a TPN model. In the subsequent section we
illustrate our approach on the core model of the influence of the Raf-1 Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway, chosen as running example, before concluding.

2 Basic Concepts

In this section we recall the concept of TPNs. After that we introduce some basic
notions and fundamental properties, which are important for their quantitative
and qualitative evaluation.

2.1 Basics

Time Petri Nets (TPN) [11] are derived from classical Petri nets by assigning to
each transition t a (continuous) time interval [at, bt]. Here at and bt are relative
to the time when t was enabled most recently. When t becomes enabled, it can
not fire before at time units have elapsed, and it has to fire not later than bt time
units, unless t got disabled in between by the firing of another transition. The
firing itself of a transition does not consume time. So, the given time intervals
specify reaction times for the transition firings. The time intervals are defined
on non-negative real numbers, but the interval bounds are given as nonnega-
tive rational numbers. Rational numbers are sufficient to reflect any measuring
accuracy required by a given application domain. Moreover, to support the nor-
malization of different time scales within a model, zero and ∞ are allowed as
interval bounds.

As usual, in this paper, N denotes the set of natural numbers, and Q+
0 , resp.

R+
0 , the sets of nonnegative rational numbers, resp. real numbers. T ∗ denotes

the set of all finite words over the alphabet T , l(w) is the length of a given word
w.

Some 5-tuple Z = (P, T, v, mo, I) is called a Time Petri net (TPN), if
S(Z) := (P, T, v,mo), the skeleton of Z, is a Petri net where P, T are finite sets
with P ∩ T = ∅, v : (P × T ) ∪ (T × P ) −→ N defines the arcs with their weight,
mo : P −→ N fixes the initial marking, and I : T −→ Q+

0 × (Q+
0 ∪ {∞}) is its

73



interval function where ∀t ∈ T , I(t) = [I1(t), I2(t)] and I1(t) ≤ I2(t), spezi-
fying the earliest and latest firing time of t: eft(t) = I1(t), lft(t) = I2(t).

As shown in [11], considering TPNs with I : T −→ N × (N ∪ {∞}) will
not result in a loss of generality. Therefore, only such time functions I will be
considered subsequently.

A marking m : P −→ N can be seen as a vector of size |P |, we refer to it as
p-marking. Thus each transition t ∈ T induces the p-markings t−, t+ and ∆t
defined by t−(p) := v(p, t), t+(p) := v(t, p) and ∆t(p) := t+(p) − t−(p). With
these notions the firing rule for TPNs can be defined. A transition t ∈ T is
enabled at a marking m iff t− ≤ m (e.g. t−(p) ≤ m(p) for every place p ∈ P ).

The pre-sets and post-sets of a place or transition x are given by •x :=
{y | v(y, x) > 0} and x• := {y | v(x, y) > 0}, respectively.

An example for an arbitrary TPN is shown in Fig. 1.

Fig. 1. A Time Petri net Z1.

Every possible situation in a given TPN can be described completely by a
state z = (m,h), consisting of a p-marking m (the standard marking) and a
transition-marking (short: t-marking) h. The t-marking is a transition vector,
which describes the current time circumstances in a certain situation. More
exactly, each component of the t-marking is either a real number or the sign
]. Thus h(t) can be seen as clock of t. If t is enabled at a marking m, its clock
h(t) shows the time elapsed since t became most recently enabled. If t is disabled
at m, the clock is switched off (indicated by h(t) = #).

Formally, a pair z = (m,h) with m : P −→ N and h : T −→ R+
0 ∪{#} is called

a state of a TPN Z = (P, T, v,mo, I) if ∀t ∈ T , either (t− ≤ m and h(t) ≤ lft(t))
or (t− 6≤ m and h(t) = # ).
The initial state zo := (mo, ho) of the TPN Z is given by defining ho as follows

∀t ∈ T, ho(t) :=

{
0 if t− ≤ m0

# if t− 6≤ m0.

Thus, the initial state of Z1, as given in Fig. 1, is z0 = ( (0, 1, 1)︸ ︷︷ ︸
p-marking

, (0, ], ], 0)︸ ︷︷ ︸
t-marking

).

The state z = (m,h) is called an integer state, if h(t) is an integer for each
enabled transition t in m.

The behaviour of a TPN is defined by changing from one state into another
by firing a transition (without auto-concurrency) or by time elapsing. In
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order to define these dynamic aspects of TPNs we need first the notion ready
to fire.

Let to be a transition in T and z = (m,h) a state of a TPN Z = (P, T, v,mo, I).

The transition to is ready to fire at state z, denoted by z
to−→ , if t−o ≤ m and

eft(to) ≤ h(to).
Then the state z change into a state z′ = (m′, h′) by the firing of such

a to, denoted by z
to−→ z′ , where the new marking is m′ = m + ∆to and the

new clock satisfies ∀t ∈ T, h′(t) :=

# if t− 6≤ m′
h(t) if t 6= t0, (t− + t−o ) ≤ m, t− ≤ m′
0 otherwise.

This definition implies, that in the case that t0 is still enabled after the
firing of t0, it can only refire after at least αt new waiting units. To resume,
concurrency but no auto-concurrency is possible by the way the evolving of the
clocks is defined.

The state z may also change into a state z′ = (m,h′) by the time elapsing

τ ∈ R+
0 , denoted by z

τ−→ z′, where the marking stays the same, but time goes
on : ∀t ∈ T with h(t) 6= # we need h(t) + τ ≤ lft(t) ) i.e. the time elapsing τ
need to be possible, and the new clock is given ∀t ∈ T by

h′(t) :=

{
h(t) + τ if t− ≤ m′
# if t− 6≤ m′.

A state z = (m,h) of a TPN Z is called reachable in Z (starting at z0),
if there exist states z1, z

′
1, ..., zn, z

′
n, transitions t1, ..., tn, and times τi ∈ R+

0 , for

i ≤ n, such that z0
τ0−→ z1

t1−→ z′1
τ1−→ z2

t2−→ z′2
τ2−→ . . . zn

tn−→ z′n
τn−→ z holds.

The sequence of transitions σ = t1 . . . tn leading to a reachable state will
be called a feasible one (starting at z0) or just a firing sequence of Z. The
full sequence σ(τ) = τ0t1τ1 . . . tnτn is called a (feasible) run of σ. It shows that
in a given TPN the state changes generally consist of alternating series of time
elapsing and transition firing. Obviously, for a given run the transition sequence
is well defined, and for a given firing sequence there are infinitely many runs in
general.

Eventually, RSZ(z′) is the set of all reachable states in Z starting from
an arbitrary state z′. And RSZ := RSZ(z0), that from the initial state is also
called the state space of Z.

We may also consider the set of reachable p-markings, also called the
p−marking space RZ := { m | (m,h) ∈ RSZ} in a TPN Z. This is a subset
(not necessarily proper) of the reachable markings of the skeleton S(Z). There-
fore, a firing sequence in the skeleton S(Z) is not necessarily a firing sequence
in Z. The set of p-markings, reachable in Z starting at an arbitrary p-marking
m′, is denoted by RZ(m′). A TPN is called bounded, if its set of reachable
p-markings is finite, otherwise it is called unbounded.

For different reasons the state space of a TPN is in general infinite and dense
in terms of the time: the set of reachable p-markings can be infinite or the set of
t-markings for a fixed p-marking can be infinite or both together. Later on, we

75



consider some approaches for concise state space representations, when RSZ is
infinite while RZ is finite.

The definition of state change by time elapsing can be slightly and consis-
tently modified for the introduction of a reachability graph based on all reach-
able essential states for arbitrary TPNs, especially for TPNs including transi-
tions whose lft s are ∞. The set of all reachable essential states for arbitrary
TPNs is defined as a subset of all reachable integer states of the considered TPN.
We will use the following property (for more details see [13]): if no transition t
in Z has lft(t) =∞ then the set of essential states is exactly the set of integer
states in RSZ .

2.2 Time-dependent Minimal and Maximal Runs in TPNs

We will formalize the time-dependent notions of measuring the length of runs,
cf. [15].

Let σ(τ) be a run of the transition sequence σ in some TPN Z. The length
of the run l

(
σ(τ)

)
is the sum of all times while executing the run σ(τ), i.e.,

l
(
σ(τ)

)
:=

n∑
i=0

τi, where n = l(σ) and τ = τ0τ1 . . . τn.

For a given transition sequence σ in Z, a feasible run σ(τ) with minimal
length will be referred to as minimal run of σ. Evidently, it satisfies :

l
(
σ(τ)

)
:= min

τ ′
{ l
(
σ(τ ′)

)
| σ(τ ′) is a feasible run of σ in Z }.

The notion of maximal run can be introduced analogously. It denotes the
run with maximal length within all feasible runs of σ if such an upper bound
exists; otherwise it is not defined.

The notions of minimal, respectively maximal time distance between
two states can be found in [12, 15] and are useful for precise analysis of bio-
chemical reaction systems which present different kind of steady situations1 than
our current running example.

2.3 State Space Reduction

The central problem for the dynamic analysis of a given TPN is the adequate
knowledge of its state space. It is important to get a finite description of the
infinite state spaces, under the condition that the p-marking space is finite.

It can be shown that - despite the continuous nature of the time intervals
- it is sufficient to pick up just some “essential” states to determine the entire
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timed behaviour of the net so that qualitative and quantitative analyses remain
possible.

Fig. 2. For some TPN Z. Left hand. Sketched state space of Z: a continuous set.
Right hand. Sketched reduced state space of Z: all reachable integer states.

While the calculation of a single reachable integer state is rather straightfor-
ward, the proof that the knowledge of the integer states is sufficient for analyzing
a TPN was quite difficult. Three solutions had been proposed in the past: con-
sidering a global clock [11] or considering a parametrical description of the state
space [15] or dividing into a finite number of problems, which can be solved
recursively with a methodology inspired from dynamic programming [12]. As
result, one is able to construct for each TPN a reduced reachability graph
whose vertices are the essential states. When the TPN does not contain a
transition whose lft is ∞, then the essential states are exactly all the reachable
integer states in the net.

An edge (z1, z2) labeled (k, t), with k ∈ N, in this reduced reachability graph
has the meaning that in state z1 k time units are elapsing before transition t fires
leading to state z2. Now, for finding minimal and maximal time paths between
two states/p-markings in a TPN, its reduced reachability graph can be used,
even effectively. Our algorithms for computing the reduced reachability graph of
a given TPN are implemented in several standard Petri Net tools, like INA [17],
tina [3] and charlie [7]. INA can additionally compute minimal and maximal
time-dependent paths. Thus these tools can be successfully applied for models
of bio-chemical reaction systems, too.

2.4 Stochastic Petri nets

Stochastic Petri Nets (SPNs) had been introduced at the beginning of the Eight-
ies, cf. [1, 2]. They are widely used in the modeling of biochemical reaction sys-
tems, cf. [8].

Such SPNs are derived from classical PNs by assigning to each transition t
a firing rate λt. This firing rate specifies a firing delay for the transition. More
exactly, the firing delay is a random variable which is distributed exponentially
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and has λt as parameter of the probability density function. In fact, to each
transition t a probability density function with parameter λt is associated :

ft(x;λt) =

{
λte
−λtx, x ≥ 0,

0, x < 0.

Finally, the firing rate λt may be marking-dependent in general. In such a case,
we should write λt(m), where m is a marking, instead of λt. Than the expected
value for the firing delay for the transition t in the marking m is 1

λt(m) .

The firing mode is defined as follows: In a given marking m, each enabled
transition t obtains an instance of the firing delay λt(m) from its associated
probability density function. Then a choice is made: the transition with the
minimum firing delay is firing. The firing itself of a transition does not consume
time. The successor marking is than obtained as in the underlying classical PN.
It is well known [1], that the probability for two transitions to fire at the same
instant is null, i.e. there is no conflict. That is why the transitions in SPNs fire
naturally one by one, i.e., just as in TPNs.

3 Biochemical Systems and Time Petri Nets

Biochemical reaction networks are mostly described by ordinary differential
equations (ODEs) or reaction rate equations (RREs), and both can be con-
verted into each other. Taking account of the rate equations of all reactions in
the systems, ODE like RRE models can be transformed into Continuous Petri
nets or Stochastic Petri nets. More about these transformations can be found,
e.g. in [8]. Conditions for a uniform transformation of ODEs into Continuous
Petri nets (or RREs) are introduced in [16]. Systems of ODEs can be repre-
sented as hybrid functional Petri nets, cf. [9, 10], too. These Petri net models
allow for qualitative and quantitative evaluations using tools and methods of the
Petri net theory, cf. [2, 5].

A transformation of an ODE model into a Time Petri net model (TPN) using
the reaction rates is shown in [14]. This transformation allows the computation
of time-minimal and time-maximal paths (if existing) between two system situa-
tions, i.e. two states of the TPN model. It can be considered as an indication for
the conformance and coherence of the model if the length of the time-minimal
and time-maximal paths coincide with the results in the wet labs. Otherwise the
original model becomes invalidated.

Independently from the original model, an RRE one or an ODE one, in a first
step, a timeless Petri net is always derived. This describes the causal relations
between the events in the system. In biochemical systems, these are biochemical
reactions or biochemical signal transductions. Thereafter additional information,
in particular the time parameters, need to be assigned to the Petri net. They
are obtained from the parameters (kinetic rate constants) in the ODEs. Their
values are often determined experimentally. When it is not possible to collect
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or identify them in vitro, the parameters are estimated using experimental data
achieved only for some discrete time points. In this case the goal is to estimate the
value of the parameters for each moment so that the values over the time fit the
experimental data (cf. [9]). Thus in a second step, integrating these parameters,
a time-dependent PN model is established for the biochemical network. It is
obviously that at this stage of modeling a certain level of inexactness is present
in each model.

In this paper we are going to study biochemical reaction systems which pos-
sess a steady situation1. This is the case when the system comes in a situation, in
which the concentration of all substances stays constant. Usually, in the steady
situation1 the concentration of all substances allows that all reactions take place
permanently. Now constructing the reachability graph, may be interpreted as
considering the path of changes of the single substances. Loosely speaking, we
should get a cyclic set of states in the reachability graph corresponding to the
steady situation1. The behaviour of the SPN, expressed by Markow chains is
isomorphic to the full reachability graph of the underlying PN, i.e., they have
the same state space. By convention, we speak in the following of “the reacha-
bility graph” of the SPN. But the nodes corresponding to the steady situation1

can not be recognized in this reachability graph, even knowing the rates in the
steady situation1. To our knowledge, no method is known until now for sepa-
rating or extracting the subgraph corresponding to the steady situation1 from
the reachability graph of the SPN. Steady state meaning cyclic behaviour, this
subgraph (of the reachability graph of the SPN) is supposed to present a cyclic
structure (with one or more circles), up to some initiation part. In contrast,
knowing the steady situation1 rates we are able to separate the reachable states,
we are looking for, using a TPN and its reachability graph. This is due to the
reduction results on reachability graphs of TPNs discussed in section 2.3.

Thus, we propose in this paper a methodologie to calculate and verify such
set of states which correspond to steady situation1. The starting point will al-
ways be an SPN model for a biochemical reaction system, which has a steady
situation1. This means that the rate for each enabled transition in each marking
is constant. The steady situation1 concentrations and rates can be determined
using simulation of the SPN. Examples for which about 10,0000 simulation runs
have been done may be considered. These runs has to be merged into one av-
eraged simulation run showing the mean of the concentrations, and thus also of
the rates, over the time. We take the expectation values of the steady situation1

rates for our investigations.

Simulation means approximation; thus it is not a priori clear how accurate
the determined steady situation1 rates are.

The reciprocal value of the rate is the time which each enabled transition has
to wait before it can fire. The transition with the minimal waiting time fires in an
SPN. Consequently, an SPN acts in the steady situation1 exactly like a certain
kind of TPN: we propose to construct a TPN, having the same underlying Petri
net as the SPN, and where the transitions t will recieve time intervals [at, bt],
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where at = bt is equal to the above calculated waiting time of t in the SPN in
the steady-state.

A qualitative analysis of the TPN can prove whether the subset of all reach-
able states generate cycle(s) only (up to some initiation part). Furthermore, the
time length of these cycles can be computed.

The formal analysis we proposed allows the following interpretations. If the
reduced reachability graph of the TPN consists of cycles, then the considered
rates achieved by simulation describe a steady situation1, actually. By contrapo-
sition we may deduce, that a non cyclic form of the reduced state space indicates
severe problems in the set of data used to build the TPN, and by consequence,
in the initially established data from experiences in the wet labs.

Additionally the time-length of the cycles can be easily computed and com-
pared with results from the wet labs. Both, the reachability graph of the TPN
and the time-length of the cycles are either an indication for the correctness
of the models or they invalidate these. Therefore our method offers a way of
validating a complex modeling process of biochemical reaction systems.

4 An Example

In this section we will illustrate our approach of analysing a biochemical reaction
system in a steady situation1 along an example introduced in [4] and studied
further in [6, 8], concerning the core model of the influence of the Raf-1 Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway.

In [4] this biochemical reaction system is modeled using an integrated ap-
proach of mathematical modeling in combination with experimental data. This
model consists of eleven nonlinear ODEs. The parameters in the ODEs are esti-
mated using interpolation of polynomial functions.

Afterwards, simulation studies provides a qualitative validation of the math-
ematical model compared to experimental results in the wet labs in view of the
transient behavior and sensitivity analysis. However, parameter estimation is, as
already mentioned, an uncertain factor in such a mathematical model.

Then in [6, 8], a qualitative model is proposed in terms of a Petri Net, see
Fig. 3, deduced from the quoted ODE system.

Additionally, reaction rates are associated to all transitions of this PN [6,
8]. These are derived from the estimated parameters used in [4]. The obtained
whole model is therefore an SPN. In [6], inter alia, the example is considered
w.r.t. the attained steady situation1 in the biochemical network. This is done
by simulation: Rate values for the reactions are estimated after about 10.000
simulation runs have been done. Nevertheless, considering the behaviour of the
model based on estimated parameters, we are in presence of a further factor of
uncertainty.

We are going to investigate the SPN in the simulated steady situation1.
First let us have a look on its reachabilty graph depicted on the left hand side of
Fig.4. Unfortunately no method exists, to our knowledge, to find out analytically
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 Y   Y   Y   N    Y   Y   Y   N  0   N   Y   Y   

Fig. 3. The Petri net for the core model of the RKIP pathway, consisting of 11 places
and 11 transitions. The places s1, ..., s11 stand for proteins or protein complexes. Com-
plexes are indicated by an underscore between the protein names, phosphorylated
forms by the suffix -P or -PP. The transitions r1, ..., r11 model the reactions. The
preplaces of a transition correspond to the reaction’s precursors, and its postplaces to
the reaction’s products. The layout follows the suggestions by the graphical notation
used in [4]. The initial marking is constructed systematically using standard Petri net
analysis techniques. This figure with its legend is cited from [8].

/ formally which are the states (nodes) corresponding to the steady situation1.
Instead, we will use the estimated data in order to derive a TPN. This time-
dependent Petri net should have the same state space as the SPN in the steady
situation1. To be able to do this derivation, we need to know the waiting (or
delay) times τi. They can be calculated from three kind of informations/data,
given in the tables below.

• the rate function vi, presented in [8] for each of the eleven transitions ri,
and shown in Table 1

• the estimated parameters k1 · · · k11 in the eleven corresponding ODEs, pre-
sented in [4], renamed rate parameters and denoted by ci := ki in [8], and
shown in Table 1

• the mean steady situation1 concentrations for the species s1 · · · s11
are taken from [6] and shown in Table 2.
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Table 1. The rate function for each transition and the rate constants (the estimated
parameter in the ODEs), cited from [4, 8]. The abbreviations s1 · · · s11 stand for the
involved species as follows: s1 is Raf-1*, s2 is RKIP, s3 is Raf-1* RKIP, s4 is Raf-
1* RKIP ERK-PP, s5 is ERK, s6 is RKIP-P, s7 is MEK-PP, s8 is MEK-PP ERK, s9
is ERK-PP, s10 is RP and s11 is RKIP-P RP. In the rate functions each of the s1 · · ·
s11 is supposed to be the mean concentration of the species s1 · · · s11 in the simulated
steady situation in the SPN, as given in Table 2.

transition ri rate function vi rate constant ci
r1 c1 · s1 · s2 0.053
r2 c2 · s3 0.0072
r3 c3 · s3 · s9 0.625
r4 c4 · s4 0.00245
r5 c5 · s4 0.0315
r6 c6 · s5 · s7 0.8
r7 c7 · s8 0.0075
r8 c8 · s8 0.071
r9 c9 · s6 · s10 0.92
r10 c10 · s11 0.00122
r11 c11 · s11 0.87

Table 2. Mean steady situation1 concentrations for for all si, cited from [6].

specie si concentration

s1 0.2133
s2 0.1727
s3 0.2163
s4 0.5704
s5 0.0332
s6 0.0200
s7 0.7469
s8 0.2531
s9 0.1433
s10 0.9793
s11 0.0207

Now, we can calculate the rates v1 · · · v11 of the transitions in the steady
situation1 using their rate functions from Table 1 and the data from Table 1 and
Table 2. Subsequently, the delay time τi for every one of the ten transitions ri
is obtained as the reciprocal of the rate in the steady situation1. The resulting
values are presented in Table 3.

Finally, the TPN model can be constructed: As skeleton of the TPN model
we take the underlying PN of the SPN, i.e. the net given in Fig. 3. To each
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Table 3. Rates in the steady situation and delay times for r1 · · · r11.

transition ri rate in the steady delay time in the steady
state vi state τi (rounded)

r1 0.00195235623 512
r2 0.00155736 642
r3 0.019372369 52
r4 0.00139748 716
r5 0.0179676 56
r6 0.019837664 50
r7 0.00189825 527
r8 0.0179701 56
r9 0.01801912 55
r10 0.000025254 39598
r11 0.018009 56

transition ri, 1 ≤ i ≤ 11, a time interval [τi, τi] is associated, where τi is the
calculated delay time, from Table 3.

m5

m6

m7

m8

m9

m12

m13

m2

m3

m4m11

m10 m1

r1
r2

r3r4

r5

r6 r9
r7

r9r8
r7r10

r8
r11

r6

r10

r11

r1r6

r2

r6
r2 r7

r8

r1

r7

r11

r9
r10

r8

m5

m6

m7

m8

m9

m12

m4m11

m1

r1

r3

r5

r6

r9

r8
r6

r8
r11

Fig. 4. Left hand: The reachability graph, from [8], for the SPN of Fig. 3.
Right hand: The reachable p-markings in the TPN. Please note, that this is not the
reachability graph of the TPN.

Now the obtained TPN may be analysed. First, we just calculate the reach-
able p-markings, designed on the right hand side of Fig.4. We observe that due
to the time constraints this graph has 9 nodes, i.e., much less p-markings are
reachable as in the reachability graph of the SPN, depicted on the left hand side,
which is also the reachability graph of the underlying net of the SPN and TPN.
We also detect that the right graph is clearly a subgraph of the left one. The
complete state space of the TPN is -a priori- infinite, a lot of states may share
the same p-marking.
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The reduced reachability graph of the considered TPN can now be con-
structed, by applying the reduction method described in section 2.3. We did it
with tools INA and Charlie [7, 17], which gave us the same result, depicted in
Fig 5. It consists of eleven essential states, i.e., 10 pairs of p- and t-markings,
although only 10 p-markings are reachable in the considered TPN. This is no
incoherence : Two essential states, z3 and z10, share the same p-marking m5.
However, in the cycle each p-marking belongs to exactly one state (node) only.

406,r1

z2

z7

z9

z10

56,r5

5,r11

5,r9

51,r8

z6

z8

z3

52,r3

z5

z4

z1

406,r1512,r1

50,r6

56,r8

50,r6

Fig. 5. The reduced reachability graph of the TPN model.

Analyzing this reduced reachability graph of the TPN tells us that it consists
of the cycle z4, r3, z5, r5, z6, r6, z7, r9, z8, r8, z9, r11, z10, r1
and an initiation path z1, r6, z2, r8, z3, r1.

This path (or panhandle) is caused by the choice of the initial p-marking
for the TPN, chosen to be the same as for the SPN. Actually, the initial p-
marking for the TPN should be a p-marking which the SPN reaches in the
steady situation1. However, the TPN only initiates its behaviour by this path
and then comes to the steady situation1, i.e. stays in the cycle. The time-length
of the cycle was also calculated, its value is 731 time units.

We also read on this reduced graph that the transitions r2, r4, r7 and r10 will
never fire. Such transition are called dead. These are the transitions modeling the
backward reactions which have rate constants being essentially smaller as the
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rate constants for the forward reactions. This tell us that in the steady situation1

the backward reactions do never proceed.

5 Conclusions

In this paper we introduce a method for qualitative and quantitative evaluation
of an SPN model of biochemical reaction systems in a steady situation1 including
validation of all used data. A mathematical model of such a system contains a
number of uncertain factors resulting from the estimation of the parameters in
the ODEs and the values of the reaction rates in the steady situation1 obtained
by simulation of the SPN. The reaction rates and the concentration of the species
in the steady situation1 are constant values.

This means that the set of reachable markings in the SPN model in the steady
situation1 is finite and they generate a cycle, not necessarily a simple one. But
no state reachability analysis of the SPN does allow for isolating those states
which correspond to the steady situation1, i.e. does allow to detect the cycle.

Due to the fact of constant values, we are able to propose a mapping from
the usual SPN model in the steady situation1 onto a TPN model which has the
same behaviour. Contrarily to the SPN model, we can reduce the state space of
the TPN to the part we are interested in, consisting of the essential states. The
obtained reduced state graph can be further analyzed. Its cyclic or non cyclic
form validate or invalidate the used data during the modeling process. The time
length of the cycle can be calculated and compared to real time measures, too.

The algorithms for reachability analysis of TPNs, implemented in the tools
[3,7,17] had been applied for the evaluation of the simulated steady situation1 in
a mathematical model of our running example. We considered the core model of
the influence of the Raf-1 Kinase Inhibitor Protein (RKIP) on the Extracellular
signal Regulated Kinase (ERK) signalling pathway. We were able to show that
the simulated values for the reaction rates define one cycle in the TPN model
and to compute the time-length of this cycle. Furthermore we ascertain that the
backward reactions do not proceed in the steady situation1.

We will lead some reflexions if the initial state for the TPN could be redefined
in a better way by regarding the values for the concentrations of the species in
the simulated steady situation1. We are planning to apply the presented method
to some other cases of biological or biochemical interaction networks, were more
complex steady situations1, with -a priori- non simple cycles.
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