
Workshop Proceedings

2nd Workshop on

Application of Region Theory (ART)
Newcastle upon Tyne, UK, June 21, 2011

Satellite event of the conferences

11th International Conference on

Application of Concurrency to System Design (ACSD 2011)

32nd International Conference on

Application and Theory of Petri Nets (PETRI NETS 2011)

Edited by Jörg Desel and Alex Yakovlev

Preface

Regions have been defined about 20 years ago by Andrzej Ehrenfeucht and
Grzegorz Rozenberg as sets of nodes of a finite transition system that correspond
to potential conditions that enable or disable transition occurrences in a
corresponding elementary net system. Thus, regions have been the essential
concept for synthesis of an elementary net systems from its anonymous state
graph (states are unknown but transitions between states are known). Since that
time, many generalizations and variants of the synthesis problem of Petri nets
from behavioral descriptions have been studied, including synthesis of more
general Petri net classes, synthesis from languages, synthesis from partially
ordered runs and synthesis from incomplete behavioral descriptions. All this
work has in common that the transition names are given more or less directly by
the behavioral description. The places of the net to be synthesized always
correspond to regions which are defined in many different ways, depending on
the form of the behavioral description. A main issue in this research is the study
of regions, whence we call the entire research direction region theory.

Region Theory was applied in many different areas such as

- hardware synthesis from precise specifications (synthesis from transition
systems)

- visualization of concurrent hardware behavior (synthesis from logic
circuit models, transition systems and partial orders)

- GALS synthesis and desynchronisation based on synthesis (synthesis
from step transition systems and re-synthesis from Petri nets)

- synthesis of control and policies for discrete event systems (synthesis
from both languages and transition systems)

- modelling biological (membrane) systems with localities (synthesis from
step transition systems)

- generation of specifications from incomplete specifications (mining from
transition systems)

- model generation from examples (specification from (partial) languages)
- mining of process descriptions (mining from languages)

The aim of the ART workshop series was to bring together people working in
these or other application areas of region theory, to exchange ideas and concepts
and to work on common workshop results.

This proceedings volume contains reviewed contributions submitted to and
presented at the 2nd ART workshop.

Jörg Desel (Hagen, Germany)
Alex Yakovlev (Newcastle University, UK)

June 2011

2

Table of Content

Jetty Kleijn, Maciej Koutny,�Marta Pietkiewicz-Koutny and Grzegorz Rozenberg �

Classifying Boolean Nets for Region-based Synthesis.. 5

Josep Carmona

The Label Splitting Problem... 22

Boudewijn van Dongen, Jörg Desel and Wil van der Aalst

Aggregating Causal Runs into Workflow Nets.. 36

Robin Bergenthum and Sebastian Mauser

Folding Partially Ordered Runs... 52

Philippe Darondeau and Laurie Ricker

Towards Distributed Control of Discrete-Event Systems................................... 63

Robin Bergenthum and Sebastian Mauser

Mining with User Interaction.. 79

Wil van der Aalst

Do Petri Nets Provide the Right Representational Bias for Process Mining? ... 85

3

Programme Committee

Josep Carmona, UPC Barcelona, Spain

Philippe Darondeau, INRIA Rennes, France

Jörg Desel, FernUniversität in Hagen, Germany (co-chair)

Boudewijn van Dongen, TU Eindhoven, The Netherlands

Luís Gomes, Universidade Nova de Lisboa, Portugal

Gabriel Juhás, Slovak University of Technology, Slovak Republic

Jetty Kleijn, Leiden University, The Netherlands

Alex Kondratyev, Cadence Design Systems Inc., Berkeley CA, USA

Luciano Lavagno, Politecnico di Torino, Italy

Robert Lorenz, Universität Augsburg, Germany

Marta Pietkiewicz-Koutny, Newcastle University, UK

Grzegorz Rozenberg, Leiden University, The Netherlands

Akex Yakovlev, Newcastle University, UK (co-chair)

Mengchu Zhou, New Jersey Institute of Technology, USA

4

Classifying Boolean Nets

for Region-based Synthesis

Jetty Kleijn1, Maciej Koutny2,
Marta Pietkiewicz-Koutny2, and Grzegorz Rozenberg1,3

1 LIACS, Leiden University, The Netherlands
{kleijn,rozenber}@liacs.nl

2 School of Computing Science, Newcastle University, UK
{maciej.koutny,marta.koutny}@ncl.ac.uk

3 Department of Computer Science, University of Colorado at Boulder, U.S.A.

Abstract. A Petri net model is referred to as Boolean if the only pos-
sible markings are sets, i.e., places are marked or not without further
quantification; moreover, also the enabling conditions and firing rule are
based on this principle of set-based token arithmetic. Elementary Net
systems are an example of a class of Boolean nets, and so are the re-
cently introduced set-nets. In our investigation of the synthesis problem
for set-nets, it would be useful to know how this new net model can
be fitted into the general theory of net synthesis based on the generic
concept of τ -nets. Here, we demonstrate how set-nets and the idea of
Boolean operations on tokens provide an opportunity to classify a wide
variety of Boolean nets that are amenable to region-based net synthesis.
Keywords: Petri net, Boolean net, step semantics, concurrency, conflict,
net synthesis, theory of regions, transition system, net-type

1 Introduction

Recently, in [10], a new class of Petri nets, called set-nets, has been introduced
to provide a net based computational model matching very closely the computa-
tions exhibited by reaction systems [5, 7, 8], a framework for the investigation of
processes carried out by biochemical reactions in living cells. The formalisation
leading to reaction systems has been motivated by properties that are common
to many biochemical reactions. This has resulted in a model based on principles
that are different from most existing models of computation. Of particular im-
portance for the net model inspired by reaction systems, are the non-counting
features (motivated by the two main regulation mechanisms of facilitation and
inhibition) implying that entities are either present or not present and enable
reactions by their presence or absence. As a consequence, there is no conflict
between reactions in the sense that the occurrence of one reaction might imply
that another reaction which is also enabled at the current state, cannot occur.

The new class of Petri nets, set-nets, provides a faithful computational model
matching very closely that exhibited by reaction systems. The key difference

5

2 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

between standard Petri nets like Place/Transition nets (PT-nets) and set-nets
is that the former support multiset-based token arithmetic, whereas the latter
support set-based (or Boolean) operations on tokens.

Thus, the computational intuition embedded in bio-processes has led to a new
class of nets with yet to discover properties. On the other hand, an important
motivation behind the wish to establish the link with net theory is to establish
whether Petri net based concepts (such as causal processes) and methods (such
as synthesis of nets from a specification of their behaviour) could be used to
provide analytical tools for reaction systems.

The research presented in this paper originates with the synthesis problem
for set-nets. We show that the new class of nets can be treated within the
general theory of region-based net synthesis. More precisely, we show that set-
nets are an instance of τ -nets [1] which incorporate many Petri net classes, and
for which the synthesis problem has been investigated and solved using regions
of transition systems [6]. Moreover, τ -nets with maximally concurrent semantics
(the semantics of set-nets when used to model reaction systems) fall within the
general framework of τ -nets with policies introduced in [2]. In this paper, we will
actually concern ourselves with the wider task of dealing with a whole variety
of net models similar to set-nets and referred to as Boolean nets. It is our aim
to classify such nets thus working towards automatic net synthesis algorithms.
The key part of our investigation is a detailed study of connection monoids
(conn-monoids) for Boolean nets which allows us to capture not only the step
semantics of nets but also structural conflicts between transitions in Boolean
nets, thanks to a special ‘blocking’ connection which can be used to capture the
essence of conflicts in (Boolean) τ -nets. In this way, conn-monoids emerge as a
single formalism which can be used to deal with conflicts, concurrency and net
synthesis.

The paper is organised as follows. First, we present the basics of set-nets
and other types of nets. Section 3 recalls the general setup of [1, 2] in which
Petri net classes are defined using conn-monoids and τ -nets. Section 4 shows
how to build conn-monoids for en-systems and set-nets. The observations in
this section are generalised in Section 5 to Boolean τ -nets.

2 SET-nets, EN-systems, and PT-nets

In this section we present set-nets and relate them to elementary net systems
(en-systems) [13] and Place/Transition nets (PT-nets) [4].

The main idea underlying set-nets is that there is no concept of token count-
ing. Places are marked or not marked and arcs have no weights. In this way,
set-nets resemble en-systems, a fundamental net model in the study of basic
features of concurrent systems. However, the execution semantics of the two
models differ significantly.

Both set-nets and en-systems have an (unweighted) net as their underlying
structure. A net is a triple (P, T, F) such that P and T are disjoint finite sets

6

Classifying Boolean Nets for Region-based Synthesis 3

of places and transitions, respectively, and F ⊆ (T × P) ∪ (P × T) is the flow
of the net. We use the standard dot-notation: for any place or transition x, we
let •x = {y | (y, x) ∈ F} be its set of input elements and x• = {y | (x, y) ∈ F}
its output elements. This extends in the usual way to sets of places and/or
transitions. For en-systems, we have the additional structural assumption that
the underlying net has no ‘self-loops’ i.e., •t ∩ t• = ∅ for all t ∈ T .

A marking of a set-net or en-system is a subset of places of their underlying
net. A place belonging to a given marking is said to be marked. In diagrams,
places are drawn as circles and transitions as rectangles. If (x, y) ∈ F , then (x, y)
is an arc leading from node x to node y. Markings are indicated by drawing in
each place belonging to a given marking, a small black dot (a ‘token’).

A set-net is a tuple N = (P, T, F, M0) such that (P, T, F) is a net and
M0 ⊆ P is its initial marking. A en-system is a tuple N = (P, T, F, M0) such
that (P, T, F) is a net without self-loops and M0 ⊆ P is its initial marking.

The dynamics of set-nets is defined as follows. Let N = (P, T, F, M0) be a
set-net and let t ∈ T . Then t is enabled at a marking M if •t ⊆ M . In such a
case, t can occur (fire), leading to the marking M ′ = (M \ •t) ∪ t•. A subset U
of T , a step, is enabled at M if •U ⊆ M . If U is enabled, it can occur, leading
to M ′ = (M \ •U) ∪ U•.

Hence in a set-net, a step U is enabled whenever each of its input places
belongs to the current marking, in other words, each of its elements is enabled.
When U occurs, its input places lose their token, while all output places will be
marked. If a place is both input and output for U , it is marked before and after
the occurrence of U . Furthermore, output places of U that were marked before
its occurrence will remain marked. It is also worthwhile to observe that there
may be distinct transitions t, u ∈ U for which •t ∩ •u �= ∅ or t• ∩ u• �= ∅. This
has no effect on their participation in the occurrence of U .

The dynamics of en-systems is defined in a similar way, except that the
enabling conditions are crucially different. Let N = (P, T, F, M0) be an en-
system and let t ∈ T . Then t is enabled at a marking M if •t ⊆M and t•∩M = ∅.
If t is enabled at M , it can fire which results in the marking M ′ = (M \ •t)∪ t•.
A step U of T is enabled at M if each t ∈ U is enabled at M and (•t∪ t•)∩ (•u∩
u•) = ∅ for any two distinct transitions t, u ∈ U . Then U can occur leading to
M ′ = (M \ •U) ∪ U•.

Hence, in an en-system, if a step U is enabled at marking M then each of its
input places is marked and none of its output places is marked. Actually, a step
can only ever be enabled if the input/output neighbourhood of the transitions
in U do not overlap (i.e., if there is no structural conflict in U).

In set-nets and en-systems markings are sets and tokens are manipulated
using set-based rather than multiset-based arithmetic. We will refer to such Petri
net models as being Boolean. In contrast to both set-nets and en-systems, and

7

4 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

Boolean nets in general, Place/Transition nets (pt-nets) have a multiset-based
arithmetic. 4

A (weighted) pt-net is specified as a tuple N = (P, T, W, M0), where P and
T are, as before, finite, disjoint sets of places and transitions; W : (P ×T)∪(T ×
P) → N specifies the arcs of N by their weights; and M0 : P → N is the initial
marking. In general, for pt-nets, markings are multisets, rather than sets. In
diagrams, whenever W (x, y) ≥ 1 for some (x, y) ∈ (T ×P)∪ (P ×T), then (x, y)
is an arc from x to y; it is annotated with W (x, y) if this is 2 or more. Given a
marking M of N and a place p ∈ P , we say that M(p) is the number of tokens
in p. Note that the dot-notations are now multisets, indicating the multiplicity
of each input/output element.

A transition t of N is enabled at a marking M of N , if •t ≤ M . If t is enabled
at M , it can fire which leads to the new marking M ′ = M − •t + t•. Thus M ′

is obtained from M by deleting W (p, t) tokens from each place p and adding
W (t, p) tokens to each place p. A step of a pt-net N is a multiset of transitions.
Step U is enabled at a marking M of N if

∑
t∈T U(t) · •t ≤ M . Thus, in order

for U to be enabled at M , for each place p, the number of tokens in p under M
should at least be equal to the accumulated number of tokens needed as input to
each of the transitions in U , respecting their multiplicities in U . If U is enabled
at M , it may occur which leads to M ′ = M −

∑
t∈T U(t) · •t +

∑
t∈T U(t) · t•.

Thus the effect of executing U is the accumulated effect of executing each of
its transitions (taking into account their multiplicities in U). Note that there is
no concept of structural conflict in the class of pt-nets: transitions may occur
together in a step whenever a marking supplies enough tokens.

Inhibitor and activator arcs. To each of the above net models we can add
inhibitor arcs and activator arcs connecting places to transitions, by adding
relations Inh and Act to their specification. Given the set of places P and set
of transitions T of a set-net, or en-system, or pt-net, Inh,Act ⊆ P × T define
its set of inhibitor or activator arcs, respectively. For each transition t ∈ T ,
we denote ◦t = {p | (p, t) ∈ Inh} for the set of inhibitor places of t and �t =
{p | (p, t) ∈ Act} for its activator places. (Both notions are extended to sets of
transitions, and to multisets, disregarding multiplicities.)

The intuition behind these context arcs is that in order for a transition to
be enabled at a marking, its activator places should be marked (have at least
one token) and its inhibitor places should not be marked (have no token). Thus
the dynamics of these extended net classes is adapted in the following way: a
step U is enabled at a marking when it is enabled in the underlying set-net,
or en-system, or pt-net, and �U ⊆ M and ◦U ∩M = ∅. When U is enabled
at M and it occurs, then the resulting marking is defined as before (here the
activator and inhibitor arcs have no effect). Note that this semantics is an a
priori semantics (see, e.g., [12])

4 A multiset μ over a set X is a function μ : X → N = {0, 1, 2, . . .}; such multiset
may be represented by listing its elements with repetitions. Sets can be considered
as multisets without repetitions.

8

Classifying Boolean Nets for Region-based Synthesis 5

3 Connections and connection monoids

Now we are ready to recall the general setup of [1, 2] in which Petri net classes
are defined on the basis of individual connections between places and transitions.
Moreover, the effect of the simultaneous execution of a step (a set or multiset of
transitions) on a given place is calculated using a dedicated commutative monoid
which returns the composite connection between that place and the step. For
Boolean nets, we will assume that each step is a set of transitions rather than a
multiset as in [1, 2]. This simplifies the presentation and is harmless as Boolean
Petri nets as we consider them here, would not allow true multiset steps anyway.

Connection monoids describe the relation between a place and a step. A
connection monoid (or conn-monoid) is a set S of connections with a commu-
tative and associative binary composition operation ⊕, and a neutral element
(identity) 0. We will use the same symbol S for a conn-monoid and for its

underlying set of connections. Moreover, for each s ∈ S we let
⊕0 s = 0 and⊕n+1

s = (
⊕n

s)
⊕

s for all n ∈ N.

Let S be a conn-monoid. Then, a net-type over S is a transition system
τ = (Q, S, Δ) where Q is a set of states, and Δ : Q× S→ Q is a partial function
such that Δ(q,0) = q, for all q ∈ Q. For every state q, the set enbldτ (q) = {s |
Δ(q, s) is defined} consists of all connections from S that are enabled at q.

As an example let us consider the conn-monoid SPT = (N×N,⊕,0) with 0 =
(0, 0) and point-wise arithmetic addition ⊕. Using this monoid, the connections
between places and multisets of transitions in pt-nets can be expressed through
the net-type τPT = (N, SPT , ΔPT) over SPT , where ΔPT = {(n, (m, k)) �→
n−m + k | n ≥ m ≥ 0}. Intuitively, this states that a place containing n tokens
enables steps which take no more than n tokens, and that the resulting number of
tokens is n−m+k where m and k are the numbers of tokens taken and produced,
respectively, by all occurrences of transitions in that step together. A fragment
of τPT , interpreted as a labelled directed graph, is shown in Figure 1(d).

In general, each net-type τ = (Q, S, Δ) defines a class of nets, the so-called
τ-nets. The net-type specifies through Q the values that can be assigned to
places; through the connections in S the effect of combining connections; and
through Δ, the enabling conditions and newly generated values.

A τ-net is a tuple N = (P, T, F, M0), where P and T are, respectively, disjoint
finite sets of places and transitions, F : (P × T) → S is a connection mapping,
and M0 is the initial marking of N (in general, a marking is a mapping from P
to Q). For a place p of N and a step U of transitions, we define the composite

connection between U and p by F (p, U) =
⊕

t∈T (
⊕U(t) (F (p, t)). Thus, if U is

a set, then F (p, U) =
⊕

t∈U F (p, t) and F (p, ∅) =
⊕

t∈∅
F (p, t) = 0.

A step U is (resource) enabled at a marking M if F (p, U) ∈ enbldτ (M(p))
for every place p ∈ P . The firing of such a step produces the marking M ′

such that M ′(p) = Δ(M(p), F (p, U)), for every place p ∈ P . The concurrent
reachability graph CRG(N) of N is formed by firing inductively from M0 all
possible (resource) enabled steps of N .

9

6 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

a

b

c

p q2

(a)

p �→ 0
q �→ 2

p �→ 1
q �→ 1

p �→ 2
q �→ 0

p �→ 0
q �→ 0

{c, c}

{a, a}

b

c

a

c

a

{a, c}

(b)

a

b

c

1p 1 q

(1, 0)

(2, 0)

(0, 1)

(0, 1)

(0, 0)

(1, 0)
(c)

2 3 4 6 21

(3, 1)

(1, 0)

(0, 17)

(2, 4)

(0, 0)

(3, 3)
(d)

0
1

2

0

(0, 2)

(2, 0)

(2, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 1)

(e)

2
1

0

0

(2, 0)

(0, 2)

(0, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 1)

(f)

2 3 4 6 21

{(i, j) | i > 4}

(3, 1)

(1, 0)

(0, 17)

(2, 4)

(0, 0)

(3, 3)
(g)

Fig. 1. A pt-net (a); its concurrent reachability graph (b) with the initial state rep-
resented by a small square; and its rendering as a τPT -net system (c). A fragment of
the net-type τPT is shown in (d). In (e) and (f) we re-trace in (b) the behaviour of
places p and q, respectively, in terms of the net-type τPT . An alternative graphical
representation of the net-type τPT is shown in (g).

The net-type τPT defines τPT -nets. In order to view a pt-net as a τPT -
net, all one needs to do is to associate integers, representing the number of
tokens, with each place, and set F (p, t) = (W (p, t), W (t, p)), for all places p and
transitions t. The conn-monoid SPT together with the transition system τPT

10

Classifying Boolean Nets for Region-based Synthesis 7

provides accurate information about the enabling and firing of steps U . Indeed,
all one needs to do is to calculate F (p, U) = (inwgt , outwgt) using the monoid
operation of point-wise addition (for all input and output weights of all multiple
occurrences of transitions in U).

As an illustration, let us consider the pt-net depicted in Figure 1(a). This
pt-net is represented by the τPT -net in Figure 1(c). Notice that, in particular,
F (q, b) = (0, 0) means that q and b in Figure 1(a) are disconnected. Also the
markings are represented (by indicating the number of tokens by an appropri-
ate integer 0, 1, 2, etc.). Figure 1(b) gives the concurrent reachability graph.
We furthermore obtain F (p, {a, c}) = (1, 0)⊕ (0, 1) = (1, 1) and F (q, {a, c}) =
(0, 1)⊕ (1, 0) = (1, 1) which, together with ΔPT (1, (1, 1)) = 1, means that: (i)
the net in Figure 1(a) enables the step {a, c} at the initial marking at which
both p and q have one token; and (ii) its firing results in the same marking.
On the other hand the step {c, c} is not enabled at the initial marking because
F (q, {c, c}) = (1, 0)⊕ (1, 0) = (2, 0) and (2, 0) is not enabled at 1. However, it
is enabled at the marking M with M(q) = 2 and M(p) = 0 and then its firing
results in the marking M ′ with M ′(q) = 0 and M ′(p) = 2. Now focus in the con-
current reachability graph in Figure 1(b) on the local markings of the place p in
combination with the connections that lead to changes of those local markings.
We can do this by labelling each state with the corresponding marking of p, and
each arc with the cumulative arc weight w.r.t. p of the step U labelling that arc
i.e., F (p, U). The result is shown in Figure 1(e). Repeating the same procedure
for the place q, yields Figure 1(f). Note that both graphs in Figure 1(e) and (f)
can also be seen in the graph of the net-type τPT , see Figure 1(d).

4 Connection monoids for en-systems and set-nets

Starting from en-systems, we will now present a number of specific classes of
Boolean nets defined on basis of their place-transition connections. In what fol-
lows we describe the structure of the connection monoids by a Cayley table
displaying the outcome of all possible combinations of connections.

EN-systems

In en-systems, there are three basic connections between places and transitions:

– F (p, t) = � p and t are disconnected (independent) p t

– F (p, t) = in there is an arc from p to t p t

– F (p, t) = out there is an arc from t to p p t

Figure 2(a) depicts τEN , the net-type showing how the connections between
a place and a transition in an en-system determine the enabledness of the transi-
tion w.r.t. that place and the resulting marking if it fires. In the diagram, 0 and 1

mean that the place is respectively empty (i.e., not marked) and full (marked).
Thus, if the place p is marked and there is an arc from p to the transition t
(F (p, t) = in), then t may fire as far as p is concerned and the effect will be

11

8 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

that p is empty after the occurrence of t. If p and t are not connected, t may
always occur from the point of view of p and its occurrence has no effect on the
marking of p. There is also an explicit reference to F (p, t) = in for the case that
p is empty and one to F (p, t) = out when p is full. In these cases the marking
of p prohibits the enabledness of t. In addition to the three standard types of
connections, τEN has a special ‘blocking’ connection ⊥ which does not label any
arc (is never enabled), hence ⊥ /∈ enbldτEN

(0)∪enbldτEN
(1). The connection ⊥ is

also used to capture structural conflict between transitions. As such it is a con-
venient device to capture precisely those steps which are not allowed, because
of the internal conflicting relations between their transitions w.r.t. the place.

The conn-monoid SEN = ({�, out, in,⊥},⊕EN ,�). is defined through its
Cayley table in Figure 2(b). Here out⊕EN out = out⊕EN in = in ⊕EN out =
in⊕EN in = ⊥ corresponds directly to the requirement that the neighbourhoods
of transitions in a step must be disjoint for it to be enabled to occur.

For example, if we have two transitions, t and u, both removing tokens from

place p, pt u , thus both have p as an input place, then the connection
of the step {t, u} w.r.t. p is calculated as F (p, {t, u}) = F (p, t) ⊕EN F (p, u) =
in⊕EN in = ⊥ implying that {t, u} can never occur together (on account of p).

0 1

in ⊥ out ⊥

� �

out

in

⊕EN � out in ⊥

� �

out out ⊥

in in ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊕EN out in

out ⊥

in ⊥ ⊥

(a) (b) (c)

Fig. 2. net-type τEN , and the Cayley table of SEN .

In all conn-monoids , � will be the identity element and — if present —
⊥ is the absorbing element. The monoid SEN is the most restrictive monoid
over �, in, out, and ⊥, because its operation does not yield any non-⊥ results
except when � is involved. This is clearly seen in Figure 2(c) which depicts the
non-trivial part of the Cayley table from Figure 2(b), while omitting the values
implicitly due to commutativity. In what follows we will present conn-monoids
using a minimal presentation of their Cayley table as in Figure 2(c).

A basis of a conn-monoid is any irreducible subset of its non-⊥ connections
such that any other non-⊥ connection can be derived from it.

Proposition 1. {�, in, out} is the only basis of SEN .

Proof. Follows directly from the table in Figure 2(c). ��

12

Classifying Boolean Nets for Region-based Synthesis 9

SET-nets

Now there are four basic connections between places and transitions:

– F (p, t) = � p and t are disconnected (independent) p t

– F (p, t) = rem there is an arc from p to t p t

– F (p, t) = ins there is an arc from t to p p t

– F (p, t) = loop there is an arc from t to p, and from p to t p t

Figure 3(a) depicts τSN . Comparing Figure 3(a) and Figure 2(a) brings to light
the important difference between the meaning of an arc from a transition to a
place in en-systems (connection out) and the meaning of an arc from a transition
to a place in set-nets (connection ins).

0 1

rem ⊥ loop ⊥

� � ins loop

ins

rem

⊕SN ins rem loop

ins ins

rem loop rem

loop loop loop loop

(a) (b)

Fig. 3. net-type τSN , and the simplified table of SSN = ({�, ins, rem, loop},⊕SN ,�).

Figure 4 shows the out-labelled arc in τEN and the ins-labelled arc in τSN .

0 1
out

0 1

ins

ins

Fig. 4. Difference between arcs from transitions to places in en-systems and set-nets.

The simplified Cayley table of the conn-monoid SSN is shown in Figure 3(b).
From the table we see, e.g., that if p is an output place of a transition t and

input place to u, pt u , then the connection of the step {t, u} w.r.t. p
is given by F (p, {t, u}) = F (p, t)⊕SN F (p, u) = ins⊕SN rem = loop and so, as
far as p is concerned, {t, u} can occur if p contains a token; moreover, p will also
have a token after the occurrence of {t, u}.

13

10 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

Another important property of the SSN monoid is the idempotence of its
operation (the diagonal of the Cayley table of SSN). This reflects one of the
main features of set-nets, namely that since resources are not quantified, they
can be used by many transitions with the same connectivity in tandem, as though
they were just one such transition. Note furthermore, that since set-nets know
no structural conflict, ⊥ is not introduced through ⊕SN . Consequently, ⊥ is not
necessary in the case of τSN and SSN . Actually, also SPN did not need ⊥, as
pt-nets know no structural conflicts either. However, if we consider the class of
k-bounded pt-nets then the situation is rather different as the corresponding
conn-monoid is defined as SBPT = ({⊥} ∪ Nk × Nk, +k, (0, 0)), where Nk =
{0, 1, . . . , k}, ⊥ is the absorbing element, and, for all n, m, n′, m′ ∈ Nk,

(n, m) +k (n′, m′) =

{
(n + n′, m + m′) if n + n′ ≤ k ∧ m + m′ ≤ k
⊥ otherwise .

Proposition 2. {�, ins, rem} is the only basis of SSN .

Proof. Follows directly from the table in Figure 3(b). ��

This insight forms a formal justification of the way in which τSN -nets are
drawn: direct dashed arrows are used for ins and rem, but loop as a ‘compound’
connection can be depicted by the ‘compound’ representation for ins and rem.
Note that in the ⊥-less version of SSN , loop is the absorbing element, but this
will change when we add inhibitor arcs. First however, we add inhibitor arcs to
en-systems.

EN-systems with inhibitor arcs

In comparison with en-systems, we now have one more connection to take into
account:

– F (p, t) = inh there is an inhibitor arc from p to t p t

Figure 5 shows the net-type τENI , and the simplified Cayley table of the
conn-monoid SENI = ({�, out, in, inh,⊥},⊕ENI ,�). From this we see that the
monoid SENI captures an additional type of structural conflict: in ⊕ENI inh =
inh⊕ENI in = ⊥ . That out⊕ENI inh = inh⊕ENI out = out is a consequence
of the a priori semantics.

Proposition 3. {�, in, out, inh} is the only basis of SENI .

Proof. Follows directly from the table in Figure 5(b). ��

SET-nets with inhibitor arcs

Again, we have to cater for one additional connection:

– F (p, t) = inh there is an inhibitor arc from p to t p t

14

Classifying Boolean Nets for Region-based Synthesis 11

0 1

in ⊥ out inh ⊥

� inh �

out

in

⊕ENI out in inh

out ⊥

in ⊥ ⊥

inh out ⊥ inh

(a) (b)

Fig. 5. net-type τENI (a), and the simplified Cayley table of SENI (b).

Figure 6 shows the net-type τSNI , and the simplified Cayley table of the conn-
monoid SSNI = ({�, ins, rem, loop, inh, out,⊥},⊕SNI ,�). In this case we do
need ⊥ as structural conflicts occur when inhibitors are combined with consump-
tion (exactly as in en-systems). Thus SENI captures a conflict: rem⊕SNI inh =
inh⊕SNI rem = ⊥.

Furthermore, the monoid must be closed w.r.t. its operation and so due to
the a priori step semantics for sni-nets, out had to be added as a new connection
to describe ins ⊕SNI inh. Notice that out, although on its own has the same
meaning here as in en-systems and eni-systems, it is understood differently when
combined with other connections. An example is out⊕SNI out = ⊥ rather than
out ⊕ENI out = out since the step semantics of sni-nets is different from that
of eni-systems.

0 1

rem ⊥ loop inh out ⊥

� inh � ins loop

ins out

rem

⊕SNI ins rem inh loop out

ins ins

rem loop rem

inh out ⊥ inh

loop loop loop ⊥ loop

out out ⊥ out ⊥ out

(a) (b)

Fig. 6. net-type τSNI (a), and the simplified Cayley table of SSNI (b).

Proposition 4. {�, ins, rem, inh} is the only basis of SSNI .

Proof. Follows directly from the table in Figure 6(b). ��

Like for SSNI , also the operation of SSNI is idempotent. Even stronger:

15

12 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

Proposition 5. Let T �= ∅ be a set of transitions and T = {F (p, t) | t ∈ T }.

F (p, T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if T = {�}

ins if T ⊆ {ins,�} ∧ ins ∈ T

rem if T ⊆ {rem,�} ∧ rem ∈ T

inh if T ⊆ {inh,�} ∧ inh ∈ T

out if T ⊆ {inh, ins, out,�} ∧ (out ∈ T ∨ {inh, ins} ⊆ T)

loop if T ⊆ {ins, rem, loop,�} ∧ (loop ∈ T ∨ {rem, ins} ⊆ T)

⊥ otherwise .

Proof. Follows directly from the table in Figure 6(b). The table shows that ⊕SNI

is idempotent and that {ins, rem, inh,�} is SSNI ’s basis. ��

EN-systems with inhibitor and activator arcs

The last connection we consider is:

– F (p, t) = act there is an activator arc from p to t p t

Figure 7 shows the net-type τENC , and the simplified Cayley table of the conn-
monoid SENC for enc-systems (with the a priori step semantics).

0 1

in act ⊥ out inh ⊥

� inh � act

out

in

⊕ENC out in inh act

out ⊥

in ⊥ ⊥

inh out ⊥ inh

act ⊥ in ⊥ act

(a) (b)

Fig. 7. net-type τENC (a), and the simplified Cayley table of SENC (b).

In the simplified Cayley table of SENC , we see that inh⊕ENC out = out and
act⊕ENC in = in. These pairs of connections reflect that while the transitions
involved are enabled with respect to the given place (which should be empty for
the inh and out connections, and marked for the act and in connections) they
affect it in a different way. The connections that induce a state change (out and
in) are ‘stronger’ , while the connections designated for testing (inh and act)
are ‘weaker’.

16

Classifying Boolean Nets for Region-based Synthesis 13

Proposition 6. {�, out, in, inh, act} is the only basis of SENC .

Proof. Follows directly from the table in Figure 7(b). ��

SET-nets with inhibitor and activator arcs

Again we add an activator connection:

– F (p, t) = act there is an activator arc from p to t p t

Figure 8 shows the net-type τSNC , and the simplified Cayley table of the conn-
monoid SSNC = ({�, ins, rem, inh, act, loop, out,⊥},⊕SNC ,�) for set-nets
with inhibitor and activator arcs (under the a priori step semantics).

0 1

rem ⊥ loop act inh out ⊥

� inh � ins loop act

ins out

rem

⊕SNC ins rem inh act loop out

ins ins

rem loop rem

inh out ⊥ inh

act loop rem ⊥ act

loop loop loop ⊥ loop loop

out out ⊥ out ⊥ ⊥ out

(a) (b)

Fig. 8. net-type τSNC (a), and the simplified Cayley table of SSNC (b).

Proposition 7. {�, ins, rem, inh, act} is the only basis of SSNI .

Proof. Follows directly from the table in Figure 8(b). ��

There are 9 different patterns for the various connections: from 0 (unmarked)
and from 1 (marked), either to 0 or to 1, or undefined; see Figure 9.

In each conn-monoid considered before, different connections had different
topological patterns in the associated net-type. This changes now, as in τSNC

both loop and act give rise to the same pattern. The effect of combining act

and loop however is loop rather than act. This is because, according to the
step semantics of set-nets, adding tokens happens after removing or testing.
So, in this combination, loop as a connection that induces a change of the state
is ‘stronger’ than act. Another interesting pair in the table is formed by act

and rem. The effect of composing them is rem which differs from in due to the
different underlying step semantics even though the arc pattern of rem in τSNC

and that of in in τENC are the same.
Thus we arrive at the crucial point in our considerations where it becomes

clear that the sophisticated (and sometimes surprising) nature of different con-
nections necessarily involves algebraic properties in addition to topological ones.

17

14 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

0 1 0 1 0 1

(a) (b) (c)

0 1 0 1 0 1

(d) (e) (f)

0 1 0 1 0 1

(g) (h) (i)

Fig. 9. Topological patterns of connections in Boolean τ -nets.

5 General Boolean τ -nets

We now propose a general classification of all possible connections in Boolean τ -
nets. We take the general view that each connection defines enabling and effect,
and has an associated strength (weak or strong).

Weak connections impose constraints only with respect to enabling, but un-
like strong connections, they do not impose constraints on the state resulting
from the transition firing. So, when combined with a transition with a stronger
connection, it is the latter that dictates the final result. For example, loop is
strong in SSN as it ‘finishes’ by adding a token in operational sense, as this is
supported by the algebraic property of absorbtion. rem, on the other hand, is
weak in SSN as with this connection the enabling conditions are important, but
the state of the net place (connected in this way to some transition) after the
transitions fired may be changed by another transition (removing tokens or test-
ing precedes token insertion). This leads to 25 different connections ∂xy where
x, y ∈ {w, s, w, s, n}. Here x refers to arrows outgoing from 0, and y refers to
arrows outgoing from 1; w means a weak arrow, s a strong arrow, and n no ar-
row (non-enabledness); finally, (.) implies changing the state (from 0 to 1 or vice
versa). In particular, we have the following encoding of the previously discussed
connections:

⊥ � in out ins rem loop inh act

∂nn ∂ww ∂ns ∂sn ∂ss ∂nw ∂ns ∂wn ∂nw

The corresponding topological patterns are shown in Figure 10.

18

Classifying Boolean Nets for Region-based Synthesis 15

0 1 0 1 0 1

inh act loop

0 1 0 1 0 1

out ins �

0 1 0 1 0 1

in rem ⊥

Fig. 10. Connections in Boolean τ -nets with weak arcs indicated by dashed lines.

We will now formalise in a general way algebraic operations on the 25 con-
nections. Almost all will be motivated by enabledness, and the idea of weak
and strong. In this way, associativity will be automatic in most cases. Let
∂xy ⊕ ∂x′y′ = ∂x�x′ y�y′ . where � is a commutative operation given by:

� w w s s n

w w

w w w

s s s s

s s s n s

n n n n n n

The intuition behind, for example, ∂ss is that the transition is always enabled
but its execution keeps the marking in the place unchanged.

Proposition 8. Sconn = ({w, s, w, s, n},�, w) is a commutative monoid.

Proof. We need to show that (a�b)�c = a�(b�c) for all a, b, c ∈ {w, s, w, s, n}.
To start with, if n ∈ {a, b, c} then (a � b) � c = n = a� (b� c). Otherwise, we
observe that the following hold:

– If s ∈ {a, b, c} and s /∈ {a, b, c} then (a� b)� c = s = a� (b� c).
– If s ∈ {a, b, c} and s /∈ {a, b, c} then (a� b)� c = s = a� (b� c).

19

16 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

⊕ENC out in inh act

out ⊥

in ⊥ ⊥

inh out ⊥ inh

act ⊥ in ⊥ act

⊕ENC out in inh act

out ⊥

in ⊥ ⊥

inh ⊥ ⊥ inh

act ⊥ ⊥ ⊥ act

Fig. 11. a-priori (a) and a-posteriori (b) semantics for enc-systems.

– If s ∈ {a, b, c} and s ∈ {a, b, c} then (a� b)� c = n = a� (b� c).
– If a, b, c ∈ {w, w} and w ∈ {a, b, c} then (a� b)� c = w = a� (b� c).
– If a = b = c = w then (a� b)� c = w = a� (b� c). ��

Theorem 1. Sbool = ({∂xy | x, y ∈ {w, s, w, s, n}},⊕, ∂ww) is a conn-monoid.

Proof. Follows from Proposition 8 and ∂xy ⊕ ∂x′y′ = ∂x�x′ y�y′ . ��

SSN , SSNI and SSNC are all sub-monoids of Sbool . The SSN sub-monoid is a
special one; it is non-blocking as composing connections never yields ⊥.

We can now formally describe Boolean net models as those classes of nets that
are defined by a net type over (a submonoid of) Sbool . From [2], it follows that
thanks to the interpretation of the step semantics in term of monoids, Boolean
nets are instances of τ -nets for which there exists a region-based solution to
the synthesis problem. Moreover, τ -nets with maximally concurrent semantics
(the semantics of set-nets when used to model reaction systems) fall within the
general framework of τ -nets with policies introduced in [2].

Finally, we should point out that in order to arrive at this general classifica-
tion of Boolean nets, we have had to make some (slightly arbitrary) assumptions
when the intended operational meaning of a combination was not clear. In par-
ticular, w � w has been defined in such a way as to give more priority to the
change of state. This and perhaps other assumptions are not cast in stone. With
differently motivated models in mind, one may freely modify them, study, ap-
preciate the differences. Also, we decided to define s�s as n because s and s are
both strong and so ‘uncompromising’: one changes the state whereas the other
insists on preserving the state. This contradiction cannot be reconciled.

A posteriori vs. a priori execution semantics Interestingly, conn-monoids
can distinguish between the ‘a priori’ semantics defined at the end of Section 2,
and the ‘a posteriori’ execution semantics. In the setting of en-systems, ‘a pos-
teriori’ is exactly the same as ‘a priori’ with one extra condition for an enabled
set of transitions: •U ∩ �U = U• ∩ ◦U = ∅. Figure 11 exhibits this difference.

6 Conclusions

The reader might wonder why we included in our presentation pt-nets which are
clearly non-Boolean nets. Apart from certain didactic motivations, we thought

20

Classifying Boolean Nets for Region-based Synthesis 17

that pt-nets come with a ‘calculus of connections’ based on a simpler monoid of
natural numbers. To our initial surprise, a similar effect can be achieved in our
symbolic setting where the monoid of ∂xy connections is completely determined
by a simpler monoid with the � operation. This could, perhaps, suggest a general
approach for constructing practical implementations of synthesis algorithms for
set-nets.

Note that there are variations of Petri nets, such as Boolean Petri nets, where
adding a token to an already marked place does not add another token [3, 9].
Also, behaviour of this kind was mentioned in [1] in the context of net synthesis.
Having said that, the semantics considered in prior works known to us was based
on single transition firings, rather than steps as is the case for set-nets.

Acknowledgement We would like to thank the anonymous reviewers for their
suggestions and comments. This research was supported by the Pascal Chair
award from Leiden University and the Epsrc Verdad project.

References

1. Badouel, E., Darondeau, Ph.: Theory of Regions. In: Part I of [14] (1998) 529–586
2. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of

Nets with Step Firing Policies. Fundamenta Informaticae 94 (2009) 275–303
3. De Bra, P., Houben, G.J., Kornatzky, Y.: A Formal Approach to Analyzing the

Browsing Semantics of Hypertext. Proc. CSN-94 Conference (1994) 78–89
4. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Part I of [14] (1998) 122–173
5. Ehrenfeucht, A., Main, M., Rozenberg, G.: Combinatorics of Life and Death for

Reaction Systems. International Journal of Foundations of Computer Science 22

(2009) 345–356
6. Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures; Part I: Basic Notions and

Representation Problem, and Part II: State Spaces of Concurrent Systems. Acta
Informatica 27 (1990) 315–368

7. Ehrenfeucht, A., Rozenberg, G.: Reaction Systems. Fundamenta Informaticae 76

(2006) 1–18
8. Ehrenfeucht, A., Rozenberg, G.: Events and Modules in Reaction Systems. Theo-

retical Computer Science 376 (2007) 3–16
9. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Bi-

ology. Lecture Notes in Computer Science 5016 (2008) 215–264
10. Kleijn, J., Koutny, M., Rozenberg, G.: Modelling Reaction Systems with Petri

Nets. Technical Report CS-1244. Newcastle University (2011)
11. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Elementary Net Systems with

Context Arcs and Localities. Fundamenta Informaticae 88 (2008) 307–328
12. Pietkiewicz-Koutny, M.: The Synthesis Problem for Elementary Net Systems with

Inhibitor Arcs. Fundamenta Informaticae 40 (1999) 251–283
13. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: Part I of [14] (1998)

12–122
14. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Lecture Notes in Com-

puter Science 1491, 1492 (1998)

21

The Label Splitting Problem

J. Carmona

Universitat Politècnica de Catalunya, Spain
jcarmona@lsi.upc.edu

Abstract. The theory of regions was introduced by Ehrenfeucht and
Rozenberg in the early nineties to explain how to derive (synthesize)
an event-based model from an automaton. To be applicable, the theory
relies on stringent conditions on the input automaton. Although some re-
laxation on these restrictions has been done in the last decade, in general
not every automaton can be synthesized while preserving its behavior. A
crucial step for a non-synthesizable automaton is to transform it in order
to satisfy the synthesis conditions. This paper revisits label splitting, a
technique to satisfy the synthesis conditions through renaming of prob-
lematic labels. For the first time, the problem is formally characterized
and its optimality addressed.

1 Introduction

The synthesis problem [4] consists in building a Petri net [8] that has a behav-
ior equivalent to a given automaton (transition system). The problem was first
addressed by Ehrenfeucht and Rozenberg [5] introducing regions to model the
sets of states that characterize marked places in the Petri net. The theory is
applicable to elementary transition systems, a proper subclass where additional
conditions are required, and for which the synthesis produces a Petri net with
isomorphic behavior. These restrictions were significantly relaxed in [3], introduc-
ing the subclass of excitation-closed transition systems, where not isomorphism
but bisimilarity is guaranteed. The theory of this paper is within the subclass of
excitation-closed transition systems.

When synthesis conditions do not hold, the Petri net derived might represent
a proper superset of the initial behavior [1], and therefore any faithful use of
such Petri net is rather limited. To overcome this problem, one might force
the synthesis conditions by transforming the initial transition system. The work
in [3] was the first in addressing this problem, introducing label splitting as
a technique that can be applied when excitation-closure is not satisfied. The
technique is based on relabeling the transitions of a particular event in the
transition system with new copies of the same event, thus preserving the event
name but considering each new copy as a new event with respect to the synthesis
conditions. However, [3] only presented the technique as a heuristic to progress
into excitation-closure.

The new copies produced by the label splitting technique increase the com-
plexity of the Petri net derived: each new copy will be transformed into a tran-
sition, and hence the label splitting problem is to find an optimal sequence of

22

splittings that induces the minimal number of transitions in the derived Petri
net.

The label splitting technique presented in this paper is a particular one: it is
defined on the sets of states computed when searching for regions in state-based
synthesis methods [1, 3]. These sets, called essential, are the building blocks
used in this paper to decide the labels to split. The methods for label splitting
in the aforementioned work also use the essential sets for label splitting, but as
described previously, only in a heuristic manner.

In summary, this paper presents a novel view on the label splitting technique.
First, we show how label splitting for excitation closure is nothing else than
computing the optimal coloring of a graph, i.e., the chromatic number. Second,
we characterize the conditions under which an optimal label splitting can be
derived to accomplish excitation closure. Finally, we present an algorithm that
can be used when excitation closure can not been attained by a single application
of the label splitting technique presented in this paper. This algorithm is based on
a relaxation of the label splitting problem that can be mapped into the weighted
set cover problem.

For the sake of clarity, the theory of this paper will be presented for the
class of safe (1-bounded) Petri nets. The contribution can be extended with no
substantial change for the class of general (k-bounded) Petri nets.

2 Preliminaries

2.1 Finite transition systems and Petri nets

Definition 1 (Transition system). A transition system is a tuple
(S,E,A, sin), where S is a set of states, E is an alphabet of actions, such
that S ∩ E = ∅, A ⊆ S × E × S is a set of (labeled) transitions, and sin is the
initial state.

We use s
e→ s′ as a shortcut for (s, e, s′) ∈ A, and we denote its transitive

closure as
∗→. A state s′ is said to be reachable from state s if s

∗→ s′. Let
TS = (S,E,A, sin) be a transition system. We consider connected transition
systems that satisfy the following axioms: i) S and E are finite sets, ii) every
event has an occurrence: ∀e ∈ E : ∃(s, e, s′) ∈ A, and iii) every state is reachable

from the initial state: ∀s ∈ S : sin
∗→ s.

Definition 2 (Petri net [8]). A Petri net is a tuple PN = (P, T, F,M0) where
P and T represent finite disjoint sets of places and transitions, respectively, and
F ⊆ (P × T) ∪ (T × P) is the flow relation. The initial marking M0 ⊆ P defines
the initial state of the system.

For a node n (place or transition) of a Petri net, •n (n•) is the predecessor
(successor) set of n in F . A transition t ∈ T is enabled in a markingM iff •t ⊆ M .
The firing of t results in a new markingM ′, with one less token in •t and one more
token in t•. A marking M ′ is reachable from M if there is a sequence of firings

23

σ = t1t2 . . . tn that transforms M into M ′, denoted by M [σ〉M ′. A sequence of
transitions σ = t1t2 . . . tn is a feasible sequence if M0[σ〉M , for some M . The set
of all markings reachable from the initial marking M0 is called its Reachability
Set. The Reachability Graph of a Petri net PN (RG(PN)) is a transition system
in which the set of states is the Reachability Set, the events are the transitions

of the net and a transition (M1, t,M2) exists if and only if M1
t→ M2.

2.2 Regions and synthesis

The theory of regions provides a way to go from transition systems to Petri
nets. We now review this theory (the interested reader can refer to [1,3–5,7] for
a complete overview). Let S′ be a subset of the states of a transition system,
S′ ⊆ S. If s �∈ S′ and s′ ∈ S′, then we say that transition (s, a, s′) enters S′.
If s ∈ S′ and s′ �∈ S′, then transition (s, a, s′) exits S′. Otherwise, transition
(s, a, s′) does not cross S′.

Definition 3. Let TS = (S,E,A, sin) be a transition system. Let S′ ⊆ S be a
subset of states and e ∈ E be an event. The following conditions (in the form of
predicates) are defined for S′ and e:

in(e, S′) ≡ ∃(s, e, s′) ∈ A : s, s′ ∈ S′

out(e, S′) ≡ ∃(s, e, s′) ∈ A : s, s′ �∈ S′

nocross(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 ∈ S′ ⇔ s2 ∈ S′

enter(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 �∈ S′ ∧ s2 ∈ S′

exit(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 ∈ S′ ∧ s2 �∈ S′

Note that nocross(e, S′) = in(e, S′) ∨ out(e, S′). We will abuse the notation
and will use nocross(e, S′, (s1, e, s2)) to denote a transition (s1, e, s2) that makes
the predicate nocross(e, S′) to hold, and the same for the rest of predicates.

The notion of a region is central for the synthesis of Petri nets. Intuitively,
each region is a set of states that corresponds to a place in the synthesized Petri
net, so that every state in the region models the marking of the place.

Definition 4 (Region). A set of states r ⊆ S in transition system TS =
(S,E,A, sin) is called a region if the following two conditions are satisfied for
each event e ∈ E:

– (i) enter(e, r) ⇒ ¬nocross(e, r) ∧ ¬exit(e, r)
– (ii) exit(e, r) ⇒ ¬nocross(e, r) ∧ ¬enter(e, r)
A region is a subset of states in which all transitions labeled with the same

event e have exactly the same “entry/exit” relation. This relation will become
the successor/predecessor relation in the Petri net. The event may always be
either an enter event for the region (case (i) in the previous definition), or
always be an exit event (case (ii)), or never “cross” the region’s boundaries,
i.e. each transition labeled with e is internal or external to the region, where

24

a b

c

d

r1r2

r3 r4

r5

a b

b a d

s1

c

(a) (b)

Minimal Regions

1

2r = { s1, s3 }

3r = { s2, s4 }

4r = { s3, s4 }
r = { s5 }

5

r = { s1, s2 }

(c)

s2 s3

s4

s5

Fig. 1. (a) transition system, (b) minimal regions, (c) synthesis applying Algorithm of
Figure 3.

the antecedents of neither (i) nor (ii) hold. The transition corresponding to the
event will be successor, predecessor or unrelated with the corresponding place
respectively. Examples of regions are reported in Figure 1: from the transition
system of Figure 1(a), some regions are enumerated in Figure 1(b). For instance,
for region r2, event a is an exit event, event d is an entry event while the rest of
events do not cross the region. Let r and r′ be regions of a transition system. A
region r′ is said to be a subregion of r if r′ ⊂ r. A region r is a minimal region if
there is no other region r′ which is a subregion of r. Going back to the example
of Figure 1, in Figure 1(b) we report the set of minimal regions. Each transition
system TS = (S,E,A, sin) has two trivial regions: the set of all states, S, and
the empty set. The set of non-trivial regions of TS will be denoted by RTS.

A region r is a pre-region of event e if there is a transition labeled with
e which exits r. A region r is a post-region of event e if there is a transition
labeled with e which enters r. The sets of all pre-regions and post-regions of e
are denoted with ◦e and e◦, respectively. By definition it follows that if r ∈ ◦e,
then all transitions labeled with e exit r. Similarly, if r ∈ e◦, then all transitions
labeled with e enter r.

The computation of the minimal regions is crucial for the synthesis methods
in [1, 3]. It is based on the notion of excitation region [6].

Definition 5 (Excitation region). The excitation region of an event e, ER(e),
is the set of states in which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ A}

In Fig. 1(a), the set ER(c) = {s4} is an example of an excitation region1. The
set of minimal regions sufficient for synthesis can be generated from the ERs of
the events in a transition system in the following way: starting from the ER of

1 Excitation regions are not regions in the terms of Definition 4. The term is used for
historical reasons. For instance, ER(c) is not a region.

25

b1
b2

b2

b1

a
b2

d

c

b1

(a) (b)

a

d c
dd

d

c
b

a b

d c
d

b

d

d

b
c

(c)

27 5

6

4

1

3

Fig. 2. (a) transition system (only numbers of states are shown), (b) ECTS by label-
splitting, (c) synthesized Petri net.

each event, set expansion is performed on those events that violate the region
condition (a pseudocode of the expansion algorithm is given in Figure 10 in [3]).
The following lemma characterizes the states to be added in the expansion of
ERs:

Lemma 1 (Essential states to become a region [3]). Let TS =
(S,E,A, sin) be a transition system. Let r ⊂ S be a set of states such that r
is not a region. Let r′ ⊆ S be a region such that r ⊂ r′. Let e ∈ E be an event
that violates some of the conditions for r to be a region. The following predicates
hold:

1. in(e, r) ∧ [enter(e, r) ∨ exit(e, r)] =⇒
{s|∃s′ ∈ r : (s, e, s′) ∈ A ∨ (s′, e, s) ∈ A} ⊆ r′

2. enter(e, r) ∧ exit(e, r) =⇒
{s|∃s′ ∈ r : (s, e, s′) ∈ A ∨ (s′, e, s) ∈ A} ⊆ r′

3. out(e, r) ∧ enter(e, r) =⇒
[{s|∃s′ ∈ r : (s, e, s′) ∈ A} ⊆ r′] ∨ [{s|∃s′ �∈ r : (s′, e, s) ∈ A} ⊆ r′]

4. out(e, r) ∧ exit(e, r) =⇒
[{s|∃s′ ∈ r : (s′, e, s) ∈ A} ⊆ r′] ∨ [{s|∃s′ �∈ r : (s, e, s′) ∈ A} ⊆ r′]

Hence, in cases 1 and 2 above, the violating event e is converted into a
nocross event, where only one way of expanding r is possible. On the contrary,
in case 3 (4) there are two possibilities for expansion, depending on whether the
violating event will be converted into an enter or nocross (exit or nocross)
event. In summary, set expansion to legalize violating events in a set of states
generates a binary exploration tree. An example of such tree can be found in [3],
Fig.12(b). The following definition formalizes the notion of essential set:

Definition 6 (Essential set of an event). Let TS = (S,E,A, sin) be a tran-
sition system, and event e ∈ E. Essential(e) is the set of sets of states found by
inductive application of Lem. 1, with initial set ER(e).

Notice that Essential(e) ⊆ P(S), and ∀Si ∈ Essential(e) :
ER(e) ⊆ Si. For instance, in Fig. 2(a) Essential(c) = {ER(c) =
{s2, s5}, {s1, s2, s5, s7}, {s2, s3, s5, s6}}. The two states different from ER(c) in
Essential(c) are computed according to case 4 in Lem. 1 on event b.

26

Algorithm: Petri net synthesis

– For each event e ∈ E generate a transition labeled with e in the Petri net;
– For each minimal region ri ∈ RTS generate a place ri;
– Place ri contains a token in the initial marking iff the corresponding

region ri contains the initial state of TS sin;
– The flow relation is as follows: e ∈ ri• iff ri is a pre-region of e

and e ∈ •ri iff ri is a post-region of e, i.e.,

FTS
def
= {(r, e)|r ∈ RTS ∧ e ∈ E ∧ r ∈ ◦e}

∪{(e, r)|r ∈ RTS ∧ e ∈ E ∧ r ∈ e◦}

Fig. 3. Algorithm for Petri net synthesis from [7].

The procedure given by [7] to synthesize a Petri net, NTS =
(RTS, E, FTS, Rsin), from an elementary transition system2, TS = (S,E,A, sin),
is illustrated in Figure 3. Notice that only minimal regions are required in the
algorithm [4]. An example of the application of the algorithm is shown in Fig-
ure 1. The initial transition system and the set of minimal regions is reported
in Figures 1(a) and (b), respectively. The synthesized Petri net is shown in Fig-
ure 1(c).

2.3 Excitation-closed transition systems

Definition 7 (Excitation-closed transition systems). A transition system
TS = (S,E,A, sin) is excitation-closed (ECTS) if it satisfies the following two
axioms:

– Excitation closure (EC): For each event a:
⋂

r∈ ◦a r = ER(a)
– Event effectiveness: For each event a: ◦a �= ∅
The synthesis algorithm in Figure 3 applied to an ECTS derives a Petri net

with reachability graph bisimilar to the initial transition system [3]. When the
transition system is not excitation closed, then it must be transformed to enforce
that property. One possible strategy is to represent every event by multiple
transitions with the same label. This technique is called label splitting. Figure 2
illustrates the technique. The initial transition system, shown in Figure 2(a),
is not an ECTS: the event c is not EC (the only minimal region that contains
ER(c) is {s2, s3, s5, s6}, which does not makes the EC axiom of Def. 7 to hold).
The transition system is transformed by splitting the event b into the events b1
and b2, as shown in Figure 2(b), resulting in an ECTS. The synthesized Petri
net, with two transitions for event b is shown in Figure 2(c). The reachability

2 Elementary transition systems are a proper subclass of the transition systems con-
sidered in this paper, were additional conditions to the ones presented in Section 2.1
are required.

27

TS TS’ Petri Net
Reachability

GraphLabel
Splitting

Synthesis Behavior

split−morphic bisimilar

bisimilar (abstracting event instances)

Fig. 4. Relationship between the different objects if label splitting is applied.

graph of the Petri net of Fig. 2(c) is split-morphic [3] to the transition system
of Fig. 2(a): there exist a surjective mapping between the sets of events, where
different instances of the same event (a1, a2, . . .) are mapped to the only one
event a. If we abstract away the label indexes, the equivalence relation defined is
bisimilarity. Fig. 4 shows the relationships between the original transition system,
the transformed one obtained through label splitting, and the reachability graph
of the synthesized Petri net.

Hence in Petri net synthesis label splitting might be crucial for the existence
of a Petri net with bisimilar behavior. The following definition describes the
general application of label splitting:

Definition 8 (Label splitting). Let TS = (S,E,A, sin) be a transition system.
The splitting of event e ∈ E derives a transition system TS′ = (S,E′, A′, sin),
with E′ = E − {e} ∪ {e1, . . . , en}, and such that every transition (s1, e, s2) ∈ A
corresponds to exactly one transition (s1, ei, s2), and the rest of transitions for
events different from e in A are preserved in A′.

Label splitting is a powerful transformation which always guarantees exci-
tation closure: any TS can be converted into one where every transition has a
different label. By definition, the obtained TS is ECTS but the size of the de-
rived Petri net is equal to the size of the obtained ECTS. In this paper we aim at
reducing the number of splittings, thus reducing the size of the Petri net derived.

The work presented in this paper considers a particular application of the la-
bel splitting technique which is based on converting a set into a region, described
in the next section. By restricting the transformation, we are able to determine
these situations where a minimal set of labels is enough to guarantee excitation
closure.

3 Optimal label splitting to attain a region

In this section the following problem is addressed: given a transition system
TS = (S,E,A, sin) and a set of states S′ ⊆ S which is not a region, determine
the minimal number of label splittings to be applied in order to S′ become
a region. This is a crucial step for the technique presented in the following
section to satisfy the ECTS condition. The main contribution of this section is

28

(5, b, 1)

(3, b, 4)

(6, b, 1)(2, b, 7)

(b)

b
b

b

b
27 5

6

4

1

3

(a) (c)
(5, b, 1)

(3, b, 4)

(6, b, 1)(2, b, 7)

Fig. 5. (a) Projection of the transition system of Fig. 2(a) for the transitions on event
b and set of states {s2, s5}, (b) GG(b, {s2, s5}), (c) coloring.

to show that the problem might be reduced to compute the chromatic number
of a graph [9].

First we introduce the concept of gradient graph:

Definition 9 (Gradient Graph). Given a transition system TS =
(S,E,A, sin), a set S′ ⊆ S and an event e ∈ E, the gradient graph of e with re-
spect to S′ in TS, denoted as GG(e, S′) = (Ae,M) is an undirected graph defined
as:

– Ae = {(s, x, s′)|(s, x, s′) ∈ A ∧ x = e}, is the set of nodes
– M = {(v, v′)|v, v′ ∈ Ae ∧

[(enter(e, S′, v) ∧ (nocross(e, S′, v′) ∨ exit(e, S′, v′))) ∨
(exit(e, S′, v) ∧ (nocross(e, S′, v′) ∨ enter(e, S′, v′)))]}, is the set of edges.
Informally, the gradient graph contains as nodes the transitions of an event

e, and an edge exist between two nodes if they satisfy different predicates on set
S′. For instance, the gradient graph on event b and set of states S′ = {s2, s5} in
the transition system of Fig. 2(a) is shown in Fig. 5(b) (for the sake of clarity
we show in Fig. 5(a) the transitions on event b from Fig. 2(a)).

A graph G = (V,E) is k-colourable if there exists an assignment
α : V → {1, 2, . . . k} for which any pair of nodes v, v′ ∈ V such that (v, v′) ∈ E
satisfy α(v) �= α(v′). The chromatic number, χ(G), of a graph G is the mini-
mum k for which G is k-colourable [9]. The rest of the section shows the relation
between the chromatic number and the optimal label splitting to attain a region.

Definition 10 (Label splitting as gradient graph coloring). Given a
transition system TS = (S,E,A, sin), the label splitting of event e according
to a coloring α of the gradient graph GG(e, S′) derives the transition system
TS′ = (S,E′, A′, sin) where E′ = E − {e} ∪ {e1, . . . , en}, with {e1, . . . , en} being
the colors defined by the coloring of GG(e, S′). Every transition (s, e, s′) of event
e is transformed into (s, eα((s,e,s′)), s

′), whilst the rest of transitions of events in
E − {e} are preserved in A′.

For instance, the label splitting of the transition system of Fig. 2(a) according
to the coloring shown in Fig. 5(c) of GG(b, {s2, s5}) is shown on Fig. 2(b).

29

Proposition 1. Given a transition system TS = (S,E,A, sin) and the gradient
graph GG(e, S′). If event e is split in accordance with a χ(GG(e, S′))-coloring
of GG(e, S′) then the new events {e1, . . . , eχ(GG(e,S′))} inserted satisfy the region
condition on S′ (c.f., Def. 4)).

Proof. By contradiction: assume there exists ei ∈ {e1, . . . , eχ(GG(e,S′))} such that
conditions of Def. 4 do not hold. Without loss of generality, we assume that there
exist (s1, ei, s2) and (s′1, ei, s

′
2) for which predicates enter(ei, S

′, (s1, ei, s2)) and
nocross(ei, S

′, (s1, ei, s2)) hold (the other cases can be proven similarly). But
then the nodes (s1, ei, s2) and (s′1, ei, s

′
2) are connected by an edge, but they are

assigned the same color ei. Contradiction. �

Corollary 1. Given a transition system TS = (S,E,A, sin) and a set S′ ⊆ S. If
every event e is split according to the colors required for achieving χ(GG(e, S′)),
then S′ is a region in the resulting transition system.

Proof. It follows from iterative application of Prop. 1. �

In the following theorem we abuse the notation and extend the χ operator
to sets of states:

Theorem 1. Given a transition system TS = (S,E,A, sin) and a set S′ ⊆ S,
let χ(S′) = χ(GG(e1, S′)) + . . . + χ(GG(en, S′)), with E = {e1, . . . , en}. Then
χ(S′) is a lower bound to the number of labels needed to make S′ to be a region.

Proof. By contradiction: if there is a k < χ(S′) such that only k labels are
needed to convert S′ into region, then there is an event e ∈ E for which less
than χ(GG(e, S′)) labels are used to split e for satisfying the conditions of Def. 4.
This leads to a contradiction to the chromatic number of the graph GG(e, S′). �

The theory of this section represents the core idea for the label splitting
technique of this paper. The next section shows how apply it to attain ECTSs.

4 Optimal label splitting on essential sets for synthesis

Given a non-ECTS, the following question arises: is there an algorithm to trans-
form it into an ECTS with a minimal number of label splittings? This section
addresses this problem, deriving sufficient conditions under which a positive an-
swer can be given. As was done in previous work [3], in this paper we will restrict
the theory to a particular application of the label splitting: instead of an arbi-
trary instantiation of Def. 8 which may split an event of a transition system in
peculiar way, we will only consider the splittings used to convert essential sets
into regions (Def. 10), technique which has been shown in the previous section.

We will tackle the problem in two phases: first, we will show how the EC for
a given event can be achieved by using the essential sets found in the expansion
of the ER of an event, defined in Lem. 1. Then we will show the conditions
under which the strategy can be applied in the general case, i.e. considering the

30

whole set of non-EC events. We start by defining the set of states that both are
included in the intersection of pre-regions of an event but are not included in
the excitation region:

Remainder(e) = (
⋂

q∈ ◦e

q) \ ER(e)

Clearly, event e is EC if and only if Remainder(e) = ∅ (cf., Def. 7).
For the definitions and theorems below, we assume a context transition sys-

tem TS = (S,E,A, sin), and useWitness(e) to denote the sets of essential sets of
an event e such that, if they are converted into regions, Remainder(e) becomes
empty. Formally:

Definition 11 (Witness set of an event). Let TS = (S,E,A, sin) be a tran-
sition system, and event e ∈ E. Witness(e) is defined as follows:

C = {S1, . . . , Sk} ∈ Witness(e) ⇐⇒ ∀Si ∈ C : Si ∈ Essential(e) ∧
(
⋂

q∈(◦e ∪ C) q) \ ER(e) = ∅

Finally, if C = {S1, . . . , Sk}, we abuse the notation and use χ(C) to denote
χ(GG(e1, S1) ∪ . . . ∪ GG(e1, Sk)) + . . . + χ(GG(en, S1) ∪ . . . ∪ GG(en, Sk)), with
E = {e1, . . . , en}. The union operator on gradient graphs is defined as GG(e, S1)∪
. . .∪GG(e, Sk) = (Ae,M1∪ . . .∪Mk), with Ae and Mi being the nodes and edges
of the graph GG(e, Si), respectively c.f., Def. 93.

First, we start by describing the minimal strategy to make an event to satisfy
its excitation closure:

Proposition 2. Let C = {S1, . . . , Sk} ∈ Witness(e) such that χ(C) is minimal,
i.e., ∀C′ ∈ Witness(e) : χ(C) ≤ χ(C′). Then, if only label splitting on essential
sets (Def. 10) is considered, χ(C) is the minimal number of labels needed to make
Remainder(e) = ∅.

Proof. The minimality of χ(C) guarantees that, by using label splitting on es-
sential sets, the minimal number of labels has been used in the coloring of the
gradient graphs of each event for each set in C. �

Given a non-ECTS, the optimal label splitting problem on essential sets is to
determine the sets to convert into regions in order to reduce the set Remainder
to the empty set for each non-EC event, using minimal number of labels.

Definition 12 (Optimal label splitting on essential sets). Given the
non-EC events e1 . . . ek ∈ E, define the universe U as Witness(e1) ∪
. . . ∪ Witness(ek). The optimal label splitting problem is to determine sets
S1, . . . , Sn ⊆ U such that ∀1 ≤ i ≤ k : ∃C ∈ Witness(ei) : C ⊆ {S1, . . . , Sn} and
where χ(S1, . . . , Sn) is minimal.

3 We only consider the union of gradient graphs of the same event.

31

11

1

1 2

2 2

2

1 2

s0

s5 s8

s2

s7

ea

c

n n

s1

b

s3

s6

s9

e

s4

a

c

(c)

s0

s5 s8

s2

s4

s7

e

s1

b

c

a a

s3

s6

s9

n

c

e

n

(b)

s0

s5 s8

s2

s4

s7

(a)

s1

b

e

c

a a

s3

s6

s9

n

c

e

n

Fig. 6. (a) Initial transition system: all the events but b are EC, (b) the splitting of e
leads to new events e1 and e2 not satisfying the EC property, (c) the final ECTS, where
all events have been split.

Notice that Def. 12 is defined on the set of all essential sets of the non-
EC events, searching for a set of essential sets which both has minimal number
of labels and ensures EC for these events. An interesting result guarantees EC
preservation for those events that both satisfy initially the EC and were not split:

Proposition 3. Let e ∈ E be such that Remainder(e) = ∅ and it has not
been selected for splitting. Then Remainder(e) = ∅ in the new transition system
obtained after label splitting.

Proof. Label splitting preserves the set of regions: the predicates of Def. 4 that
hold on each region will also hold if some event is split. Hence, the witness set
of regions that ensures Remainder(e) = ∅ is still valid after label splitting. �

However, label splitting may break events for which the excitation closure
was satisfied or attained. Unfortunately, the new events appearing might not
satisfy the excitation closure property as the following example demonstrates.

Example 1. In the transition system of Figure 6(a) events n, c, a and e are EC, as
demonstrated by their witness: Witness(n) = {{s0}}, Witness(c) = {{s1, s2}},
Witness(a) = Witness(e) = {{s3, s4}}. However, b is not EC, and the splitting
required for b to be EC is done on the essential set {s6}, which requires to
split the EC event e, resulting in the transition system of Fig. 6(b). The new
events e1 and e2 arising from the splitting of e are not EC. This requires further
splittings, which as in the case of b, force the splitting of EC events resulting
in new events that are not EC. Four iterations are required to attain the ECTS
shown in Fig. 6(c).

This example invalidates any label splitting strategy that aims at reaching
excitation closure in just one iteration of the synthesis process: in general, when
the splitting of some event is applied, its ER is divided into several ERs for which
there might be no witness which guarantee the EC of these new events arising.

32

Importantly, the label splitting technique preserves the regions, but new regions
might be necessary for the new events arising from a splitting. Therefore, any
label splitting technique must be an iterative method (see next section for such
a method). However, if the new labels inserted do not incur excitation closure
problems, the presented technique guarantees the optimal label splitting:

Theorem 2. Let TS′ = (S,E′, A′, sin) be the transition system reached af-
ter splitting labels on non-EC events e1, . . . ek in transition system TS =
(S,E,A, sin), using the strategy from Def. 12. Then, if the new events appearing
are EC, the number of splittings performed is minimal and TS′ is ECTS.

Proof. The minimality of the strategy used in Def. 12 ensures that no less split-
tings are possible to make e1, . . . ek EC. Moreover, the assumption implies that
the new events arising from the splitting are EC. Finally, Prop. 3 guarantees that
EC events that were not split are still EC. The set of events E′ is partitioned
into these three sets, and therefore TS′ is ECTS. �

5 A greedy algorithm for iterative label splitting

The optimization problem for optimal label splitting presented in the previous
section is hard to tackle: considering the global optimal label splitting through
local achievement of EC for every non-EC event. However, if some relaxations are
done, the problem can be seen as an instance of the weighted set cover (WSC)
problem [2]. This section shows how to cast the problem into an WSC setting
and depicts an algorithm for label splitting that iterates until excitation closure
is attained. Unfortunately, for a set of witness elements S1, . . . , Sn, the equality

χ(S1, . . . , Sn) = χ(S1) + . . .+ χ(Sn) (1)

does not hold in general, e.g., imagine that some Si, Sj satisfy Si ∩ Sj �= ∅: in
that situation one may be counting twice the labels (colors) needed in the right
part of the equality of (1). That prevents an exact mapping of the label splitting
optimization problem into the WSC setting. However, one may allow this impre-
cision for the sake of having an efficient manner to derive good candidates. The
following model maps the optimization problem of Def. 12 into an ILP problem,
whose solution provides candidates that, although potentially suboptimal, might
represent good candidates for label splitting in practice:

min
∑

C∈W χ(C) ·XC (2)

s.t.

∀e ∈ e1 . . . ek :
∑

C∈Witness(e) XC ≥ 1

XC ∈ {0, 1}
where e1 . . . ek ∈ E are the set of non-EC events and W = Witness(e1) ∪ . . . ∪
Witness(ek). A solution to the ILP model (2) will then minimize the sum of the
cost of the witness selected for each non-EC event.

33

Algorithm 1: IterativeSplittingAlgorithm

Input: Transition system TS = (S,E,A, sin)
Output: Excitation-closed transition system TS′ = (S,E′, A′, sin) bisimilar to

TS
begin1

TS′ = TS2

R = GenerateMinimalRegions(TS)3

while not (ExcitationClosed(TS′,R)) do4

W = CollectWitnesses(TS′)5

(S1, . . . , Sn) = Solution ILP model (2)6

TS′ = SplitLabels(TS′, S1, . . . , Sn)7

R = R∪ {S1, . . . , Sn}8

end9

end10

Algorithm 1 presents the iterative strategy to derive an ECTS. It first com-
putes the minimal regions of the initial transition system. Then the main loop of
the technique starts by collecting the witnesses for non-EC events of the current
transition system, which are provided in the set W (line 5). Then the cover for
the non-EC events is computed by solving the ILP model (2) in line 6. Notice
that for the sake of clarity of the algorithm, we provide in line 6 the sets that
form the cover instead of providing the particular witness selected for each event
(i.e., given a solution C1, . . . , Ck of model (2), {S1, . . . , Sn} =

⋃
1≤i≤k Ci). In line

7 the splitting of labels corresponding to χ(S1, . . . , Sn) is performed, ensuring
that sets S1, . . . , Sn become regions. The new regions are appended to the regions
found so far (which are still regions, see proof of Prop. 3), and the excitation
closure is re-evaluated to check convergence.

Although the presented iterative technique is not guaranteed to provide the
optimal, the improvements with respect to the previous (also non-optimal) ap-
proaches [1, 3] are:

– the whole set of non-EC events are considered in every iteration: in previous
work only one is considered, and

– for every non-EC event, the necessary splittings are applied to attain excita-
tion closure: on the previous work, only one of the splittings was applied.

Hence the macro technique presented in this section is meant to speed-up the
achievement of the excitation closure, when compared to the micro techniques
presented in the literature.

6 Discussion and conclusions

This paper has presented a fresh look at the problem of label splitting, by relating
it to some of the well-known NP-complete problems like chromatic number or

34

set covering. In a restricted application of label splitting based on essential sets,
optimality is guaranteed if certain conditions hold.

For the sake of clarity, we have restricted the theory to safe Petri nets. The
extension to k-bounded Petri nets can be done by adapting the notion of gradient
graph to use gradients (see [1] for the formal definition of gradient) instead of
the predicates required in Def. 4. Given a multiset r which is not a k-bounded
region, the essential sets will be those multisets r′ ≥ r such that the number of
gradients for some event has decreased, i.e., r′ is a sound step towards deriving
a region from multiset r. Finally, the excitation closure definition for the general
case should be the one described in [1], and the witness of an event defined
accordingly.

As a future work, addressing the general problem with unrestricted applica-
tion of splitting (i.e., not using essential sets but instead arbitrary selections of
labels to split) might be an interesting direction to follow. Also, incorporating
the presented techniques into our synthesis tool [1] will be considered.

References

1. J. Carmona, J. Cortadella, and M. Kishinevsky. New region-based algorithms for
deriving bounded Petri nets. IEEE Transactions on Computers, 59(3):371–384,
2009.

2. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2001.

3. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers, 47(8):859–882,
Aug. 1998.

4. J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta Inf., 33(4):297–
315, 1996.

5. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I, II. Acta
Informatica, 27:315–368, 1990.

6. M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Concurrent Hard-
ware: The Theory and Practice of Self-Timed Design. John Wiley and Sons, London,
1993.

7. M. Nielsen, G. Rozenberg, and P. Thiagarajan. Elementary transition systems.
Theoretical Computer Science, 96:3–33, 1992.

8. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut für Instru-
mentelle Mathematik, 1962. (technical report Schriften des IIM Nr. 3).

9. D. B. West. Introduction to Graph Theory. Prentice-Hall, 1996.

35

Aggregating Causal Runs into Workflow Nets

B.F. van Dongen, J. Desel, and W.M.P. van der Aalst

b.f.v.dongen@tm.tue.nl, joerg.desel@fernuni-hagen.de,
w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper provides three algorithms for constructing system nets from

sets of partially-ordered causal runs. The three aggregation algorithms differ with

respect to the assumptions about the information contained in the causal runs.

Specifically, we look at the situations where labels of conditions (i.e. references

to places) or events (i.e. references to transitions) are unknown. Since the pa-

per focusses on aggregation in the context of process mining, we solely look at

workflow nets, i.e. the class of Petri nets with unique start and end places. The

difference of the work presented here and most work on process mining is the

assumption that events are logged as partial orders instead of linear traces. Al-

though the work is inspired by applications in the process mining and workflow

domains, the results are generic and can be applied in other application domains.

1 Introduction

This paper proposes different approaches to “discover” process models from observing

runs, i.e., runs (also known as causal nets or occurrence nets, see e.g. [1]) are aggregated

into a single Petri net that captures the observed behaviour. Runs provide information

about events together with pre- and post-conditions which constitute a (partial) order

between these events.

There are many techniques to discover sequential process models based on event

logs (also known as transaction logs, audit trails, etc). People working on process min-

ing techniques [2] also tackle situations where processes may be concurrent and the

set of observations is incomplete. The set of possible sequences is typically larger than

the number of process instances thus making it unrealistic to assume that all possible

combinations of behaviour have been observed.

In many applications, the event log is linear, e.g., sorted based on timestamps, and

an approach based on runs is not applicable. However, there are processes where it is

possible to monitor causal dependencies (e.g., by analyzing the dataflows). We also

encountered some systems that actually log behaviour using a representation similar to

runs. The ad-hoc workflow management system InConcert of Tibco (formerly Xerox)

allows end users to define and modify process instances (e.g., customer orders) while

capturing the causal dependencies between the various activities. The representation

used directly corresponds to runs. The analysis tool ARIS PPM (Process Performance

Monitor) of IDS Scheer can extract runs represented as so-called instance EPCs (Event-

driven Process Chains) from systems such as SAP R/3 and Staffware. These examples

show that in real-life systems and processes runs can be recorded or already are being

recorded, thus motivating the work presented in this contribution.

36

start order

c1

c2

c3

send_bill

send_goods

pay_credit_card

pay_cash

c4

c5

c6

archive end

start order

c1

c2

c3

send_bill

send_goods

pay_cash

c4

c5

c6

archive end

start order

c1

c2

c3

send_bill

send_goods

pay_credit_card

c4

c5

c6

archive

(a) Known event and condition labels.

start order

c1

c2

c3

send_something

pay_credit_card

pay_cash

c4

c5

c6

end

start order

c1

c2

c3 pay_cash

c4

c5

c6

end

start order

c1

c2

c3 pay_credit_card

c4

c5

c6

send_something

send_something

send_something

send_something

send_something

(b) Known condition labels and unknown or non-unique event labels.

order

send_bill

send_goods

pay_credit_card

pay_cash

archive

order

send_bill

send_goods

pay_cash

archive

order

send_bill

send_goods

pay_credit_card

archive

(c) Known event labels and unknown condition labels.

Fig. 1. Example describing the three problems tackled in this paper.

37

To introduce the main topic of this paper we use the examples shown in Figure 1.

The left-hand side of this figure shows several runs. These are the behaviours that have

been observed by extracting information from e.g. some enterprise information system.

The right-hand side shows the models that we would like to discover by aggregating

the runs shown on the left-hand side. Runs are represented by acyclic Petri nets without

any choices. Figure 1 (a) shows the easiest situation. Here we assume that in the run all

event and condition labels have been recorded in some event log. There are two runs

and it is easy to see that the aggregated model can indeed reproduce these two runs,

and no other runs are possible. However, in general not all possible runs need to be

present. In most application domains the number of possible runs is larger than the ac-

tual number of process instances. Figure 1 (b) describes a more complex problem where

not all event labels are recorded or where the same label may refer to different transi-

tions. For example, in Figure 1 (b) the archive event is no longer visible and the two

send events (send_goods and send_bill) cannot be distinguished, since both of

them are recorded as send_something. Figure 1 (c) illustrates the most challenging

problem, i.e., the event labels are given but the condition labels are not recorded at all.

Nevertheless, the Petri net on the right is the most likely candidate process to exhibit

such behaviour. In this paper we will tackle the problem of aggregating runs into a Petri

net that can generate these runs. We will show that it is possible to do this for the three

situations depicted in Figure 1.

The generation of system nets from their causal runs has been investigated before.

The first publication on this topic is [3]. Here the basis is assumed to be the set of

all runs. These runs are folded, i.e., events representing the occurrence of the same

transition are identified, and so are conditions representing a token on the same place.

In [4] a similar folding approach is taken, but there the authors start with a set of causal

runs, as we do in the present paper. [4] does not present algorithms in details for the

aggregation of runs but rather concentrates on correctness criteria for the derived system

net. [5] extracts Petri nets from models which are based on Message Sequence Charts

(MSCs), a concept quite similar to causal runs. Less related is the work presented in

[6], where a special variant of MSCs is used to generate a system implementation.

In more recent papers [7], so-called regions are defined for partial orders of events

representing runs. These regions correspond to anonymous places of a synthesized

Place/Transition net, which can generate these partial orders. In contrast to our work, the

considered partial orders are any linearizations of causal orders, i.e., two ordered events

can either occur in a sequence (then there is a causal run with a condition ”between” the

events) or they can occur concurrently. Consequently, conditions representing tokens on

places are not considered in these partial orders whereas our approach heavily depends

on these conditions.

The goal of process mining is to extract information about processes from event

logs. One of its aspects focusses on finding a process specification, based on a set of

executions of that process, i.e. a process log is taken as a starting point. A variety of

algorithms have been proposed to generate a process model based on this log. Typically,

such a log is considered to consist of cases (i.e. process instances, for example one

insurance claim in a process dealing with insurance claims) and all tasks in each case

are totally ordered (typically based on the timestamps). In this paper, we take a different

38

approach. We start by looking at so-called runs. These runs are a partial ordering on

the tasks within each case. However, in addition to the partial ordering of tasks, we may

have information about the local states of the system from which the logs originated,

i.e. for each event the pre- and post-conditions are known. This closely relates to the

process mining algorithms presented in [8] and [9]. However, also in these papers only

causal dependencies between events and no state information is assumed to be known.

In this paper, we provide three algorithms for the aggregation of runs. First, we

assume we indeed have full knowledge of each event, its preconditions and its postcon-

ditions. Then, we assume that we cannot uniquely identify events, i.e. the label of an

event may refer to multiple transitions. Finally, we provide an algorithm that assumes

less knowledge about pre- and post-conditions. Before we elaborate on our results, we

first provide some preliminary definitions that we use throughout the paper.

2 Preliminaries

Let G = (N,E) be a directed graph, i.e. N is the set of nodes and E ⊆ N × N is

the set of edges. If N ′ ⊆ N , we say that G′ = (N ′, E ∩ (N ′ × N ′)) is a subgraph of

G. N ′ ⊆ N generates a maximal connected subgraph if it is a maximal set of vertices

generating a connected subgraph. For n ∈ N , we define
G•n = {m ∈ N | (m,n) ∈ E}

as the pre-set and n
G•= {m ∈ N | (n,m) ∈ E} as the post-set of n with respect to the

graph G. If the context is clear, the superscript G is omitted.

Let G = (N,E) be a graph. Let μ be a set of colors. A function f : N → μ is a

coloring function if, for all (n1, n2) ∈ E, either n1 = n2 or f(n1) �= f(n2).
As stated in the introduction, our starting point is not only a partial order of events

within a case, but also information about the state of a case. Since we want to be able

to represent both events and states, Petri nets provide a natural basis for our approach.

In this paper, we use the standard definition of finite marked Place/Transition (P/T-nets)

nets N = (P, T, F,M0). We restrict ourselves to P/T nets where for all transitions t
holds that •t �= ∅ and t• �= ∅.

We use square brackets for the enumeration of the elements of a bag representing a

marking of a P/T-net, e.g. [2a, b, 3c] denotes the bag with two a’s, one b, and three c’s.

The sum of two bags (X � Y), the presence of an element in a bag (a ∈ X), and the

notion of subbags (X ≤ Y) are defined in a straightforward way, and they can handle

a mixture of sets and bags. Furthermore,
⊎

a∈A

(
f(a)

)
denotes the sum over the bags

that are results of function f applied to the elements a of a bag A.

Petri nets specify processes. The behaviour of a Petri net is given in terms of causal

nets, representing process instances (i.e. cases). Therefore, we introduce some concepts

(notation taken from [1]). First, we introduce the notion of a causal net, this is a speci-

fication of one process instance of some process specification.

Definition 2.1. (Causal net)
A P/T net (C,E,K, S0) is called a causal net if:

– for every place c ∈ C holds that | • c| ≤ 1 and |c • | ≤ 1,

– the transitive closure of K is irreflexive, i.e. it is a partial order on C ∪ E,

– for each place c ∈ C holds that S0(c) = 1 if •c = ∅ and S0(c) = 0 if •c �= ∅.

39

In causal nets, we refer to places as conditions and to transitions as events.

Each event of a causal net should refer to a transition of a corresponding P/T-net and

each condition should refer to a token on some place of the P/T-net. These references

are made by mapping the conditions and the events of a causal net onto places and

transitions, respectively, of a Petri net. We call the combination of a causal net and such

a mapping a run.

Definition 2.2. (Run)
A run (N,α, β) of a P/T-net (P, T, F,M0) is a causal net N = (C,E,K, S0), together

with two mappings α : C → P and β : E → T , such that:

– For each event (transition) e ∈ E, the mapping α induces a bijection from •e to

•β(e) and a bijection from e• to β(e)•,

– α(S0) = M0 where α is generalized to markings by α : (C → IN) → (P → IN),
such that α(S0)(p) =

∑
c|α(c)=p S0(c).

The causal behaviour of the P/T-net (P, T, F,M0) is defined as its set of runs. To avoid

confusion, the P/T-net (P, T, F,M0) is called system net in the sequel.

3 Aggregation of Runs

In this section, we will introduce an approach that takes a set of runs as a starting point.

From this set of runs, a system net is constructed. Moreover, we need to find a mapping

from all the events and conditions in the causal nets to the transitions and places in the

system net. From Definition 2.2, we know that there should exist a bijection between all

places in the pre- or post-set of an event in some causal net and the pre- or post-set of

a transition in a system net. Therefore, two conditions belonging to the pre- or post-set
of an event should not be mapped onto the same label. This restriction is in fact merely

another way to express the fact that our P/T-nets do not allow for more than one edge

between a place and a transition or vice versa. More generally, we define a labelling

function on the nodes of a graph as a function that does not give the same label to

two nodes that have a common element in their pre-sets or a common element in their

post-sets.

Definition 3.1. (Labelling function)
Let μ be a set of labels. Let G = (N,E) be a graph. Let R = {(n1, n2) ⊆ N×N | n1

G•
∩n2

G• �= ∅∨ G• n1∩ G• n2 �= ∅}. We define f : N → μ to be a labelling function if f is a

coloring function on the graph (N,R).

We focus on the aggregation of runs that originate from a Petri net with clearly

defined starting state and completion state, i.e. processes that describe a lifespan of

some case. This assumption is very natural in the context of workflow management

systems. However, it applies to many other domains where processes are instantiated

for specific cases. Hence, we will limit ourselves to a special class of Petri nets, namely

workflow nets.

40

Definition 3.2. (Workflow nets)
A P/T-net N = (P, T, F,M0) is a workflow net (WF-net) if:

1. object creation: P contains an input place pini such that •pini = ∅,

2. object completion: P contains an output place pout such that pout• = ∅,

3. connectedness: there is a path from pini to every node and from every node to pout,

4. initial marking: M0 = [pini], i.e. the initial marking marks only pini.

As a consequence, a WF-net has exactly one one input place. When looking at a run

of a WF-net, we can therefore conclude that there is exactly one condition containing

a token initially and all other conditions do not contain tokens. A set of causal nets

fulfilling this condition and some structural consequences is called a causal set.

Definition 3.3. (Causal set)
Let n ∈ IN and let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a set of causal nets. We call

this set a causal set if and only if, for 0 ≤ i < n holds:

– all sets Ci, Ei, Ki are disjoint,

– for 0 ≤ i ≤ n,
∑

c∈Ci
Si(c) = 1, i.e. exactly one condition has an empty pre-set,

– for e ∈ Ei, if Si(c) = 1 for some c ∈ •e then {c} = •e,

– for e ∈ Ei, if c• = ∅ for some c ∈ e•, then {c} = e•.

The concept of constructing a system net from a causal set is called aggregation.

This concept can be applied if we assume that each causal net in the given set can

be called a run of some system net. From Definition 2.2 we know that we need two

mappings α and β satisfying the two properties mentioned. Using the definition of a

system net and the relation between system nets and runs, we can conclude that any

aggregation algorithm should have the following functionality:

– it should provide the set of places P of the system net,

– it should provide the set of transitions T of the system net,

– it should provide the flow relation F of the system net,

– it should provide the initial marking M0 of the system net,

– for each causal net in the causal set, it should provide the mappings αi : Ci → P
and βi : Ei → T , in such a way that for all causal nets, αi(Si) is the same (i.e.

they have the same initial marking) and they induce bijections between pre- and

post-sets of events and their corresponding transitions.

Each event that appears in a causal net has a corresponding transition in the original

system net. Moreover, bijections exist between the pre- and post-sets of this event and

the corresponding transitions. In order to express this in terms of labelling functions of

causal nets, we formalize this concept using the notion of transition equivalence.

Definition 3.4. (Transition equivalence)
Let μ, ν be two disjoint sets of labels. Let Φ = {Ni = (Ci, Ei,Ki, Si) | 0 ≤ i < n} be

a causal set, and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of labelling

functions of (Ci, Ei,Ki, Si). We define (Φ, Ψ) to respect transition equivalence if and

only if for each ei ∈ Ei and ej ∈ Ej with βi(ei) = βj(ej) the following holds:

– for each (ci, ei) ∈ Ki we have a (cj , ej) ∈ Kj such that αi(ci) = αj(cj),

– for each (ei, ci) ∈ Ki we have a (ej , cj) ∈ Kj such that αi(ci) = αj(cj).

41

4 Aggregation with Known Labels

In this section, we present an aggregation algorithm that assumes that we know all

mapping functions, and that these mapping functions adhere to the definition of a run.

To illustrate the aggregation process, we make use of a running example. Consider

Figure 2 where four part of runs are shown. We assume that the events A,B,C,D,E,F
and G do not appear in any other part of each run. Our first aggregation algorithm is

·· A
p1

p2 B

C
(a)

·· ·· A
p2

p1

D

(b)

·· ·· E p2 B

(c)

·· ··
p2

p1

D
F

G
(d)

··

Fig. 2. Four examples of parts of runs.

called the ALK aggregation algorithm (short for “All Labels Known”). This algorithm

assumes all information to be present, such as in Figure 2, i.e. it assumes known labels

for events and known labels for conditions. These labels refer to concrete transitions

and places in the aggregated system net.

Definition 4.1. (ALK aggregation algorithm)
Let μ, ν be two disjoint sets of labels. Let Φ be a causal set of size n with causal nets

(Ci, Ei,Ki, Si) (0 ≤ i < n).

Furthermore, let {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of labelling

functions respecting transition equivalence, such that for all causal nets αi(Si) is the

same. We construct the system net (P, T, F,M0) belonging to these runs as follows:

– P =
⋃

0≤i<n rng(αi) is the set of places (note that P ⊆ μ)1,

– T =
⋃

0≤i<n rng(βi) is the set of transitions (note that T ⊆ ν),

– F =
⋃

0≤i<n{(αi(c), βi(e)) ∈ P × T | (c, e) ∈ Ki ∩ (Ci × Ei)}∪⋃
0≤i<n{(βi(e), αi(c)) ∈ T × P | (e, c) ∈ Ki ∩ (Ei × Ci)}

is the flow relation,

– M0 = α0(S0) is the initial marking.

The result of the ALK aggregation algorithm from Definition 4.1 for the parts pre-

sented in Figure 2 is shown in Figure 3. Another example is given in Figure 1(a).

. . .
A

p1

p2 B

C

D

E

F

G

. . .

Fig. 3. The aggregated Petri net.

The aggregated net shown in Figure 3 can actually generate the runs of Figure 2.

This is always the case after applying the ALK aggregation algorithm:

1 With rng we denote the range of a function, i.e. rng(f) = {f(x) | x ∈ dom(f)}

42

Property 4.2. (The ALK algorithm is correct)
For 0 ≤ i < n, Ni = (Ci, Ei,Ki, Si), (Ni, αi, βi) is indeed a run of σ = (P, T, F,M0)
(i.e., the requirements stated in Definition 2.2 are fulfilled).

The ALK algorithm is a rather trivial aggregation over a set of runs. However, it is

assumed that the mapping functions αi and βi are known for each causal net. Further-

more, we assume two sets of labels μ and ν to be known. However, when applying these

techniques in the context of process mining, it is often not realistic to assume that all

of these are present. Therefore, in the remainder of this paper, we relax some of these

assumptions to obtain more usable process mining algorithms.

5 Aggregation with Duplicate or Missing Transition Labels

In this section, we will assume that the causal set used to generate the system net and

the labelling functions do not respect transition equivalence. We introduce an algorithm

to change the labelling function for events in such a way that this property holds again.

In the domain of process mining, the problem of so-called “duplicate transitions” (i.e.

several transitions with the same label) is well-known (cf. [10–12]). Therefore, there is

a need for algorithms to find out which events actually belong to which transition. We

assume that we have causal nets with labelling functions, where some events have the

same label, even though they may refer to different transitions (see Figure 4).

·· A
p1

p2 B

C
(a)

·· ·· A
p2

p1

D

(b)

·· ·· E p2 B

(c)

·· ··
p2

p1

D
X

X
(d)

··

Fig. 4. Four examples of parts of runs.

In terms of an aggregation algorithm, the problem of duplicate labels translates to

the situation where the property of transition equivalence is not satisfied. Since the

aggregation algorithm presented in the previous section only works if this property

holds, we provide an algorithm to redefine the labelling functions for events.

Definition 5.1. (Relabelling algorithm)
Let μ, ν be two disjoint sets of labels. Let Φ = {Ni | 0 ≤ i < n∧Ni = (Ci, Ei,Ki, Si)}
be a causal set and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set

of labelling functions in (Ci, Ei,Ki, Si) such that αi(Si) is the same for all causal

nets. Furthermore, assume that μ and ν are minimal, i.e.
⋃

0≤i<n rng(αi) = μ and⋃
0≤i<n rng(βi) = ν. Let E� =

⋃
0≤i<n Ei be the set of all events in the causal set.

We define the relabelling algorithm as follows:

1. Define 	
⊆ E� × E� as an equivalence relation on the elements of E� in such

a way that ei 	
 ej with ei ∈ Ei and ej ∈ Ej if and only if βi(ei) = βj(ej),

αi(
Ni• ei) = αj(

Ni• ej), and αi(ei
Ni•) = αj(ej

Ni•).
2. For each e ∈ E�, we say eqvl(e) = {e′ ∈ E� | e 	
 e′}.

3. Let ν′ be the set of equivalence classes of 	
, i.e. ν′ = {eqvl(e) | e ∈ E�}.

43

p2

p1

D
X

X

(a)

p2

p1

D
X

X

p1

p2

(b)

A
p1

p2 B

C

D

E

X

X
p2

p1

(c)

Fig. 5. The original and relabelled part of Figure 4(d) and a part of the aggregated net.

4. For all causal nets (Ci, Ei,Ki, Si) and labelling functions αi, define a labelling

function β′
i : Ei → ν′ such that for an event ei, β

′
i(ei) = eqvl(ei), i.e. it returns the

equivalence class of 	
 containing ei.

After re-labelling the events, the part of the run shown in Figure 4(d) is relabelled to

include the pre- and post-conditions. Figure 5(a) shows the fragment before relabelling,

whereas Figure 5(b) shows the fragment after relabelling. (We only show the relabelling

with respect to the post-conditions.) Applying the ALK algorithm of Definition 4.1 to

the relabelled runs yields the result as shown in Figure 5(c). Note that we do not show

the ν′ labels explicitly, i.e. B refers to the equivalence class of events labelled B.

What remains to be shown is that our algorithm does not only work for our small

running example, but also in the general case. The only difference between the assump-

tions in Definition 4.1 and Definition 5.1 is the requirement with respect to transition

equivalence. Therefore, if suffices to show that after applying the relabelling algorithm

on a causal set, we can establish transition equivalence.

Property 5.2. (Transition equivalence holds after relabelling)
Let μ, ν be two disjoint sets of labels. Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be

a causal set, and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of

labelling functions in (Ci, Ei,Ki, Si), such that αi(Si) is the same for all causal nets.

After applying the relabelling algorithm, the property of transition equivalence holds

for (Φ, Ψ ′), with Ψ ′ = {(αi : Ci → μ, β′
i : Ei → ν′) | 0 ≤ i < n}, and β′

i as defined

in Definition 5.1.

The algorithm presented above is capable of finding events that have the same label,

but correspond to different transitions in the system net. When no transition labels are
known at all, it can be applied to find all transition labels, by using an initial ν = {τ}
and initial mapping functions βi, mapping everything onto τ . However, in that case, no

distinction can be made between events that have the same pre- and post-set, but should

have different labels. After applying this relabelling algorithm, the ALK algorithm of

Section 4 can be used to find the system net belonging to the given causal nets.

6 Aggregation with Unknown Place Labels

In Section 5, we have shown a way to identify the transitions in a system net, based on

the labels of events in causal nets. However, what if condition labels are not known?

Notice that the difference to other approaches based on partial orders is that here we do

44

·· A
B

C (a)

·· ·· A D

(b)

·· ·· E B

(c)

·· ·· D
F

G

(d)

··

Fig. 6. Four examples of parts of runs.

know the conditions constituting the order between events but do not know which two

conditions refer to a token in the same place of the P/T-net representing the process.

So, in this section, we take one step back. We assume all events to refer to the

correct transition and try to identify the labels of conditions. We introduce an algorithm

to aggregate causal nets to a system net, such that the original causal nets are indeed

runs of that system net. In Figure 6, we again show our small example of the aggregation

problem, only this time there are no labels for conditions p1 and p2, which we did have

in Figures 2 and 4.

Consider the four runs of Figure 6. Remember that they are parts of causal nets,

in such a way that the tasks A,B,C,D,E, F and G do not appear in any other way

in another causal net. In contrast to the algorithms presented in previous sections, we

cannot always derive a unique aggregated system net for causal nets if we do not have

labels for the conditions. Instead, we define an aggregation class, describing a class of

WF-nets that could have generated these causal nets. The following table shows some

requirements all WF-nets in the aggregation class of our example should satisfy.

Fragment Conclusions

Fig. 6 (a) A• = •B � •C
Fig. 6 (b) A• = •D
Fig. 6 (c) E• = •B
Fig. 6 (d) F • �G• = •D

This information is derived using the concept of a segment, which can be considered

to be the context of a condition in a causal net.

Definition 6.1. (Segment)
Let N = ((C,E,K), S0) be a causal net and let N ′ = (C ′, Ein, Eout) be such that

C ′ ⊆ C, Ein ∪ Eout ⊆ E and Ein �= ∅ and Eout �= ∅. We call N ′ a segment if:

– for all c ∈ C ′ holds that •c ⊆ Ein and c• ⊆ Eout, and

– for all e ∈ Ein holds that e• ⊆ C ′, and

– for all e ∈ Eout holds that •e ⊆ C ′, and

– the subgraph of N made up by C ′ ∪ Ein ∪ Eout is connected.

We call the events in Ein the input events and the events in Eout the output events.

Furthermore, a segment is called minimal if C ′ is minimal, i.e. if there does not exist a

segment N ′′ = (C ′′, E′
in, E

′
out) with C ′′ ⊂ C ′ and C ′′ �= ∅.

For the fragments of Figure 6, it is easy to see that each of them contains only one

minimal segment, where the input events are the events on the left hand side and the

output events are the events on the right hand side.

The meaning of a segment is as follows. If we have a run and a segment in that

run, then we know that after each of the events in the input set of the segment occurred,

45

. . . A

B

C

D

E

G

F

(a)

. A

B

C

D

E

F

G

(b)

. . .

Fig. 7. Two aggregated nets.

all the events in the output set occurred in the execution represented by this run. This

translates directly to a marking in a system net, since the occurrence of a set of transi-

tions would lead to some marking (i.e. a bag over places), which enables another set of

transitions. Furthermore, each transition only produces one token in each output place.

Combining this leads to the fact that for each minimal segment in a causal net the bag of

places following the transitions corresponding to the input events of the segment should

be the same as the bag of places preceding the transitions corresponding to the output

set of events.

Clearly, when looking only at these fragments, what we are looking for are the

places that should be put between tasks A,E, F and G on the one hand, and B,C and

D on the other hand. Therefore, we only focus on this part of the causal nets. For this

specific example, there are two possibilities, both of which are equally correct, namely

the two WF-net fragments shown in Figure 7.

From the small example, we have seen that it is possible to take a set of causal nets

without labels for any of the conditions (but with labels for all the events) and to define

a class of WF-nets that could be system nets of the causal nets. In the remainder of

this section, we show that this is indeed possible for all causal sets. For this, we first

introduce the NCL algorithm.

6.1 NCL Algorithm

Before presenting the NCL algorithm (which stands for “No Condition Labels”), we

first take a look at a more intuitive example. Consider Figure 8, where we present three

causal nets, each of which corresponds to a paper review process. In the first causal net,

three reviewers are invited to review the paper and after the three reviews are received,

the paper is accepted. In the second causal net, only two reviews are received (the

third one is not received on time), but the paper is rejected nonetheless (apparently

the two reviewers that replied rejected the paper). In the third example only one review

is received in time, and therefore an additional reviewer is invited, which hands in his

review in time, but does not accept the paper.

As we stated before, we define an aggregation class of a causal set that contains all

WF-nets that are capable of generating the causal nets in the causal set. The information

needed for this aggregation class comes directly from the causal nets, using minimal

segments. In Table 1, we present the conclusions we can draw based on the three causal

nets. In this table we consider bags of pre- and post-sets of transitions in the aggregation

class. The information in this table is obtained from the causal nets in the following

way. Consider for example Figure 8(a), where invite reviewers is followed by

46

Invite
reviewers

Get
review 1

Get
review 2

Get
review 3

Collect
& Decide

Accept
paper

(a)

Invite
reviewers

Get
review 1

Get
review 2

Time-out
review 3

Collect
& Decide

Reject
paper

(b)

Invite
reviewers

Time-out
review 1

Time-out
review 2

Get
review 3

Collect
& Decide

Invite add.
reviewer

Get add.
review

Reject
paper

(c)

Fig. 8. Three causal nets of a review process of a paper.

Get review 1, Get review 2 and Get review 3. This implies that the bag

of output places of invite reviewers, should be the same as the sum over the bags

of the input places of Get review 1, Get review 2 and Get review 3.

Definition 6.2. (Aggregation class)
Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a causal set, and let σ = (P, T, F,M0) be a

marked WF-net. For each causal net, let βi : Ei → T be a mapping from the events of

that causal net to T , such that βi is a labelling function for (Ci, Ei,Ki, Si). We define

AΦ, the aggregation class of Φ, as the set of all pairs (σ,B) such that the following

conditions are satisfied:

1. T =
⋃

0≤i<n rng(βi) is the set of transitions, i.e. each transition appears as an event

at least once in some causal net,

2. B is the set of all labelling functions, i.e. B = {βi | 0 ≤ i < n}. We use βi ∈ B to

denote the labelling function for events belonging to (Ci, Ei,Ki, Si) ∈ Φ,

3. For all p ∈ P holds that
σ•p ∪ p

σ• �= ∅,

4. M0 = [pini] and
σ•pini = ∅,

5. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds that if

Si(
γ•e) = 1 then pini ∈σ• t,

6. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds that

|tσ• | = |eγ• | and | σ• t| = | γ•e|,
7. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds

that |tσ• ∩⋃
t′∈T ′(

σ• t′)| ≥ ∑
e′∈Ei,β(e′)∈T ′ |eγ• ∩ γ•e′|,

47

A

c2

c1 C

TS
A

p1

p2

C

D

T

B

S

A

c5

c4

c6

C

D

T

B

S

… …

… …

Fig. 9. Example explaining the use of bags.

8. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds

that |⋃t′∈T ′(t′
σ•)∩ σ• t| ≥ ∑

e′∈Ei,β(e′)∈T ′ |e′ γ• ∩ γ•e|,
9. For each causal net γ = (Ci, Ei,Ki, Si) and any minimal segment (C ′

i, Ein, Eout)
of γ, holds that

⊎
e∈Ein

(
βi(e)

σ•
)
=

⊎
e∈Eout

(
σ•βi(e)

)
.

Figure 9 is used to gain more insight into part 9 of Definition 6.2. In the lower

causal net of that figure, there is a token travelling from A to D and from B to C.

The upper causal net only connects A and C. Assuming that these are the only causal

nets in which these transitions appear, we know that the conditions between A and

D and between B and C should represent a token in the same place, since there is a

minimal segment ({c4, c5, c6}, {A,B}, {C,D}) in the lower causal net and therefore,

A • �B• = •C � •D = [p1, 2p2].
The NLC algorithm takes a set of runs without condition labels as a starting point.

From these runs, an aggregation class of WF-nets is defined. If the runs were generated

from some sound WF-net, then the WF-net itself is in that aggregation class. We con-

clude this section with an elaborate example of the application of the NCL algorithm.

Consider the four causal nets presented in Figure 10. These causal nets originate

from a workflow system in which two activities need to be performed. These activities

are labelled L and R. However, in the workflow design, there are several options. First,

the system initializes the two activities trough event Init LR. Then, a person can

decide to perform both activities at once, which is represented by the event Do LR.

When both activities have been performed, the workflow can be finished through event

exit LR. However, in a typical workflow environment, people can make mistakes

and therefore, in Figure 10(b), both activities have been undone, thus generating events

Undo L and Undo R. Finally, in Figure 10 (c) and (d) it is shown that the workflow

system allows for the two activities to be executed separately, through Do L and Do R.

To keep things interesting, the last causal net belongs to a case in the workflow system

that is not finished yet. However, this set of causal nets still conforms to the definition

of a causal set (i.e. Definition 3.3).

Using the NCL algorithm given by Definition 6.2, we can generate the aggregation

class of the causal set of Figure 10. In fact, this aggregation class only contains one

workflow net, namely the workflow net shown in Figure 11.

The workflow net in Figure 11 actually allows for more behaviour than is shown in

the four causal nets of Figure 10. It is for example possible to execute a long sequence

48

Table 1. Information derived from review example.

Causal net Conclusions on transitions in the aggregation class

Fig. 8 (a) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” �
•“Get review 2” �
•“Get review 3”

“Get review 1” • �
“Get review 2” • �
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Accept paper”

|“Accept paper” • | = 1

Fig. 8 (b) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” �
•“Get review 2” �
•“Time-out review 3”

“Get review 1” • �
“Get review 2” • �
“Time-out review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Reject paper”

|“Reject paper” • | = 1

Fig. 8 (c) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Time-out review 1”�
•“Time-out review 2”�
•“Get review 3”

“Time-out review 1”• �
“Time-out review 2”• �
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Invite add. reviewer”

“Invite add. reviewer”• = •“Get add. review”

“Get add. review”• = •“Reject paper”

|“Reject paper” • | = 1

49

Init
LR

Do
LR

Exit
LR

(a)

Init
LR

Do
LR

Exit
LR

Undo
L

Undo
R

Do
LR

(b)

Init
LR

Do
LR

Exit
LR

Undo
L

Do
L

(c)

Init
LR

Do
L

Do
R

Undo
R

(d)

Fig. 10. Four causal nets without condition labels.

Init
LR

Do
LR

Do
R

Do
L

Undo
R

Undo
L

Exit
LR

Fig. 11. The only element of the aggregation class of the four nets of Figure 10.

of Do L and Undo L, which is not shown in the causal nets. Therefore, this example

once more shows that each net in the aggregation class can actually generate the runs

of the causal set it was constructed from, but it might be able to generate more runs.

7 Conclusion and Future Work

In this paper, we looked at process mining from a new perspective. Instead of starting

with a set of traces, we started with runs, which constitute partial orders on events. We

presented three algorithms to generate a Petri net from these runs. The first algorithm

assumes that, for each run, all labels of both conditions and events are known. The

50

second algorithm relaxes this by assuming that some transitions can have the same

label (i.e. duplicate labels are allowed in the system net). This algorithm can also be

used if only condition/place-labels were recorded. Finally, we provided an algorithm

that does not require condition labels, i.e. the event/transition labels are known, the

condition/place labels are unknown and duplicate transition labels are not allowed.

The results presented in this paper hold for a subclass of Petri nets, so-called WF-

nets. However, the first two algorithms presented here can easily be generalized to be

applicable to any Petri net. For the third algorithm this can also be done, however,

explicit knowledge about the initial marking would be required. When taking a set of

runs as a starting point, this knowledge is not present in the general case.

References

1. Desel, J.: Validation of Process Models by Construction of Process Nets. In Aalst, W., Desel,

J., Oberweis, A., eds.: Business Process Management: Models, Techniques, and Empirical

Studies. Volume 1806 of Lecture Notes in Computer Science, Springer-Verlag, Berlin (2000)

110–128

2. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters, A.: Workflow

Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2) (2003)

237–267

3. Smith, E.: On net systems generated by process foldings. In Rozenberg, G., ed.: Advances

in Petri Nets. Volume 524 of Lecture Notes in Computer Science, Springer-Verlag, Berlin

(1991) 253–276

4. Desel, J., Erwin, T.: Hyprid specifications: looking at workflows from a run-time perspective.

Computer Systems Science and Engineering 5 (2000) 291–302

5. Roychoudhury, A., Thiagarajan, P.: Communicating transaction processes. In Lilius, J.,

Balarin, F., Machado, R., eds.: Proceedings of Third International Conference on Application

of Concurrency to System Design (ACSD2003), IEEE Computer Society (2003) 157–166

6. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited: Generating statechart models from

scenario-based requirements. In Kreowski, H.J., Montanari, U., Orejas, F., Rozenberg, G.,

Taentzer, G., eds.: Formal Methods in Software and Systems Modeling. Volume 3393 of

Lecture Notes in Computer Science, Springer (2005) 309–324

7. Lorenz, R., Juhás, G.: Towards synthesis of petri nets from scenarios. In Donatelli, S., Thi-

agarajan, P.S., eds.: ICATPN. Volume 4024 of Lecture Notes in Computer Science, Springer

(2006) 302–321

8. Dongen, B., Aalst, W.: Multi-phase Process mining: Building Instance Graphs. In Atzeni,

P., Chu, W., Lu, H., Zhou, S., Ling, T., eds.: Conceptual Modeling - ER 2004. Volume 3288

of Lecture Notes in Computer Science, Springer-Verlag, Berlin (2004) 362–376

9. Dongen, B., Aalst, W.: Multi-phase Process mining: Aggregating Instance Graphs into EPCs

and Petri Nets. In: PNCWB 2005 workshop. (2005) 35–58

10. Aalst, W., de Medeiros, A.A., Weijters, A.: Genetic Process Mining. In: Proceedings of the

26th International Conference on Applications and Theory of Petri Nets. Volume 3536 of

Lecture Notes in Computer Science (2005)

11. de Medeiros, A.A., Weijters, A., van der Aalst, W.: Genetic Process Mining: A Basic Ap-

proach and its Challenges. In: BPM - BPI workshop. (2005)

12. Herbst, J., Karagiannis, D.: Workflow mining with InWoLvE. Comput. Ind. 53(3) (2004)

245–264

51

Folding Partially Ordered Runs

Robin Bergenthum, Sebastian Mauser

Department of Software Engineering, FernUniversität in Hagen

{robin.bergenthum,sebastian.mauser}@fernuni-hagen.de

Abstract. In this paper we present a folding algorithm to construct a process

model from a specification given by a set of scenarios. Each scenario is formal-

ized as a partially ordered set of activities of the process. As a process model we

consider Event-driven Process Chains which are well established in the domain

of business process modeling. Assuming that a specification describes valid be-

havior of the process to be modeled, the crucial requirement is to get a process

model which in any case is able to execute all input scenarios.

1 Introduction

Business process modeling and management has attracted increasing attention in recent

years. The usual approach to process model construction is that a domain expert ed-

its a formal process model. Simulation tools generate single scenarios of that process

model which can also be viewed as formal objects. Then, the expert checks whether the

scenarios of the model correspond to possible scenarios of the intended process. In the

negative case, he changes the process model and iteratively repeats the simulation.

In the papers [1, 2] a proceeding in the opposite direction has been suggested. It is

assumed that the domain experts know some or all scenarios of a process to be modeled

better than the process itself. Actually, experts might also know parts of the process

model including parts of its branching structure, but in this case scenarios can be de-

rived from this partially known process model. Experience shows that in various appli-

cation areas processes are specified in terms of example scenarios (an evidence is the

commonly used sequence diagrams in UML to specify scenarios).

In a first step of the approach from [1, 2], the scenarios of a process are specified

by domain experts. Then, these scenarios have to be formalized yielding formal runs.

Formalization on the instance level of single scenarios is an intuitive task. In our setting,

the scenarios are formalized in terms of labeled partial orders (LPOs) representing oc-

currences of process activities and their mutual order relation. Under the name instance

Event-driven Process Chains (iEPCs), a similar concept is also applied in the indus-

trial ARIS PPM tool [3, 4]. As in the case of iEPCs, we do not allow auto-concurrency,

i.e. we assume that the scenario descriptions of the domain experts do not contain two

concurrent occurrences of the same activity.

In a second step, a process model is automatically generated from the given for-

mal runs. For this step, in previous work [2] it was suggested to build on synthesis

algorithms generating Petri nets exactly having the behavior given by a set of LPOs.

Although using an exact synthesis algorithm as the starting point for this step has sev-

eral advantages such as reliable results, there are also several problems w.r.t. practical

52

applicability. Namely, a precise reproduction is mostly not desired in practice due to

incomplete information, the performance of synthesis is low and the resulting nets are

sometimes difficult to understand.

In the related field of process mining [5], simplified construction algorithms are

successful. Against this background, in this paper we develop a simplified construc-

tion algorithm for the automatic generation of a process model from a set of example

scenarios given by LPOs. We here use Event-driven Process Chains (EPCs) to model

processes. The idea of our approach is to fold the scenarios to one EPC model similar as

in [4] (the approach has also similarities to [6, 5]). The resulting EPC represents all the

direct dependencies given by the LPOs. The folding algorithm is efficient and gener-

ates intuitive models. Still, it has the important property that all the explicitly specified

example LPOs are executable scenarios of the generated EPC.

To formally define the folding algorithm and to prove the latter important result, we

first provide formal definitions in the next section, in particular we introduce the notion

of an LPO executable w.r.t. an EPC. Then, in Section 3 we introduce and discuss the

folding algorithm generating an EPC from a set of LPOs. Finally, Section 4 concludes

the paper.

2 Partially Ordered Runs of EPCs

EPCs are an intuitive modeling language for business processes [7, 8]. Since the lan-

guage was initially not intended for formal specifications, the formal definitions of

EPCs in literature show some differences. We here give a short and simple definition of

an EPC.

Definition 1. An EPC-structure is a five-tuple epc = (A, E , Cxor, Cand,D) where A is
a finite set of activities (also called functions), E is a finite set of events, Cxor resp. Cand
are finite sets of XOR- resp. AND-connectors and D ⊆ (A ∪ E ∪ Cxor ∪ Cand)× (A ∪
E ∪Cxor ∪Cand) is a set of directed edges connecting activities, events and connectors.
An EPC-structure is an Event-driven Process Chain (EPC) if:

(i) Events have at most one incoming and one outgoing edge.
(ii) Activities have precisely one incoming and one outgoing edge.

(iii) Connectors have either one incoming edge and multiple outgoing edges, or multiple
incoming edges and one outgoing edge.

Activities, events and connectors are also called nodes of an EPC. Given a node n,

the set of edges •n := {(n′, n) ∈ D | n′ ∈ A ∪ E ∪ Cxor ∪ Cand} is called preset of n
and the set of edges n• := {(n, n′) ∈ D | n′ ∈ A ∪ E ∪ Cxor ∪ Cand} is called postset

of n. Furthermore, an event having an empty preset is called initial event.

An example of an EPC is shown in Figure 1. Activities are illustrated by rounded

rectangles, events by hexagons and connectors by circles.

For simplicity, this definition of an EPC does not regard OR-connectors, since they

are not necessary for our considerations later on. Moreover, syntactically it is not as

restrictive as other definitions found in the literature. The main differences are described

in the following remark. However, these differences are not relevant for semantical

issues.

53

Fig. 1. EPC.

Remark 1. We omit the stylistic requirements for EPCs that in every path activities and

events alternate, that an XOR-split must not succeed an event and that there should be

no cycle of control flow that consists of connectors only.

In the following, we define a partial order semantics for EPCs. We introduce such

semantics analogously as in the case of Petri nets, see e.g. [9].

First, we define an occurrence rule for nodes of an EPC. Thereby, we consider the

notion of a marking representing a state of an EPC analogously as in [8] by assigning

tokens resp. process folders to the edges of the EPC. A problem is that the semantics of

XOR-joins (and OR-joins) of EPCs is not clear [8]. In the literature there are different

occurrence rules for XOR-joins. In this paper, we consider the simple “Petri net seman-

tics” as given in [7] where an XOR-join can fire if one of its incoming edges contains

a process folder. In this way, the exclusiveness of an XOR-operator is not regarded.

However, an appropriate approach for considering the exclusiveness meaning of XOR

requires difficult non-local behavioral definitions [8] and there is not yet a standard

approach for solving this problem.

Based on our occurrence rule for single nodes we then define a step occurrence rule

for sets of nodes. Since each edge has exactly one successor node, there are no conflicts

between nodes regarding the consumption of tokens. Consequently, a set of nodes is

concurrently executable if each node of the set is executable. Using this step occurrence

rule we further define the notion of an executable sequence of sets of nodes which we

then restrict to activities by applying an appropriate projection.

Finally, we define the executability of an LPO as in the case of Petri nets (see [9])

by requiring that each step sequence allowed by the LPO, i.e. being a sequentialization

of the LPO, is executable w.r.t. the given EPC.

A marking of an EPC is formally defined as follows.

Definition 2. Given an EPC epc = (A, E , Cxor, Cand,D), a marking of epc is a func-
tion m : D → N = {0, 1, 2, . . .}. A pair (epc,m) where epc is an EPC and m is a
marking is called marked EPC.

A directed edge d ∈ D is called marked if m(d) > 0, marked by one if m(d) = 1
and unmarked if m(d) = 0.

The initial marking m0 of an EPC is defined as follows:

54

(i) The postsets of all initial events are marked by one and
(ii) all other edges are unmarked.

The occurrence rule for nodes of EPCs is given by the following definition.

Definition 3. Given a marked EPC epc = (A, E , Cxor, Cand,D,m), a node n ∈ A ∪
E ∪ Cxor ∪ Cand is executable if one of the following statements holds.

(i) | • n| = 1 and the unique edge d ∈ •n is marked or
(ii) | • n| > 1, n ∈ Cand and each edge d ∈ •n is marked or

(iii) | • n| > 1, n ∈ Cxor and at least one edge d ∈ •n is marked.

If a node is executable, it can be fired changing the marking of the EPC. Firing a
node n �∈ Cxor leads to the marking m′ defined by:

m′(d) =

⎧⎨
⎩

m(d)− 1, d ∈ •n
m(d) + 1, d ∈ n•
m(d) else

When firing a node n ∈ Cxor, a marked edge ein ∈ •n and an edge eout ∈ n• have
to be fixed. Then, firing n w.r.t. ein and eout leads to the marking m′ defined by:

m′(d) =

⎧⎨
⎩

m(d)− 1, d = ein
m(d) + 1, d = eout
m(d) else

Each different choice of ein and eout yields another marking m′.
If a node n is executable in a marking m and firing n leads to a marking m′, we

shortly write m
n→ m′.

Next, we further extend the occurrence rule to sets of nodes.

Definition 4. A set of nodes N is concurrently executable in a marking m if each node
n ∈ N is executable in m.

In this case, a follower marking m′ is given by firing the set of nodes in any order.
If a set of nodes N is executable in a marking m and firing N leads to a marking m′,
we write m

N→ m′.
A sequence of sets of nodes σ = N1N2 . . .Nn is executable in a marking m, if there

are markings m1,m2, . . .mn such that m N1→ m1
N2→ . . .

Nn→ mn.
Given an executable sequence of sets of nodes σ = N1N2 . . .Nn and its projection

onto activities σ∅
A = N1 ∩A . . .Nn ∩A, the sequence of sets of activities which arises

from σ∅
A when omitting all empty sets is called activity step sequence σA of σ.

A sequence of sets of activities σ is executable in a marking m if there exists an
executable sequence of sets of nodes σ′ such that σ = σ′

A.

For instance, in the initial marking of the EPC in Figure 1 the sequence of sets of

nodes {ST}, {Event}, {A}, {XOR}, {AND}, {Event,XOR}, {Event}, {B,D},

{Event}, {C,XOR} is executable (for simplicity we omit names for connectors and

events). Therefore, the corresponding activity step sequence {ST}, {A}, {B,D}, {C}
is executable. We use the following notions for partially ordered runs.

55

Definition 5. Given a set of activities A, a (finite) labeled partial order (LPO) is a
triple lpo = (V,<, l), where V is a finite set of vertices, < is an irreflexive and transitive
binary relation over V and l : V → A is a labeling function. The Hasse diagram
underlying an LPO lpo = (V,<, l) is defined by the labeled directed graph hlpo =
(V,<h, l) where <h= {(v, v′) | v < v′∧ � ∃v′′ : v < v′′ < v′} is the set of skeleton
edges.

We here only consider LPOs without autoconcurrency i.e. v, v′ ∈ V, v �= v′, v �<
v′, v′ �< v ⇒ l(v) �= l(v′).

Given an LPO lpo = (V,<, l), an LPO lpo′ = (V,<′, l) with <⊆<′ is called
sequentialization of lpo.

Given an LPO lpo = (V,<, l) and a sequentialization lpo′ = (V,<′, l) of lpo
with V = V1 ∪̇ . . . ∪̇ Vn and <′=

⋃
i<j Vi × Vj , the sequence of sets of activities

l(V1) . . . l(Vn) is called step sequence of lpo.

In Figure 2, Hasse diagrams of three LPOs are shown. An example of a step se-

quence of the first LPO is {ST}, {A}, {B,D}, {C}, {F}, {FI}. Finally, we define the

executability of an LPO.

Definition 6. Given an EPC epc, an LPO lpo is executable w.r.t. epc if all step se-
quences of lpo are executable in the initial marking of epc.

Note that, as in the case of Petri nets, we can also define the executability of an LPO

w.r.t. an EPC by using concepts similar to occurrence nets and process nets of Petri nets.

3 Folding Algorithm

In this section, we explain a folding algorithm generating an EPC model epc = (A, E ,
Cxor, Cand,D) of a business process from a set of LPOs L representing scenarios of the

process. Each LPO of L models one possible run of the process, i.e. different LPOs of

L represent alternative scenarios. A vertex of an LPO represents an activity occurrence

where the label refers to the respective activity of the process. The edges of an LPO de-

scribe the precedence relation of the activity occurrences within the respective scenario.

Unordered vertices represent concurrent activity occurrences. For formal purposes, we

assume that each LPO includes a vertex labeled with ST (Start) which is ordered before

all the other vertices and by a vertex labeled with FI (Final) which is ordered behind all

the other vertices (such vertices can always be added to an LPO).

We now present the steps of the folding algorithm generating an EPC epc from a

set of LPOs L. Directly after the following formal definition of the algorithm which is

rather technical, we provide an illustrative example.

– The algorithm generates an EPC with only two events, a start and a final event, i.e.

E = {Start, F inal}. The set of activities of the EPC is given by the labels of the

LPOs, i.e. A = {l(v) | v ∈ V, (V,<, l) ∈ L}.
– For each vertex v ∈ V , (V,<, l) ∈ L we consider the sets of direct predecessor

and successor activities of the vertex, called predecessor-set and successor-set of

the vertex. The predecessor-set is defined as pred(v) = {l(v′) | v′ <h v}, the

successor-set is defined as succ(v) = {l(v′) | v <h v′}.

56

– Then, for each activity a ∈ A we consider all vertices labeled by this activity and

collect the predecessor-sets of these vertices in one set, called pre-activity-set of the

activity, and the successor-sets of these vertices in another set, called post-activity-

set of the activity. The pre-activity-set is defined as prea(a) = {pred(v) �= ∅ |
v ∈ V, (V,<, l) ∈ L, l(v) = a}, the post-activity-set is defined as posta(a) =
{succ(v) �= ∅ | v ∈ V, (V,<, l) ∈ L, l(v) = a}.

– For each activity a ∈ A we define an EPC-structure epca = ({a}, ∅, Ca
xor, Ca

and,Da)
containing the activity a and connectors determined by the dependencies given

by the pre-activity-set and post-activity-set of a. The EPC-structure epca is called

building block of a.
• Ca

xor = {xorapre, xorapost} ∪ {xorapre,a′ | a′ ∈ x, x ∈ prea(a)} ∪ {xorapost,a′ |
a′ ∈ x, x ∈ posta(a)}

• Ca
and = {andapre,x | x ∈ prea(a)} ∪ {andapost,x | x ∈ posta(a)}

• Da = {(xorapre, a), (a, xorapost} ∪ {(andapre,x, xorapre) | x ∈ prea(a)} ∪
{(xorapost, andapost,x) | x ∈ posta(a)} ∪ {(xorapre,a′ , andapre,x) | a′ ∈ x, x ∈
prea(a)} ∪ {(andapost,x, xorapost,a′) | a′ ∈ x, x ∈ posta(a)}

– By connecting the appropriate interface-connectors (xorapost,a′ with xora
′

pre,a) of

the building blocks we get the EPC-structure epc′ = (A, ∅, C′
xor, C′

and,D′) defined

by C′
xor =

⋃
a∈A Ca

xor, C′
and =

⋃
a∈A Ca

and and D′ =
⋃

a∈A Da ∪ {(xorapost,a′ ,

xora
′

pre,a) | a, a′ ∈ A, xorapost,a′ ∈ Ca
xor, xor

a′
pre,a ∈ Ca′

xor}.
– Finally, the EPC epc = (A, E, Cxor, Cand,D) results from removing all connectors

c having exactly one incoming edge (n, c) and exactly one outgoing edge (c, n′)
from C′

xor. The two edges (n, c) and (c, n′) are also removed from D′ and an edge

(n, n′) is added to D′. Moreover, the connectors xorST
pre and xorFI

post are removed

from C′
xor. Also their related edges (xorST

pre, ST) and (FI, xorFI
post) are removed

from D′ and edges (Start, ST) and (FI, F inal) are added to D′.

Fig. 2. Set of LPOs.

As an example, we consider the set of LPOs L illustrated in Figure 2 by their Hasse-

diagrams. In this example, we have A = {ST,A,B,C,D,E, F,G, FI}. To illustrate

57

the notion of predecessor- and successor-sets consider the vertex v labeled by A in the

first example LPO. There holds pred(v) = {ST} and succ(v) = {B,D}. As the pre-

and post-activity-set of the activity A we altogether get prea(A) = {{ST}, {G}} and

posta(A) = {{B,D}, {E,D}, {G}}. The construction of the building block for the

activity A is shown in Figure 3.

– We first add an XOR-split-connector having an incoming edge coming from A and

|posta(A)| outgoing edges (Figure 3 (a)).

– Each outgoing edge of the XOR-split represents one set x ∈ posta(A) (i.e. one

possible set of successor-activities of A). Such edge is connected with a new AND-

split connector having |x| outgoing edges (Figure 3 (b)).

– Each outgoing edge of such AND-split represents a connection to one activity

a′ ∈ x. For each such a′, the respective edges have to be merged to a unique inter-

face w.r.t. a′. Therefore, these edges are connected with a new XOR-join-connector

representing the unique interface. This connector has one outgoing edge for the

connection with the activity a′ (Figure 3 (c)).

– By proceeding analogously for prea(A) (the role of incoming and outgoing edges

as well as the role of splits and joins switches, see Figure 3 (d)-(f)) we get a building

block for the activity A having a unique outgoing-interface to each activity a ∈
x, x ∈ posta(A) and a unique incoming-interface to each activity a ∈ x, x ∈
prea(A).

Fig. 3. Construction of a building block.

Figure 4 shows the building blocks for all the activities of our example, where con-

nectors having exactly one incoming edge and exactly one outgoing edge and the con-

nectors xorST
pre and xorFI

post are already removed and replaced as defined by the last step

of the algorithm. The interfaces of the building blocks exactly fit together, i.e. if the

block of activity a has an outgoing-interface to a′, then a′ has an incoming-interface to

58

a. Therefore, the building blocks are connected along these interfaces yielding the final

EPC shown in Figure 5.

Fig. 4. Building blocks (inadequate connectors are already removed).

Fig. 5. Resulting EPC.

It remains to formally show that the presented folding algorithm in fact generates

an EPC from a set of LPOs. For this purpose, we first prove that the interfaces of the

building blocks in the step before last of the algorithm fit together.

Lemma 1. In the previous algorithm, the interface connectors of the building blocks
are matching, i.e. for two building blocks epca, epca

′
there holds xorapost,a′ ∈ Ca

xor if
and only if xora

′
pre,a ∈ Ca′

xor.

Proof. There holds xorapost,a′ ∈ Ca
xor if and only if there exists x ∈ posta(a) fulfilling

a′ ∈ x if and only if there exists v ∈ V , (V,<, l) ∈ L, l(v) = a fulfilling a′ ∈ succ(v)
if and only if there exist v, v′ ∈ V , (V,<, l) ∈ L, v <h v′ fulfilling l(v) = a, l(v′) = a′

if and only if there exists v′ ∈ V , (V,<, l) ∈ L, l(v′) = a′ fulfilling a ∈ pred(v′) if

and only if there exists x′ ∈ prea(a′) fulfilling a ∈ x′ if and only if there holds

xora
′

pre,a ∈ Ca′
xor.

Lemma 2. The EPC-structure epc = (A, E , Cxor, Cand,D) generated by the previous
algorithm is an EPC according to Definition 1.

Proof. We have to check the requirements (i) - (iii).

(i): Start and Final are the only events of the EPC-structure. By construction,

Start has no incoming edge and only one outgoing edge connected with ST . Final
has no outgoing edge and only one incoming edge connected with FI .

59

(ii): By construction in epc′ each activity a ∈ A has exactly one incoming edge

connected with xorapre and one outgoing edge connected with xorapost. In the last step

of the algorithm, if such edge is removed, it is replaced by another edge, such that (ii)

is preserved.

(iii): In the last step of the algorithm, property (iii) is ensured by removing from

epc′ the connectors xorST
pre and xorFI

post and all connectors having exactly one incoming

edge and exactly one outgoing edge. It remains to show that each connector of epc′

except for xorST
pre and xorFI

post either fulfills (iii) or has exactly one incoming edge and

exactly one outgoing edge:

– xorapre (a ∈ A) has exactly one outgoing edge connected with a and it has an

incoming edge connected with andapre,x for each x ∈ prea(a) where prea(a) �= ∅
for a �= ST .

– xorapost (a ∈ A) has exactly one incoming edge connected with a and it has an

outgoing edge connected with andapost,x for each x ∈ posta(a) where posta(a) �=
∅ for a �= FI .

– andapre,x (a ∈ A, x ∈ prea(a)) has exactly one outgoing edge connected with

xorapre and it has an incoming edge connected with xorapre,a′ for each a′ ∈ x
where x �= ∅.

– andapost,x (a ∈ A, x ∈ posta(a)) has exactly one incoming edge connected with

xorapost and it has an outgoing edge connected with xorapost,a′ for each a′ ∈ x
where x �= ∅.

– xorapre,a′ (a ∈ A, x ∈ prea(a), a′ ∈ x) by Lemma 2 has exactly one incom-

ing edge connected with xora
′

post,a and it has an outgoing edge connected with

andapre,x′ for each x′ ∈ {x ∈ prea(a) | a′ ∈ x} where {x ∈ prea(a) | a′ ∈ x} �=
∅.

– xorapost,a′ (a ∈ A, x ∈ posta(a), a′ ∈ x) by Lemma 2 has exactly one out-

going edge connected with xora
′

pre,a and it has an incoming edge connected with

andapost,x′ for each x′ ∈ {x ∈ posta(a) | a′ ∈ x} where {x ∈ posta(a) | a′ ∈
x} �= ∅.

As it can be seen in the example, the EPC generated by the folding algorithm repre-

sents all the direct dependencies and respects all the independencies given by the speci-

fied LPOs. Therefore, it nicely represents the behavior given by the LPOs. In particular,

it allows the execution of the specified LPOs according to Definition 6. We formally

prove this interesting result in the following lemma. The result means that scenarios

which are explicitly specified by a user are allowed by the generated EPC. This is an

important and reasonable feature, e.g. in our example all three LPOs from Figure 2 are

executable w.r.t. the constructed EPC from Figure 5. Nevertheless, many simplified al-

gorithms for model construction, e.g. from the area of process mining [5], do not satisfy

such property.

Lemma 3. Each LPO lpo ∈ L is executable w.r.t. the EPC epc generated by the previ-
ous folding algorithm (according to Definition 6).

Proof. Given a step sequence σ = A1 . . .An of lpo = (V,<, l) and the corresponding

sequentialisation lpo′ = (V,<′, l) of lpo, we consider the sequence σ′ of sets of nodes

of epc which is defined as follows:

60

– Given a set Ai = {a1 . . . am} and its corresponding set of vertices Vi = {v1 . . . vm}
⊆ V with l(vj) = aj , we construct a sequence σi of sets of nodes of epc having

the form σi = σa1,pre
i σa2,pre

i . . . σam,pre
i Aiσ

a1,post
i σa2,post

i . . . σam,post
i .

– For pred(vj) = {a′1 . . . a′p} we define σ
aj ,pre
i = {xoraj

pre,a′
k
| 1 ≤ k ≤ p, xor

aj

pre,a′
k

∈ Cxor}{andaj

pre,pred(vj)
| andaj

pre,pred(vj)
∈ Cand}{xoraj

pre | xoraj
pre ∈ Cxor}.

– For succ(vj) = {a′1 . . . a′s} we define σ
aj ,post
i = {xoraj

post | xor
aj

post ∈ Cxor}
{andaj

post,succ(vj)
| andaj

post,succ(vj)
∈ Cand}{xoraj

post,a′
k
| 1 ≤ k ≤ s, xor

aj

post,a′
k
∈

Cxor}.
– Finally σ′ = σ1 . . . σn.

By construction σ = σ′
A. To prove the executability of σ = A1 . . .An, it remains to

show that σ′ = σ1 . . . σn is executable in the initial marking of epc. We sketch the proof

for this statement in the following.

– First, we show that σ1 is executable in the initial marking. We have A1 = {ST}
and σST,pre

1 = ∅. By construction ST is executable in the initial marking. Then, we

have to check σST,post
1 . By construction, xorST

post is executable after ST . Then, if

|succ(vj)| > 1, we can fire andST
post,succ(vj)

. Afterwards, each xorST
post,a′

k
fulfilling

a′k ∈ succ(vj) and |{x ∈ posta(ST) | a′k ∈ x}| > 1 is executable.
– Now, we show that, if σ1 . . . σi−1 is executable in the initial marking, then σi is

executable in the follower marking. Given Ai = {a1 . . . am} and Vi = {v1 . . . vm}
as before, we consider the executability of σ

aj ,pre
i . First, each xor

aj

pre,a′
k

fulfill-

ing a′k ∈ pred(vj) and |{x ∈ prea(aj) | a′k ∈ x}| > 1 is executable. The

reason is that we have fired the activity a′k corresponding to the vertex v <h vj

with l(v) = a′k and, when they exist, the connectors xor
a′
k

post, and
a′
k

post,succ(v) and

xor
a′
k

post,aj
within the sequence σ1 . . . σi−1. Moreover, the process folder generated

by xor
a′
k

post,aj
is not consumed within the sequence σ1 . . . σi−1 by our construc-

tion. Next, if |pred(vj)| > 1, we can fire and
aj

pre,pred(vj)
. Then, xor

aj
pre is exe-

cutable. After each σ
aj ,pre
i , the set Ai is executable. Finally, the executability of

σa1,post
i σa2,post

i . . . σam,post
i can be shown analogously as in the last paragraph.

We have proven that each step sequence σ of lpo is executable in the initial marking of

epc and thus lpo is executable.

The only problem of the folding algorithm is that indirect dependencies within the

LPOs are not represented such that the generated EPC might also allow the execution

of additional LPOs, i.e. additional behavior which has not been specified is possible. In

our example from Figure 5, first the sequence A → G cannot only be repeated twice as

specified by the third LPO, but it can be repeated arbitrarily often. Second, it is possible

to finish the process after any number of repetitions of A → G, in particular FI can

be executed after just one execution of A → G. Third, also the first two scenarios can

still be executed after any number of repetitions of A → G.1 That means, due to the

1 Moreover, to avoid a deadlock, the routing of the XOR-split behind D has to be chosen in

accordance to the routing of the XOR-split behind A.

61

disregard of indirect dependencies the different specified behaviors can be combined

in a certain way. However, this is not only a problem but can also be seen as a positive

aspect. Typical specifications are incomplete. Thus, a real process often allows for more

behavior than given by a specification. Abstracting from indirect dependencies, as it

is done by the folding algorithm, results in a reasonable completion of the specified

example behavior.

Finally, it remains to mention that the three stylistic requirements for EPCs men-

tioned in Remark 1 can easily be ensured by the folding algorithm. First of all, by

construction the EPC generated by the algorithm contains no cycles of connectors only.

Second, the generated EPC has only one starting and one final event. However, we can

easily add (artificial) events in between the activities to guarantee alternating events

and activities. For instance, we can add an event directly before each activity except of

ST , i.e. events are inserted to the edges incoming to activities. In this way, not only

alternation is ensured but the property that XOR-splits must not proceed events is also

preserved. In our example, this approach yields the EPC shown in Figure 1 which now

fulfills all the typical syntactic requirements for EPCs.

4 Conclusion

We have presented a folding algorithm to generate a process model in the form of an

EPC from example scenarios given by a set of LPOs. The presented algorithm is very

efficient, more precisely it runs in linear time. It generates an intuitive model by repre-

senting all the direct dependencies specified by the LPOs. We have formally proven that

the generated EPC allows the execution of all the specified LPOs. Moreover, it usually

overapproximates the specification, i.e. additional scenarios which are “similar” to the

specified scenarios are possible which is reasonable due to incomplete specifications.

References
1. Desel, J.: From Human Knowledge to Process Models. In: UNISCON 2008, LNBIP 5,

Springer (2008) 84–95
2. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of Process Models from

Example Runs. In: ToPNoC II, LNCS 5460, Springer (2009) 243–259
3. Scheer: IDS Scheer: ARIS Process Performance Manager. http://www.ids-scheer.com.
4. Dongen, B., Aalst, W.: Multi-Phase Process Mining: Aggregating Instance Graphs into EPC’s

and Petri Nets. In: 2nd Workshop on Applications of Petri Nets to Coordination, Workflow

and Business Process Management, Petri Nets 2005, Miami (2005) 35–58
5. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process

Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142
6. Smith, E.: Zur Bedeutung der Concurrency-Theorie für den Aufbau hochverteilter Systeme.

PhD thesis, Universität Hamburg (1989)
7. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains. Infor-

mation & Software Technology 41(10) (1999) 639–650
8. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In:

BPM 2004, LNCS 3080, Springer (2004) 82–97
9. Kiehn, A.: On the Interrelation Between Synchronized and Non-Synchronized Behaviour of

Petri Nets. Elektronische Informationsverarbeitung und Kybernetik 24(1/2) (1988) 3–18

62

Towards Distributed Control of Discrete-Event
Systems�

Philippe Darondeau1 and S.L. Ricker2

1 INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, Rennes, France
darondeau@irisa.fr

2 Mathematics & Computer Science, Mount Allison University, Sackville NB, Canada
lricker@mta.ca

Abstract. To initiate a discussion on the modeling requirements for dis-
tributed control of discrete-event systems, a partially-automated region-
based methodology is presented. The methodology is illustrated via a
well-known example from distributed computing: the dining philoso-
phers.

1 Decentralized, Asynchronous, and Distributed DES
Control

In this section, we explain our understanding of the gradual evolution of con-
trol for discrete-event systems (DES) from centralized control to more advanced
forms, including distributed control, an area still in its infancy but one that may
soon become vital for practical applications of the theory.

Ramadge and Wonham’s theory of non-blocking supervisory control for DES
was introduced in [23] and developed soon after in [18, 24] to cover situations in
which only some of the events generated by the DES are observed, for instance
“in situations involving decentralized control” [24]. The basic supervisory control
problem consists of deciding, for a DES with observable/unobservable and con-
trollable/uncontrollable events, whether a specified behavior may be enforced on
the DES by some admissible control law. This basic supervisory control problem
is decidable. Moreover, if every controllable event is also observable, then one
can effectively compute the largest under-approximation of the specified behav-
ior that can be enforced by the supervisory control.

After the work done in [28] and extended in [35], decentralized control refers to a
form of control in which several local supervisors, with different subsets of observ-
able events and controllable events, cooperate in rounds. In each round, the local
supervisors compute a set of authorized events and the DES performs authorized
events until one is observed by some local supervisor, which puts an end to the

� Work partially supported by the EC-FP7 under project DISC (Grant Agreement
INFSO-ICT-224498) and NSERC.

63

round. In each round, the cooperation between the supervisors may result from
an implicit synchronization or arbitration, e.g., in conjunctive coordination, or it
may be obtained by applying distributed algorithms, e.g., to reach a consensus
on the set of authorized events. In any case, the controlled DES is governed by a
global clock, whose ticks are the events whose occurrences start the rounds. This
global clock may not be a problem for embedded system controllers, especially
when they are designed using synchronous programming languages like Lustre
[12]. Yet global clocks are impractical for widely distributed systems or architec-
tures, not to mention for distributed workflows or web services. For this reason
Globally Asynchronous Locally Synchronous (GALS) architectures have been
developed [22]. The existence of non-blocking decentralized supervisory control
for the basic supervisory control problem is decidable in the special case where
the closed behavior of a DES is equal to the closure of its marked behavior, but
it is undecidable in the general case without communication [16, 30].

Decentralized control can be extended to the case where supervisors communi-
cate [3]. When the correct control decision cannot be taken by any of the local
supervisors at the end of one of the cooperative rounds of decision making, com-
munication between supervisors can be introduced. The basic idea of this class of
problems is to ensure that supervisors receive relevant information about system
behavior that they cannot directly observe so that (at least) one local supervisor
can make the correct control decision. Further, it is often desirable to synthe-
size an optimal communication protocol, either from a set-theoretic (e.g., [27])
or quantitative (e.g., [26]) perspective. Thus, supervisors make control decisions
based on not only their partial observations, but also on information received
from other supervisors.

For the most part, work in this area has been devoted to the study of synchronous
communication protocols. There are several different approaches: build a proto-
col using a bottom-up approach [3, 25]; given a correct communication protocol,
use a top-down approach to reduce it to one that is optimal from a set-theoretic
perspective [27, 32]; and distribute an optimal centralized solution among a set
of communicating supervisors [19]. Bounded and unbounded communication de-
lays have also been explored [31, 13]. The communication channel is modeled as
a FIFO buffer; however, there is no notion of optimality since the communication
protocol for each supervisor is to simply send all of its observations to the other
supervisors. In the case of unbounded delay, the problem is undecidable [31, 13].

Decentralized control with communication extends the basic decentralized con-
trol problem in the general direction of distributed control; however, the synthesis
of asynchronous communication protocols remains largely unexamined. Of some
interest is the class of models where asynchronous interaction does not require
the intervention of an arbitrator [17]. At present, though, none of the strategies
for synthesizing communication protocols in decentralized control of DES meets
the conditions of asynchronous communication required for distributed control.

2

64

Asynchronous control was investigated in [21] in the framework of recognizable
trace languages and asynchronous automata [37, 20, 8]. In an asynchronous au-
tomaton, states are vectors of local states, and transitions are defined on partial
states, i.e., projections of states on a subset of locations. Transitions that concern
disjoint subsets of locations produce independent events, hence asynchronous au-
tomata have partially ordered runs (ergo there is no global clock). In [21], a DES
is an asynchronous automaton where an uncontrollable event has exactly one
location while a controllable event may have several locations, and every event
is observed in all locations concerned in the generating transition. The goal is to
construct for all locations local supervisors that jointly enforce a specified behav-
ior on the DES, i.e., a specific subset of partially ordered runs. Local supervisors
cooperate in two ways. First, a controllable event with multiple locations cannot
occur in the controlled DES unless it is enabled by all supervisors in these lo-
cations. Second, at each occurrence of a controllable event, all local supervisors
concerned with this event synchronize and communicate to one another all infor-
mation that they have obtained so far by direct observation of local events and
from prior communication with other supervisors. The information available to
the supervisor in location is therefore the -view of the partially ordered run of
the DES, i.e., the causal past of the last event with location . The local control
in location is a map from the -view of runs to subsets of events with location
, including all uncontrollable events that are observable at this location. Im-
plementing asynchronous supervisors, as they are defined above, on distributed
architectures requires implementing first a protocol for synchronizing the local
supervisors responsible for an event whenever the firing of this event is envisaged.
One of the main contributions of [21] is the identification of conditions under
which one can effectively decide upon the existence of asynchronous supervisors,
which, moreover, can always be translated to finite asynchronous automata.

A different form of asynchronous control has been examined in [5]. Here the
goal is not to compute from scratch an asynchronous supervisor but, rather, to
transform a centralized (optimal and non-blocking) supervisor into an equiva-
lent system of local supervisors with disjoint subsets of controllable events. The
data for the problem are a DES G and a centralized supervisor S, defined over
a set Σ of observable/unobservable and controllable/uncontrollable events, plus
a partition Σ = ��∈L Σ� of Σ over a finite set of locations. All local supervisors
have the set of events Σ, but the local supervisor S� in location is the sole
supervisor that can disable controllable events at location . The states of S�

are the cells of a corresponding control cover, i.e., a covering of the set of states
of S by cells with the following properties. First, if two transitions from a cell
are labelled by the same event, then they must lead to the same cell. Second, if
two states x and x′ are in the same cell, then for any reachable states (x, q) and
(x′, q′) of S ×G and for any event e with location , if e is enabled at q and q′

in G, then e should be coherently enabled or disabled at x and x′ in S. Third,
two states in a cell should be consistent w.r.t. marking information. Supervisor

3

65

localization based on control covers is universal in the sense that it always suc-
ceeds in transforming a centralized supervisor S into an equivalent family of local
supervisor S�. It is worth noting that a local supervisor S� with language L(S�)
may be replaced equivalently by a local supervisor with the language π(L(S�))
for any natural projection operator π : Σ∗ → (Σ′

�)
∗ such that Σ� ⊆ Σ′

� ⊆ Σ and
L(S�) = π−1π(L(S�)). In the end, for any event e ∈ Σ, whenever e occurs in the
controlled DES, all local supervisors S� such that e ∈ Σ′

� should perform local
transitions labelled by e in a synchronized way.

The approaches taken in [21] and [5] differ significantly. The former approach is
based on asynchronous automata and on the assumption that several local super-
visors may be responsible for the same controllable event. The latter approach
is based on product automata and on the assumption that exactly one local
supervisor is responsible for each controllable event. Both approaches, though,
rely on similar requirements for the final implementation of the asynchronous
supervisors. In both approaches, the only way for the local supervisors to com-
municate with one another is to synchronize on shared events. As a matter of
fact, widely distributed architectures do not generally provide protocols for per-
forming synchronized transitions in different locations.

By distributed control, we mean a situation in which the local supervisors and
the DES cooperate as follows. First, the set of observable or controllable events
of the DES is partitioned over the different locations (Σ = ��∈L Σ�), and for
each location ∈ L, every event in Σ� results from the synchronized firing of two
e-labelled transitions, in the DES and in the local supervisor S�, respectively.
Second, the set of events of each local supervisor S� is the union of Σ� and a
set X� of auxiliary send and receive events, used to communicate with the other
local supervisors in asynchronous message passing mode. Messages sent from
one location to another are never lost; however, they may overtake one another
and the arrival times cannot be predicted. Distributed controllers of this type,
already suggested in [6], can be implemented almost directly on any distributed
architecture. A slightly different type of distributed controllers, in which the
local supervisors communicate by FIFO buffers, has recently been proposed in
[15] together with synthesis algorithms for avoiding forbidden states in infinite
systems. Prior work along the same line was presented in [34], where the goal
was distributed state estimation in finite DES instead of distributed control.

In this paper, we do not intend to present a new theory, but, rather, we use a
well-known example with which to illustrate the concept of distributed control,
an area that is not yet fully understood, with the hope of motivating further
research in this direction. The example chosen is the n = 3 version of the clas-
sical n dining philosophers problem, where the local supervisors are in the forks
and both hands of each philosopher may act concurrently. The techniques that
we use for constructing distributed controllers for this problem are drawn or

4

66

adapted from [6], and they are briefly recalled in the next section before they
are put into practice.

2 Distributed Controller Synthesis Based on Petri Net
Synthesis

In this section, we describe the background of Petri net based controller synthe-
sis and its extension to distributed controller synthesis.

Given a DES G over a set of events Σ, called the plant, let Spec be a specifica-
tion of the desired behavior of G. Let Σ = Σo �Σuo = Σc �Σuc, where Σo and
Σc are the sets of observable and controllable events, respectively. Henceforth,
we assume that every controllable event is observable, i.e., Σc ⊆ Σo. Then the
supervisory control problem consists of constructing a supervisor S over the set
of events Σo such that the partially synchronized product of S and G, usually
denoted by S × G but here denoted by (S/G), satisfies Spec and the following
admissibility condition holds: for every reachable state (x, q) of (S/G), if an un-
controllable event e ∈ Σuc is enabled at state q in G, then the event e should
also be enabled at state x in S.

Let S = (X,Σo, δ, xo) be a deterministic supervisor satisfying the above re-
quirements, where X is the set of states, x0 ∈ X is the initial state, and
δ : X×Σo → X is the partial transition map. For simplicity, we do not consider
marked states here. We say that S is Petri net definable (PND) if it is isomor-
phic to the reachability graph of a Petri net system N with the set of transitions
T = Σo. Let us recall some definitions.

Definition 1. A Petri net is a bi-partite graph (P, T, F), where P and T are
finite disjoint sets of vertices, called places and transitions, respectively, and
F : (P × T) ∪ (T × P) → N is a set of directed edges with non-negative integer
weights. A marking of N is a map M : P → N. A transition t ∈ T is enabled at
a marking M (denoted by M [t〉) if M(p) ≥ F (p, t) for all places p ∈ P . It t is
enabled at M , then it can be fired, leading to the new marking M ′ (denoted by
M [t〉M ′) defined by M ′(p) = M(p) + F (t, p)−F (p, t) for all p ∈ P .

Definition 2. A Petri net system N is a tuple (P, T, F,M0) where M0 is a
marking of the underlying net (P, T, F), called the initial marking. The reacha-
bility set RS(N) of N is the set of all markings reached by sequences of tran-
sitions from M0. The reachability graph RG(N) of N is the transition system
(RS(N), T, δ,M0) with the partial transition map δ : RS(N) × T → RS(N)
defined as δ(M, t) = M ′ iff M [t〉M ′ for all markings M and M ′ in RS(N).

Thus, S is PND if there exists a Petri net system N = (P, T, F,M0) with the set
of transitions T = Σo and a bijection ϕ : X → RS(N) such that ϕ(x0) = M0 and
for all x ∈ X and t ∈ Σo, δ(x, t) is defined if and only if M [t〉M ′ for M = ϕ(x)
and for some marking M ′, and then M ′ = ϕ(x′) where x′ = δ(x, t).

5

67

PND controllers comprised of monitor places for PND plants date back to the
work in [7, 36]. Monitor places are linear combinations of places of the net which
define the plant, and they are added to the existing places of this net in order
to constrain its behavior. PND controllers for DES given as labelled transition
systems proceed from a similar idea with one significant difference: since G has
no places, the places of the controller net N are synthesized directly from Spec
(the specification) using the theory of regions [1]. This controller net synthesis
technique was inaugurated in [10]. In that work, the specification Spec was the
induced restriction of G on a subset of “good” states. The theory of regions may
be applied both to state-oriented specifications given by transition systems and
to event-oriented specifications given by languages. It is shown in [6] how the
theory can be applied to the supervisory control problem with tolerance stated
as follows:

Given a plant G and two prefix-closed regular languages Lmin and Lmax, such
that Lmin ⊆ Lmax ⊆ L(G), where L(G) denotes the language generated by G,
decide whether there exists and construct a Petri net controller N such that

Lmin ⊆ L((RG(N)/G)) ⊆ Lmax

After attempts to apply the theory to significant examples found in the litera-
ture (e.g., workflows, train systems), we convinced ourselves that in most cases
where supervisory control is needed, the main objective is to avoid deadlocks
or to enforce home states or both, but it is simply impossible to express such
objectives by tolerance specifications because Lmin is not known beforehand.
The example developed in the next section also illustrates this situation.

At this stage, it may seem odd to search for PND controllers instead of general
controllers defined by labelled transition systems. Indeed, the Petri nets that we
consider are labelled injectively (their set of transitions T is equal to the set
Σo of the observable events), and it is well-known that languages of injectively
labelled and bounded Petri nets form a strict subset of the regular languages.
So, while one loses generality, one gains a more compact representation of con-
trollers, which appears to be poor compensation. Fortunately, things change in
a radical way when one takes distributed control into account, since one can
tailor controller synthesis to distributed Petri nets that can be converted to
asynchronously communicating automata, as we explain below.

To begin with, we recall from [2] the definition of distributed Petri nets and their
automated translation into asynchronous message passing automata.

Definition 3 (Distributed Petri net system). A distributed Petri net sys-
tem over a set of locations L is a tuple N = (P, T, F,M0, λ) where (P, T, F,M0)
is a Petri net system and λ : T → L is a map, called a location map, subject to
the following constraint: for all transitions t1, t2 ∈ T and for every place p ∈ P ,
F (p, t1) �= 0 ∧ F (p, t2) �= 0 ⇒ λ(t1) = λ(t2).

6

68

In a distributed Petri net, two transitions with different locations cannot compete
for tokens, hence distributed conflicts cannot occur, which makes the effective
implementation easy. Two transitions with different locations may, though, send
tokens to the same place. Implementing a distributed Petri net system N means
producing an asynchronous message passing automaton (AMPA) behaving like
N up to branching bisimulation (see Appendix for precise definitions). Given
any non-negative integer bound B, let RGB(N) denote the induced restriction
of the reachability graph RG(N) of N on the subset of markings bounded by B,
i.e., markings M such that M(p) ≤ B for all places p ∈ P . Transforming N into
a B-bounded AMPA with a reachability graph branching bisimilar to RGB(N)
may be done as follows (see [2] for a justification).

– Given N = (P, T, F,M0, λ), extend λ : T → L to λ : (T ∪ P) → L such that
λ(p) �= λ(t) ⇒ F (p, t) = 0 for all p ∈ P and t ∈ T (this is always possible by
Def. 3).

– For each location ∈ L, construct a net system N� = (P�, T�, F�,M�,0), called
a local net, as follows.
• P� = {p | p ∈ P ∧ = λ(p)} ∪ {(p,) | p ∈ P ∧ �= λ(p)},
• T� = {t ∈ T | λ(t) = } ∪
{ ! p | p ∈ P ∧ �= λ(p)} ∪ { ? p | p ∈ P ∧ = λ(p)},

• F�(p, t) = F (p, t) and F�(t, p) = F (t, p),
• F�(t, (p,)) = F (t, p),
• F�((p,), ! p) = 1 and F�(? p, p) = 1,
• M�,0(p) = M0(p).

In each local net N�, places (p,) are local clones of places p of other local
nets. Whenever a transition t ∈ T with location produces tokens for a
distant place p ∈ P (λ(t) = �= λ(p)), the transition t ∈ T ∩ T� produces
tokens in the local clone (p,) of p. These tokens are removed from the local
clone (p,) of p by the auxiliary transition ! p, each firing of which models
an asynchronous emission of the message p. Symmetrically, for any place p
of N with location , each firing of the auxiliary transition ? p models an
asynchronous reception of the message p, resulting in one token put in the
corresponding place p ∈ P�.

– For each location , compute RGB(N�). The desired AMPA is the collection
of local automata {A� = RGB(N�) | ∈ L}. Each transition of an automa-
ton A� is labelled either with some t ∈ T ∩ T� or with some asynchronous
message emission ! p or with some asynchronous message reception ? p. A
message p sent from a location ′ by a transition ′ ! p of the automaton A�′ is
automatically routed towards the automaton A� with the location = λ(p),
where it is received by a transition ? p of the automaton A�. No assumption
is made on the relative speed of messages, nor on the order in which they
are received.

Closing the parenthesis, let us return to controllers. Let G be a DES over a set of
events Σ = Σo �Σuo = Σc �Σuc where Σc ⊆ Σo. Let Spec be a specification of
the desired behavior ofG. Let L be a finite set of locations (or sites). Let λ : Σo →

7

69

L be a location map, specifying for each observable event e the location λ(e) in
which it may be observed and possibly controlled. Let S = (X,Σo, δ, xo) be a
finite-state admissible supervisor forG, such that (S/G) satisfies the specification
Spec. Thus, for every reachable state (x, q) of (S/G), if e ∈ Σuc is enabled in
state q in G, then e is also enabled in state x in S. We say that S is a distributed
Petri net definable supervisor (DPND) if it is isomorphic to the reachability
graph of a distributed Petri net N = (P, T, F,M0, λ) with a set of transitions
T = Σo. In view of this isomorphism, since X is a finite set of states, there
must exist a finite bound B such that M(p) ≤ B for all places p ∈ P and for
all reachable markings M of N . Therefore, S = (X,Σo, δ, xo) may be translated
equivalently to an AMPA = {A� = RGB(N�) | ∈ L}, realizing, in the end,
fully distributed control.

Therefore, the approach to distributed control that we suggest is to search for
admissible DPND controllers using Petri net synthesis techniques (see [1] for
a survey). With the adaptation proposed in [2], these techniques allow us to
answer the following types of questions:

– Given a finite automaton over Σo and a location map λ : Σo → L, can this
automaton be realized as the reachability graph of a distributable Petri net
N = (P, T, F,M0, λ) with set of transitions T = Σo?

– Given a regular language over Σo and a location map λ : Σo → L, can this
language be realized as the set of firing sequences of a distributable Petri
net N = (P, T, F,M0, λ) with set of transitions T = Σo?

The type of net synthesis techniques that should be applied when solving the
distributed supervisory control problem depends upon the specification Spec of
the control objective. A method to derive distributed supervisors for the basic
supervisory control problem with tolerances was described in [6]. This method
cannot be applied when the control objective is avoiding deadlocks or enforcing
home states. In fact, we do not know of any systematic method to cope with
such problems. The case study presented in next section aims at motivating work
in this direction. To give a flavour of the approach, let us set ourselves in the
simple case where G is given by a Petri net. One proceeds by a series of trial
and error. At each step, one removes states from the reachability graph of G,
and checks that it is enough to add distributed monitor places to confine the
behavior to the remaining states. The distribution constraints on monitor places
are represented in the synthesis procedure by sign constraints depending upon
the chosen location of the monitor place.

Note that AMPA derived from distributed Petri nets are a strict subclass of
AMPA. Thus, the distributed controller synthesis techniques that we propose
may fail even though the distributed supervisory control problem may be solved
using more general AMPA. This point illustrates, if it was not yet totally clear,
that the field for research on distributed controller synthesis is wide open.

8

70

3 Distributed Controllers for Three Dining Philosophers

We would now like to experiment with our Petri net based synthesis method
for distributed controllers on a toy example. We have chosen the famous prob-
lem of the dining philosophers [14]. The reasons for this choice are twofold. On
the one hand, the problem is easily understood. On the other hand, the size of
this problem can be adjusted to accommodate our partially-automated process-
ing techniques by decreasing the usual number of philosophers, which is five, to
three philosophers.

Let us recall the statement of the problem. Three philosophers ϕ1, ϕ2, and ϕ3

are sitting at a table with a bowl of spaghetti in the center. Three forks f1, f2, f3
are placed on the table, such that philosopher φi has the fork fi on his right and
the fork fi+1 mod 3 on his left (see Fig. 1(a)). A philosopher alternates periods
of eating and periods of thinking. To eat, he needs both the fork to his direct left
and the fork to his direct right. Therefore, he tries to grab them one after the
other while thinking. A philosopher who thinks with a fork in each hand stops
thinking and starts eating after a finite delay. A philosopher who eats eventu-
ally stops eating, puts down the forks, and starts thinking again after a finite
delay. The basic problem is to avoid deadlock, i.e., the situation in which every
philosopher has taken one fork. A classical solution is to let all philosophers but
one, say ϕ1, take first the fork to their right, and to let ϕ1 take first the fork to
his left. An augmented problem is to avoid the starvation of any philosopher.

The dining philosophers problem was used in [33] to illustrate the use of super-
visory control techniques for removing deadlocks from multi-threaded programs
with lock acquisition and release primitives. In that work, the emphasis was on
optimal control, not on distribution. In this paper, we do the opposite, i.e., we
give priority to distributed control over optimal control. Moreover, we intend that
local controllers will be embedded in forks, not in philosopher threads. The idea
is that resource managers have fixed locations while processes using resources
are mobile. To make things precise, consider the PND plant G defined by the
Petri net N (shown in Fig. 1(b)).

Places f1f , f2f , and f3f are the resting places of the forks f1, f2, and f3,
respectively (fif should be read as “fi is free”), and they are initially marked
with one token each. For j ∈ {1, 2, 3} and i ∈ {j, j + 1 mod 3}, “philosopher
ϕj can take fork fi when it is free” (transition tji). After this, “philosopher ϕj

holds fork fi” (condition jhi). A philosopher ϕj with two forks may “start eat-
ing” (transition sej). A philosopher ϕj who is eating (condition ej) can “start
thinking” (transition stj), and then forks fj and fj+1 mod 3 return again to the
table. With respect to distribution, there are four locations as follows. For each
fork fi, i ∈ {1, 2, 3}, the two transitions which compete for this fork, namely tii
and tji with j = i − 1 mod 3, are located on a site i specific to this fork. All
other transitions are located on a default site 4 that does not matter.

9

71

3

1

2

2

3

1

(a)

t33 t31

se3

st3

t11st1

se1t12se2 t22

st2t23

3h3 3h1

1h1

1h22h2

2h3

f3f

f2f

f1f

e1e2

e3

(b)

Fig. 1. Modeling the Dining Philosophers Problem:(a) three philosophers; (b) the un-
controlled plant

The control objective is to avoid deadlocks. For simplicity, we assume that all
transitions are observable. The controllable transitions are the transitions which
consume resources, i.e., the transitions tji (philosopher ϕj takes fork fi). The
control objective should be achieved by distributed control and, more precisely,
by a distributed Petri net. The set of transitions T of the controller net may be
any set included in {sej, stj, tjj, tji | 1 ≤ j ≤ 3 ∧ i = j + 1 mod 3}. The loca-
tion map λ : T → {1, 2, 3, 4} is naturally the induced restriction of the map
defined by λ(tij) = j and λ(sej) = λ(stj) = 4 for 1 ≤ j ≤ 3.

The PND plant G under consideration, i.e., the reachability graph of N , has
two sink states M1 and M2, defined by M1(3h1) = M1(1h2) = M1(2h3) = 1
and M2(1h1) = M2(2h2) = M2(3h3) = 1, respectively (letting M1(p) = 0 or
M2(p) = 0 for all other places p). If one disregards distributed control, it is quite
easy to eliminate these two deadlocks by adding two monitor places p1 and p2,
the role of which is to disable the instances of the transitions t31, t12, t23 and
t11, t22, t33 that reach M1 and M2 in one step, respectively. The monitor places
may be chosen so that no other transition instance is disabled, hence they do not
cause new deadlocks. The PND controller consisting of the monitor places p1 and
p2 realizes the optimal control of G where the objective is deadlock avoidance.
mbox
This solution is straightforward because N is one-safe, i.e., for every reachable
marking M and for every place p of N , M(p) ∈ {0, 1}. For any one-safe net

with set of places P , the set of reachable markings is a convex subset of {0, 1}P .
As a consequence, a reachable marking Mx may always be separated from all
other reachable markings by a hyperplane. Any separating hyperplane induces a
monitor place that disables all (instances of) transitions crossing this hyperplane
in a fixed direction. Therefore, for one-safe nets, optimal control can always be
realized by PND controllers [9]. The two monitor places computed by synet

10

72

[29] are p1 = 2 + st1 + st2 + st3 − t31 − t12 − t23 (i.e., p1 is initially marked
with 2 tokens, there are flow arcs with weight 1 from st1, st2 and st3 to p1,
and that there are flow arcs with weight 1 from p1 to t31, t12 and t23), and
p2 = 2+st1+st2+st3− t11− t22− t33. This optimal controller is unfortunately
not a distributed controller.

3.1 A distributed controller avoiding deadlocks

The reachability graph G of N has 36 states and 78 transitions. An inspection of
G reveals the two subgraphs shown in Fig. 2, where the initial state is numbered
0 and the deadlock states M1 and M2 are numbered 25 and 11, respectively.
All transitions that lead to a deadlock state in one step are, in fact, represented
in Fig. 2. Note that all squares in the figure are distributed diamonds, i.e., the
north/south edges and the west/east edges of a square are always labelled by
two events which belong to different locations.

To avoid reaching the deadlock states M1 and M2, one can proceed as follows.
First, all seven instances of the transitions t31 and t22 indicated in Fig. 2 are
removed (manually) from the reachability graph G of N . Let G1 be the reachable
restriction of the resulting subgraph of G. G1 has 23 states, none of which is a
sink state.

23

25

24

26

29 30

13

12

19

11

10

16

15 35

0 1

9

8

t31

t31

t31

t31

t31

t31

0

2

5

3

7

4

61

t23

t12

t23

st2

se2

t23

t12

t23

se2

t22

t22

t22

t22

t22

t11

t33

t11

st3

se3

t33

t11

t33

t11

st3

se3

t33

st2

5 6
t22

t22

t31

t23 t23

Fig. 2. Two ladder-shaped subgraphs leading to deadlock

If this problem is feasible, the software synet will compute a distributed con-
troller net K1 such that G1 is isomorphic to RG(K1)/G. This is the case for
our example, and synet produces a DPND controller with components K1

1 , K
2
1 ,

K3
1 , K

4
1 to plug in the respective locations 1 to 4. K4

1 does nothing but send

11

73

the other components asynchronous signals informing them of the occurrences
of the start eating and start thinking events sej and stj. The local controllers
K1

1 , K
2
1 , K

3
1 are depicted in Fig. 3. For each controller, the asynchronous flow

from other local controllers is indicated by dashed arrows.

t33 st3 se1

t31 t11

se3 st1

(a) K1
1

t22 t12

se1st2

se2 st1

(b) K2
1

t33

t23

st3 t22

(c) K3
1

Fig. 3. Local controllers for our example

Note that K2
1 sends messages to K3

1 (indicating that t22 has occurred) and K3
1

sends messages to K1
1 (indicating that t33 has occurred) but K1

1 does not send
any message to the other components. In the design of the distributed controller
K1, we have privileged the transitions t31 and t22. As a result, in the initial state
of RG(K1)/G, philosopher ϕ1 can grab both forks f1 and f2 in parallel while
philosophers ϕ2 and ϕ3 can only fight over fork f3. Similar controllers may be
obtained by choosing t12 and t33, or t23 and t11, instead of t31 and t22. Unfor-
tunately, neither K1 nor such controllers can avoid starvation. In RG(K1)/G, for
each philosopher there actually exists a reachable state in which he may act fast
enough to prevent the other two from ever eating! Finally, note that all places of
the local controller nets K1

1 , K
2
1 and K3

1 stay bounded by 1 in all reachable states
of RG(K1)/G. Therefore, to transform K1 into an equivalent asynchronous mes-
sage passing automaton AMPA, as indicated in Sect. 2, it suffices to compute
the bounded reachability graph RGB(K1) for the bound B = 1.

3.2 Another DPND controller avoiding deadlocks

A quite different distributed controller K2 may be obtained by shifting the fo-
cus to the transitions t31 and t11. By inspecting the reachability graph G of N
again, one can locate the two subgraphs shown in Fig. 4(a). All squares in the
figure are distributed diamonds. A first attempt to avoid the deadlock states 25
and 11 consists of manually removing from G all occurrences of the transitions
t31 and t11 indicated in Fig. 4(a). Unfortunately, the two deadlock states can
still be reached after these transitions have been removed. In a second effort, the
occurrences of the transitions t12 and t33 indicated in Fig. 4(b) are manually
removed from G. Let G2 be the reachable restriction of the resulting subgraph

12

74

of G. G2 has 22 states, none of which is a sink state. From G2 synet pro-
duces a distributed controller net K2 such that G2 is isomorphic to RG(K2)/G.
K2 has four components K1

2 , K
2
2 , K

3
2 , K

4
2 to plug in the respective locations 1

to 4. K2
2 , K

3
2 and K4

2 do nothing but send K1
2 asynchronous signals informing

this local controller of the occurrences of the sets of events {t12}, {t33} and
{se1, st1, se3, st3}, respectively. The local controller K1

2 is depicted in Fig. 5(a).

23

25

24

26

29 30

13

12

19

11

16

10

35

0 1

9

8

t31

t31

t31

t31

t31

t31

0

t23

t12

t23

st2

se2

t23

t12

t23

se2

t11

t11

t11

t11

t22

t33

t22

t22

t33

t22

st2

se2

st2

5 6
t11

t11

t31

t23 t23

5

13

st2

14

15

t11

se2

12

29 31

32

t22t22

(a)

2530 1135t12

t12

t23t23

t33

t33

t22 t22

1 24 15 16

(b)

Fig. 4. Subgraphs leading to deadlock

Note that now, all control decisions are taken in location 1! In the initial state
of RG(K2)/G, philosopher ϕ2 can take both forks f2 and f3 in parallel, while
philosophers ϕ1 and ϕ3 can only compete with ϕ2 to get forks f2 and f3, respec-
tively. Note that all places of the local controller nets K1

2 stay bounded by 1 in
all reachable states of RG(K2)/G. With respect to starvation, K2 and all similar
controllers have exactly the same drawbacks as K1. K1 and K2 are incomparable
controllers, and we suspect, but have not verified, that they are both maximally
permissive amongst DPND controllers for the deadlock avoidance problem.

3.3 A distributed controller avoiding starvation

Using synet we produced a DPND controller K3 that avoids starvation (and
not just deadlocks). Specifically, we designed the right controller by examining
the structure of cycles in the reachability graph of G, and used synet to confirm
that it could be implemented with a distributed Petri net. The reachable state
graph RG(K3)/G is shown in Fig. 5(b). Unfortunately, parallelism disappears
completely, and there remains only one state where a choice is possible. It would
be interesting to examine the same problem for a larger number of philosophers,
but fully-automated strategies are necessary for this purpose.

13

75

t31 t11

se1

t33 t12

st3

se3 st1

(a) K1
2

t11
t33

t12 st1 t22 t31se1

se3st3t23se2

st2

t23
t12 se1 st1 t31

t22

se2st2t33se3

st3

(b) RG(K3)/G

Fig. 5. (a) An unfair controller (b) A fair controller

4 Conclusion

To move towards a theory of distributed control of DES, we have proposed a
mixture of asynchronous control and communication. A significant advantage of
the proposed methodology is that the way of encoding the information to be
exchanged is automated: the messages sent asynchronously are names of places
of a Petri net produced by synthesis. Yet there remains a sizeable amount of
work to be done: a significant disadvantage of the methodology is at present the
lack of a general theorem and a fully-automated controller synthesis method.

References

1. E. Badouel and P. Darondeau. Theory of Regions. In Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, LNCS 915, pages 529-586, 1998.

2. E. Badouel, B. Caillaud and P. Darondeau. Distributing Finite Automata Through
Petri Net Synthesis. Formal Aspects of Computing 13: 447-470, 2002.

3. G. Barrett and S. Lafortune. Decentralized Supervisory Control with Communi-
cating Controllers. IEEE Trans. Autom. Control, 45(9), 1620-1638, 2000.

4. D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. of the
ACM, 30(2):323-342, 1983.

5. K. Cai and W.M. Wonham. Supervisor Localization: A Top-Down Approach to
Distributed Control of Discrete-Event Systems. IEEE Trans. Autom. Control,
55(3), 605-618, 2010.

6. P. Darondeau. Distributed Implementation of Ramadge-Wonham Supervisory
Control with Petri Nets. In CDC-ECC 2005, pages 2107-2112.

7. A. Giua, F. Di Cesare and M. Silva. Generalized Mutual Exclusion Constraints on
Nets with Uncontrollable Transitions. In IEEE-SMC 1992, pages 974-979.

8. B. Genest, H. Gimbert, A. Muscholl and I. Walukiewicz. Optimal Zielonka-Type
Construction of Deterministic Asynchronous Automata. In ICALP 2010 (2), LNCS
6199, pages 52-63.

9. A. Ghaffari, N. Rezg and X. Xie. Algebraic and Geometric Characterization of
Petri Net Controllers Using the Theory of Regions. In WODES 2002, pages 219-
224.

14

76

10. A. Ghaffari, N. Rezg and X. Xie. Design of Live and Maximally Permissive Petri
Net Controller Using the Theory of Regions. IEEE Trans. Robot. Autom. 19:
137-142, 2003.

11. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. J. of the ACM 43(3): 555-600, 1996.

12. N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. The synchronous dataflow
programming language Lustre. Proc. IEEE, 79(9):1305-1320, 1991.

13. K. Hiraishi. On Solvability of a Decentralized Supervisory Control Problem with
Communication. IEEE Trans. Autom. Control, 54(3), 468-480, 2009.

14. C.A.R. Hoare. Communicating Sequential Processes. CACM 21(8): 666-677, 1978.
15. G. Kalyon, T. Le Gall, H. Marchand and T. Massart. Synthesis of Communicating

Controllers for Distributed Systems. Private communication, 2011.
16. H. Lamouchi and J. Thistle. Effective Control Synthesis for DES under Partial

Observations. In CDC 2000, pages 22-28.
17. L. Lamport. Arbiter-Free Synchronization. Distrib. Comput. 16(2/3): 219-237,

2003.
18. F. Lin and W.M. Wonham. On observability of discrete-event systems. Info. Sci.

44:173-198, 1988.
19. A. Mannani and P. Gohari. Decentralized Supervisory Control of Discrete-Event

Systems Over Comunication Networks. IEEE Trans. Autom. Control, 53(2):547-
559, 2008.

20. M. Mukund and M. Sohoni. Gossiping, Asynchronous Automata and Zielonka’s
Theorem. Report TCS-94-2, Chennai Mathematical Institute, 1994.

21. P. Madhusudan, P.S. Thiagarajan, S. Yang. The MSO Theory of Connectedly
Communicating Processes. In FSTTCS 2005, LNCS 3821, pages 201-212.

22. D. Potop-Butucaru and B. Caillaud. Correct-by-Construction Asynchronous Im-
plementation of Modular Synchronous Specifications. In ACSD 2005, pages 48-57.

23. P.J. Ramadge and W.M. Wonham. Supervisory Control of a Class of Discrete
Event Processes. SIAM J. Control Optim., 25:206-230, 1987.

24. P.J. Ramadge and W.M. Wonham. The Control of Discrete Event Systems. Proc.
of the IEEE, Special issue on Dynamics of Discrete Event Systems, 77:81-98, 1989.

25. S.L. Ricker and B. Caillaud. Mind the Gap: Expanding Communication Options
in Decentralized Discrete-Event Control. In CDC 2007, pages 5924-5929.

26. S.L. Ricker. Asymptotic Minimal Communication for Decentralized Discrete-Event
Control. In WODES 2008, pages 486-491.

27. K. Rudie, S. Lafortune and F. Lin. Minimal Communication in a Distributed
Discrete-Event System. IEEE Trans. Autom. Control, 48(6):957-975, 2003.

28. K. Rudie and W.M. Wonham. Think Globally, Act Locally: Decentralized Super-
visory Control. IEEE Trans. Autom. Control, 37(11):1692-1708, 1992.

29. B. Caillaud. http://www.irisa.fr/s4/tools/synet/
30. J.G. Thistle. Undecidability in Decentralized Supervision. Syst. Control Lett., 54:

503-509, 2005.
31. S. Tripakis. Decentralized Control of Discrete Event Systems with Bounded or

Unbounded Delay Communication. IEEE Trans. Autom. Control, 49(9):1489-1501,
2004.

32. W. Wang, S. Lafortune and F. Lin. Minimization of Communication of Event
Occurrences in Acyclic Discrete Event Systems. IEEE Trans. Autom. Control,
53(9):2197-2202, 2008.

33. Y. Wang, S. Lafortune, T. Kelly, M. Kudlur and S. Mahlke. The Theory of Dead-
lock Avoidance via Discrete Control. In POPL 2009, pages 252-263.

15

77

34. X. Xu and R. Kumar. Distributed State Estimation in Discrete Event Systems. In
ACC 2009, pages 4735-4740.

35. T.S. Yoo and S. Lafortune. A General Architecture for Decentralized Supervisory
Control of Discrete-event Systems. Discrete Event Dyn. Syst., 12(3):335-377, 2002.

36. K. Yamalidou, J. Moody, M. Lemmon and P. Antsaklis. Feedback Control on Petri
Nets Based on Place Invariants. Automatica 32(1): 15-28, 1996.

37. W. Zielonka. Notes on Finite Asynchronous Automata. RAIRO Informatique
Théorique et Applications, 21:99-135, 1987.

Appendix

Our Asynchronous Message Passing Automata (AMPA) differ from the communicating
automata originally introduced by Brand and Zafiropulo [4] in that communications
are not FIFO. Given a finite set of locations L, a B-bounded AMPA is a collection of
DFA {A� | � ∈ L} together with a finite set of messages P , where λ : P → L specifies
the address for each message. Each A� = (Q�, Σ� � Σ!

� � Σ?
� , δ�, q0,�) is a DFA with a

partial transition map δ�, and initial state q0,�, where Σ
!
� = {�!p | p ∈ P ∧λ(p) �= �} and

Σ?
� = {�?p | p ∈ P ∧ λ(p) = �}. The actions in Σ� are observable. The communication

actions in Σ!
� ∪Σ?

� are unobservable.
The dynamics of aB-bounded AMPA are defined by a transition systemRG(AMPA)

constructed inductively from an initial configuration 〈q0,m0〉 as follows:
– q0 is an L-indexed vector with entries q0,� for all � ∈ L,
– m0 is an P -indexed vector with null entries for all p ∈ P ,
– From any configuration 〈q,m〉, where q is an L-indexed vector with entries q� ∈ Q�,

for all � ∈ L, and m is a P -indexed vector of integers with entries mp ≥ 0 for all
p ∈ P , there is a transition 〈q,m〉 σ−→ 〈q′,m′〉 in the following three cases:
• q′� = δ�(q�, σ) for some � ∈ L and σ ∈ Σ�, q

′
k = qk for all k �= � and m′ = m;

• q′� = δ�(q�, σ) for some � ∈ L and σ = �!p ∈ Σ!
�, q′k = qk for all k �= �,

m′
p = mp + 1 ≤ B, and m′

r = mr for all r �= p;
• q′� = δ�(q�, σ) for some � ∈ L and σ = �?p ∈ Σ?

� , q′k = qk for all k �= �,
m′

p = mp − 1 ≥ 0, and m′
r = mr for all r �= p;

Branching bisimulation was defined by van Glabbeek andWeijland [11] for processes
with a single unobservable action τ . The following is an adaptation of the original
definition to processes defined by automata with several unobservable actions. Let
Σ = Σo ∪Σuo be a set of labels, where Σo and Σuo are the subsets of observable and
unobservable labels, respectively. Let A = (Q,Σ, δ, q0) and A′ = (Q′, Σ, δ, q′0) be two
automata over Σ. A and A′ are branching bisimilar if there exists a symmetric relation
R ∈ Q×Q′ ∪Q′ ×Q such that (q0, q

′
0) ∈ R and whenever (r, s) ∈ R

– if δ(r, σ) = r′ and σ ∈ Σuo, then (r′, s) ∈ R;
– if δ(r, σ) = r′ and σ ∈ Σo, then there exists a sequence σ′

1 . . . σ
′
k ∈ Σ∗

uo (where
k = 0 means an empty sequence) such that if one lets δ(s, σ′

1 . . . σ
′
j) = s′j for j ≤ k,

and δ(s′k, σ) = s′, then s′ and states s′j are effectively defined and (r′, s′) ∈ R.

16

78

Mining with User Interaction

Robin Bergenthum, Sebastian Mauser

Department of Software Engineering, FernUniversität in Hagen

{robin.bergenthum,sebastian.mauser}@fernuni-hagen.de

Abstract. In this short paper we present an interactive mining approach which is

based on net synthesis. First, a net is generated from a log file by a liberal mining

algorithm such as the alpha-algorithm. Then, using concepts from the theory of

regions, runs of this net which are not included in the log are calculated and

feedbacked to a user who has to decide whether they are valid runs of the process

or not. Finally, a net having the runs of the log and the additionally specified runs

is synthesized.

1 Introduction

Many of today’s information systems record information about performed activities of

processes in so called event logs. Process mining techniques attempt to extract useful,

structured information from such logs. In this paper we focus on the problem of con-

structing a process model which matches the actual workflow of the recorded informa-

tion system, called process discovery. There are many process discovery techniques in

the literature (e.g. [1]), often implemented in the ProM framework (www.promtools.org/

prom6).

One main difficulty of process discovery is that a typical log contains only example

runs of the recorded process (we do not discuss the problem of noise here), i.e. logs are

incomplete. Therefore, precise mining algorithms based on net synthesis which exactly

reproduce a log (see e.g. [2]) are often not appropriate. Consequently, most mining

algorithms try to generate a process model which includes the recorded example runs

and also allows for some additional behavior – they overapproximate the given event

log. Since there is no information on runs missing in the log, overapproximation is a

heuristic approach. When a mining algorithm allows a run which is not given in the log,

it is not clear (without additional information) whether the added run (1) is a run of the

process which coincidentally has not been observed in the log or (2) is no possible run

of the process and for this reason is of course not included in the log. The only way to

solve this problem is to ask a user whether (1) or (2) is true. Therefore, we here suggest

an interactive mining approach where overapproximation is explicitly determined by

a user (first ideas in this direction have been developed in [3]). Note that a crucial

assumption of this approach is the existence of a process owner having enough insights

to decide if a feedbacked run is a run of the process or not.

The crucial challenge of this approach is to choose an appropriate set of runs for

user feedback. Of course it is not viable to feedback each run which is not given in

the log. It is important to only consider such runs which have a “high probability” for

79

being runs of the process. The basic idea of our approach is to feedback the difference

between a liberally mined net and an exactly synthesized net.

Starting with the given log, we first use a liberal mining algorithm to generate a net

representing an upper bound. Using the theory of regions we compute the runs which

are allowed by this net but not included in the log. For each such run, a user has to

decide whether it represents valid behavior of the process or not. Thus, the log is com-

pleted according to the feedback. The resulting log is then used as the input for an exact

synthesis algorithm, i.e. a model is generated which allows the recorded runs and the

runs explicitly specified by the user. In this way overapproximation becomes control-

lable. In particular, the conflict between underfitting, i.e. too much overapproximation,

and overfitting, i.e. not enough overapproximation, can be solved.

2 Interactive Mining Algorithm

In this section we explain the interactive mining approach in detail. As a preparative

step for our algorithm, we have to choose a mining algorithm (e.g. the alpha-algorithm

[1]) which we use as a reference for the overapproximation performed by our approach.

In the field of conformance checking there exist the notions of recall and precision.

Our interactive algorithm heavily depends on the recall and precision of the underlying

mining algorithm. While our approach works with any mining algorithm, an algorithm

having a high recall is preferred, since our interactive approach always generates a net

which allows all the behavior given in the log (we assume that there is no noise in

the given log file). The precision of the underlying mining algorithm determines the

search space of the interactive approach. The larger the search space the more queries

are necessary.

Having chosen a reference mining algorithm, the interactive mining algorithm is as

follows (see Figure 1):

Fig. 1. Interactive mining algorithm.

– The starting point is a typical event log as described e.g. in [1, 2] which defines a

set of runs. As a first step, the chosen mining algorithm is applied to the log gener-

ating a net which represents an upper bound for user feedback. The idea behind this

approach is that a liberal mining algorithm performs a “reasonable” overapproxi-

mation but has a tendency to introduce “too much” overapproximation.

– The second step is to compute runs to be feedbacked to the user. For this purpose,

we consider so called wrong continuations [2] of the given log. A wrong contin-

uation extends a run (or more precisely the Parikh-vector of a run) of the log by

one event such that the resulting run is not specified. That means, only minimal

non-specified behavior is considered for feedback. Still the set of all wrong con-

tinuations is too large for practical purposes. Therefore, we only consider wrong

80

continuations which are allowed by our upper bound, i.e. which are executable

w.r.t. the net mined by the chosen liberal mining algorithm. This set of wrong con-

tinuations is presented to the user for feedback. For each such run, the user then has

to decide whether it is a run of the underlying process or not. For this purpose, the

runs are illustrated in a list, and for each run there is a respective checkbox.

– As a third step, the log is updated by adding the runs which have been classified

by the user as valid runs of the process. For all these new runs, new wrong con-

tinuations appear which have not yet been feedbacked. Therefore, there is a choice

for the user now: He can decide to either proceed with the next final step (fourth

step) or to repeat the feedback steps (second and third step) with the new wrong

continuations. The latter choice means that the new wrong continuations which are

executable w.r.t. the initially mined net are again feedbacked to the user and possi-

bly added to the log. The second and third step can be iterated until no more new

valid runs are found or the upper bound is reached.

– The fourth step consists of using an exact synthesis algorithm on the updated log,

i.e. a net reproducing the log which has been completed by the user in the previ-

ous steps is generated. We here apply the mining algorithm based on regions of

languages from [2, 4] which is implemented in the tool VipTool.

We now illustrate this procedure by a small example log which defines the three

runs shown in Figure 2.

Fig. 2. Runs of the example log.

As a reference mining algorithm we use

the alpha-algorithm for this example. The alpha-

algorithm tries to extract from a log the direct depen-

dencies of activities and translates them into places

of a workflow net. Figure 4 shows a ProM screen-

shot of the net mined from the example log with the

alpha-algorithm. This net overapproximates the log.

It allows the three runs of the log and eleven further

runs. The exact synthesis algorithm of VipTool generates the net shown in Figure 5

from the example log. It coincidentally has the same places as the net from Figure 4

and some additional places which are shown in grey (in general such a relation does not

hold). Note that, since the log cannot precisely be represented by a Petri net, this net

not only allows the three runs of the log but also two additional runs. The idea of our

mining approach is now to construct a net in between the liberally mined net from Fig-

ure 4 and the synthesized net from Figure 5 by interacting with a user. That means, on

the net level in this example the question is whether the grey places of Figure 5 should

be included in the net or not.

Fig. 3. Feedback of wrong continuations.

Algorithmically, in the first step of our

algorithm we mine the net from Figure 4.

Then, in the second step first the set of

all wrong continuations of the log is com-

puted. For instance, A1 B1 is a prefix of

a run of the log (see Figure 2). Since A1

B1 B2 is not contained in the log and ex-

tends the previous run by one event, it is

81

a wrong continuation. Altogether, there are 97 wrong continuations in our example.

However, only four of the 97 wrong continuations are enabled in the net from Figure 4.

That means, for feedback we only consider these four runs which are given in Figure 3.

For each of these four wrong continuations the user has to decide whether in the

process the last task can occur after the occurrence of the given prefix. In the context

of the first two wrong continuations the question is if B2 (resp. C2) can immediately

occur after B1 (resp. C1) or if B2 (resp. C2) has to be ordered behind C1 (resp. B1). For

our example let us assume that the second case is true, i.e. the two wrong continuations

are marked to be no runs of our process. In the context of the third and fourth wrong

continuation the question is if task Z (resp. Y) can freely be chosen at the end of the

process also in the case that the part of the net including A1, B1, C1, C2, B2, A2 (resp.

D) has been chosen at the beginning of the process or if the choice of Z (resp. Y)

depends on the choice at the beginning of the process. Here we assume that the first

case is true, i.e. the two wrong continuations are marked as runs of our process. After

this user feedback, in the third step of our algorithm the two positively evaluated wrong

continuations are added to the log. In the following, a repetition of the feedback steps

is not necessary in our example, since all wrong continuations of the two newly added

runs are not enabled in the net from Figure 4, i.e. the upper bound is reached. Thus, in

the fourth step, the VipTool synthesis algorithm is applied to the completed log with five

runs. Since we use an exact synthesis method, for this step we only need the original

log and the positively evaluated runs here. The result is the net from Figure 5 without

the two grey places connected with the tasks Y and Z, i.e. there is a free choice between

Y and Z.

3 Alternative Approach

In the described approach, the liberally mined net is just used as the upper bound for

feedback when completing the log. Afterwards, this net is dropped and the final net is

constructed from scratch by using synthesis methods. However, as it is also the case for

our example, the net mined by a typical liberal mining approach is often nicely readable.

The places generated by such mining algorithms are mostly introduced according to

simple rules which in a natural way reflect the dependencies given in the log, i.e. they

often nicely reflect the intuition of users of the business process. Thus, an interesting

idea for the construction of the final net in our interactive mining approach is to keep

the initially mined places and to only complement them by newly synthesized places as

far as necessary. In this way, we support the generation of an intuitive and readable net.

Still, keeping the initially mined places causes the following problem: For most

mining algorithms it is possible that so called unfeasible places which prohibit runs

given in the log are generated. These places have to be deleted for enabling the approach

of this section.

Fig. 4. Net mined with the alpha-algorithm of ProM.

82

Fig. 5. Net synthesized with VipTool.

Altogether this alternative approach yields the algorithm shown in Figure 6. The

difference to the algorithm in Figure 1 is the additional step “delete unfeasible places”

and the changed last step. In this new last step, the runs which have explicitly been

specified by the user to be no runs of the process are considered. For this set of runs,

places which prohibit this set but are feasible w.r.t. the updated log (i.e. they allow the

runs of the log) are computed and added to the initially mined net.

Fig. 6. Alternative mining algorithm.

For the example log of Figure 2, again first the net given in Figure 4 is generated

using the alpha-algorithm of ProM. In this example, all places are feasible, i.e. all runs

of the log are executable in the initially mined net. Thus, the same set of wrong contin-

uations as in the first presented algorithm (Figure 3) are feedbacked to the user in a first

feedback step. We assume that the user makes the same choices as in the last section.

Consequently, the last two wrong continuations are added to the log and the first two

wrong continuations have to be stored to be prohibited later on. As before, after the first

feedback step the upper bound is reached. Therefore, it is proceeded with the last step of

the algorithm. With standard synthesis methods, the algorithm computes two regions,

each prohibiting one of the two stored wrong continuations. The initially mined net is

then extended by the two places corresponding to the two regions yielding the same net

as in the case of the first interactive approach.

When comparing the two approaches, it is a coincidence that we get the same result

in our example. In particular, it was a coincidence of the first approach that the result-

ing synthesized net included the liberally mined net from Figure 4. In this alternative

approach, it is the central idea to keep the initially mined net and to extend it with ad-

ditional places to always get such a nice result. Moreover, we do not anymore focus

on completing the log but on identifying runs to be prohibited. As a consequence, in

the case a user decides to stop the feedback phase, i.e. to not finish the completion of

the log, there is an important difference to the algorithm presented in the last section.

While the algorithm of the last section tries to prohibit all the behavior which has not

been feedbacked anymore in such case, the algorithm of this section keeps the liberal

control flow of the initially mined net.

83

Finally, it remains to mention that processes with loops are problematic for the pre-

sented basic interactive mining approaches. If a loop is included in the liberally mined

net, it is possible to repeat the feedback steps of the interactive approaches arbitrarily

often and thus the user has to cancel the iterated feedback at some point. In the case

of the first algorithm, the precise mining approach of VipTool then tries to detect such

loops from the extended log as described in [4]. In the case of the second algorithm, the

loop is simply kept from the liberally mined net. But, if it is not detected by the approach

from [4], it is still possible that the loop is coincidentally prohibited by the additional

places. In this context several improvements are possible, in particular mechanisms to

automatically stop the feedback steps in the case of loops and improved methods for

loop detection.

4 Conclusion

In this paper, we tackle the problem of incomplete logs by applying mining with user in-

teraction. We introduce overapproximation in a user controlled way. The starting point

is a net generated by a liberal mining algorithm. The behavior of this net is then re-

stricted by applying concepts from the theory of regions. We presented two different

approaches implementing this idea.

As future work it is important to both evaluate the quality of our interactive mining

approach and the practicability of the approach for users.

References

1. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process

Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142

2. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of

Languages. In: BPM 2007, LNCS 4714, Springer (2007) 375–383

3. Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. In: Petri Nets 2010,

LNCS 6128, Springer (2010) 206–225

4. Bergenthum, R., Desel, J., Kölbl, C., Mauser, S.: Experimental Results on Process Mining

Based on Regions of Languages. In: Workshop CHINA, Petri Nets 2008, X’ian (2008)

84

Do Petri Nets Provide the Right
Representational Bias for Process Mining?

(short paper)

W.M.P. van der Aalst

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands.

W.M.P.v.d.Aalst@tue.nl

Abstract. Process discovery is probably the most challenging process
mining task. Given an event log, i.e., a set of example traces, it is diffi-
cult to automatically construct a process model explaining the behavior
seen in the log. Many process discovery techniques use Petri nets as a
language to describe the discovered model. This implies that the search
space—often referred to as the representational bias—includes many in-
consistent models (e.g., models with deadlocks and livelocks). Moreover,
the low-level nature of Petri nets does not help in finding a proper bal-
ance between overfitting and underfitting. Therefore, we advocate a new
representation more suitable for process discovery: causal nets. Causal
nets are related to the representations used by several process discovery
techniques (e.g., heuristic mining, fuzzy mining, and genetic mining).
However, unlike existing approaches, C-nets use declarative semantics
tailored towards process mining.

1 Challenges in Process Mining

Process mining is an emerging research area combining techniques from process
modeling, model-based analysis, data mining, and machine learning. The goal
is to extract knowledge about processes from event data stored in databases,
transaction logs, message logs, etc. Process mining techniques are commonly
classified into: (a) discovery, (b) conformance, and (c) enhancement [2]. In this
paper, we restrict ourselves to control-flow discovery, i.e., learning a process
model based on example traces.

A trace is a sequence of events for a particular process instance (also referred
to as case). Events refer to some activity. For example, the trace 〈a, b, c, d〉 refers
to a process execution starting with activity a and ending with activity d. An
event log is a multiset of traces, e.g., L = {〈a, b, c, d〉25, 〈a, c, b, d〉35, 〈a, e, d〉30}
describes the execution sequences of 90 cases. There are dozens of process dis-
covery techniques that are able to construct a process model from such an
event log. Many of these techniques use Petri nets as a target representation
[4,5,7,12,19,22,23]. Given event log L, these techniques have no problems dis-
covering the Petri net in which, after a, there is a choice between doing b and

85

c concurrently or just e, followed by d. Note that this example is misleadingly
simple as process discovery based on real-life event logs is extremely challenging.

Generally, we use four main quality dimensions for judging the quality of
the discovered process model: fitness (the model should allow for the behavior
observed), simplicity (the model should be as simple as possible), precision (the
model should not allow for behavior that is very unlikely given the event log),
and generalization (the model should not just represent the observed examples
and also allow for behavior not yet observed but very similar to earlier behavior).

trace in
event log

frequent
behavior

all behavior
(including noise) target model non-fitting model

overfitting model

underfitting model
(a) (b) (c)

(d) (e)

Fig. 1. Illustrating typical problems encountered when discovering process models from
event logs: (c) a non-fitting model, (d) an overfitting model (poor generalization), and
(e) an underfitting model (poor precision)

The simplicity dimension refers to Occam’s Razor ; the simplest model that
can explain the behavior seen in the log, is the best model. Figure 1 explains
some of the main challenges related to the other three quality dimensions. Each
black dot represents a trace (i.e., a sequence of activities) corresponding to one
or more cases in the event log. (Recall that multiple cases may have the same
corresponding trace.) An event log typically contains only a fraction of the pos-
sible behavior, i.e., the dots should only be seen as samples of a much larger set
of possible behaviors. Moreover, one is typically primarily interested in frequent
behavior and not in all possible behavior, i.e., one wants to abstract from noise
(i.e., infrequent or exceptional behavior) and therefore not all dots need to be
relevant for the process model to be constructed.

It is interesting to analyze such noisy behaviors. However, when constructing
the overall process model, the inclusion of infrequent or exceptional behavior

86

leads to complex diagrams. Moreover, it is typically impossible to make reliable
statements about noisy behavior given a relatively small set of observations. Fig-
ure 1(a) distinguishes between frequent behavior (solid rectangle with rounded
corners) and all behavior (dashed rectangle), i.e., normal and noisy behavior.
The difference between normal and noisy behavior is a matter of definition, e.g.,
normal behavior could be defined as the 80% most frequently occurring traces.

Let us assume that the two rectangles with rounded corners can be deter-
mined by observing the process infinitely long while the process is in steady-
state (i.e., no concept drift [9]). Based on these assumptions, Fig. 1 sketches
four discovered models depicted by shaded rectangles. These discovered models
are based on the example traces in the log, i.e., the black dots. The “ideal process
model” (Fig. 1(b)) allows for the behavior coinciding with the frequent behavior
seen when the process would be observed ad infinitum. The “non-fitting model”
in Fig. 1(c) is unable to characterize the process well as it is not even able to
capture the examples in the event log used to learn the model. The “overfit-
ting model” (Fig. 1d)) does not generalize and only says something about the
examples in the current event log. New examples will most likely not fit into
this model. The “underfitting model” (Fig. 1(e)) lacks precision and allows for
behavior that would never be seen if the process would be observed ad infinitum.

Figure 1 illustrates the challenges that process discovery techniques need to
address: How to extract a simple target model that is not underfitting, overfitting,
nor non-fitting?

2 Petri nets as a Representational Bias for Process
Mining

One can think of process mining as a search problem with a search space defined
by the class of process models considered, i.e., the goal is to find a “best” process
model in the collection of all permissible models. The observation that the target
language defines the search space is often referred to as the representational bias.

Many process discovery techniques use Petri nets as a representational bias
[4,5,7,12,19,22,23]. Examples of such techniques are the α-algorithm and its vari-
ants [5,22], state-based region techniques [4,19], and language-based region tech-
niques [7,23]. Some of these techniques allow for labeled transitions, i.e., there
may be invisible/silent steps (τ transitions not leaving a mark in the event log)
or multiple transitions with the same label. However, all of the models have a
clearly defined initial marking and one or more final markings. In fact, most
techniques aim at discovering a so-called workflow net (WF-net) [1]. A WF-net
has one source place (modeling the start of the process) and one sink place (mod-
eling the end), and all nodes are on a path from source to sink. Ideally, such a
discovered WF-net is sound. Soundness is a common correctness criterion for
WF-nets requiring that from any reachable marking it is possible to reach the
final marking (weak termination) and there are no dead transitions (i.e., there
are no activities that can never happen).

87

In the remainder, we assume that the goal is to discover sound WF-nets from
event logs. The particular soundness notion used is not very relevant. Moreover,
the syntactical requirements imposed on WF-nets may be relaxed. However, a
basic assumption of any process discovery algorithm is that all traces in the
event log start in some initial state and ideally end in a well-defined end state.

Petri nets allow for a wide variety of analysis techniques and provide a simple,
yet powerful, graphical representation. This is the reason why they were chosen
as a target language for dozens of process discovery techniques described in
literature [4,5,7,12,19,22,23]. Nevertheless, in this paper, we pose the question
“Are Petri nets a suitable representational bias for process discovery?”.

In our view, there are several problems associated to using Petri nets as a
representational bias.

– The search space is too large (including mostly “incorrect” models). When
randomly generating a Petri net, the model is most likely not sound. The
fraction of sound process models is small. As a result, most of the process dis-
covery techniques tend to create incorrect process models. For example, the
α-algorithm can generate models that have deadlocks and livelocks. Region-
based techniques may also suffer from such problems; they can replay the
event log but also exhibit deadlocks and livelocks.

– Petri nets cannot capture important process patterns in a direct manner.
Process modeling languages used by end-users tend to support higher-level
constructs, often referred to as workflow patterns [3]. Examples are the OR-
split (Multi-Choice pattern) and OR-join (Synchronizing Merge pattern).
Many of these patterns can be expressed in terms of Petri nets, i.e., the
higher-level construct is mapped onto a small network. This is no problem
for model-based analysis (e.g., verification). However, the discovered process
model needs to be interpreted by the end-user. Whereas it is relatively easy
to translate higher-level constructs to Petri nets, it is difficult to translate
lower-level constructs to languages such as BPMN, EPCs, UML, YAWL, etc.

– It is difficult to “invent” modeling elements. If all transitions need to have
a unique visible label, then the only task of a process discovery algorithm is
to “invent” places. If two transitions can have the same visible label, then
the process discovery algorithm may also need to duplicate transitions. If
transitions can be silent, e.g., to skip an activity, then the process discov-
ery algorithm needs to “invent” such silent transitions (if needed). Places,
duplicate transitions, and silent transitions cannot be coupled directly to
observations in the event log. The fact that such modeling elements need to
be “invented” makes the search space larger (often infinite) and the relation
between event log and model more indirect.

– The representational bias does not help in finding a proper balance between
overfitting and underfitting. Because of the low-level nature of Petri nets,
there are no natural patterns to support generalization. Algorithms tend to
overfit or underfit the event log. One of the reasons is that the represen-
tational bias does not help in guiding the discovery algorithm towards a
desirable model. Note that some of the more advanced region-based algo-

88

rithms allow for the formulation of additional constraints (e.g., the target
model should be free-choice and the number of input and output arcs per
node is bounded) [23].

Note that the above problems are not specific for Petri nets. Most of the cur-
rent representations suffer from a subset of these problems. Consider for example
BPMN; the fraction of sound BPMN models is small and the mining algorithm
needs to “invent” process fragments consisting of gateways and events to capture
behavior adequately. However, compared to Petri nets, BPMN can capture more
patterns directly.

3 Towards a Better Representational Bias: Causal Nets

The goal of this paper is not to provide a solution for all of the problems in-
duced by using Petri nets as a representational bias for process mining. Instead,
we would like to discuss potential notations that provide a more suitable repre-
sentational bias. We do not propose new discovery techniques. Instead, we note
that most of the existing process discovery techniques can be modified to support
a more refined representational bias.

To trigger this discussion, we advocate a new representation more suitable
for process discovery: causal nets (C-nets) [2]. On the one hand, C-nets are
related to the representations used by several process discovery techniques (e.g.,
heuristic mining [17,21], fuzzy mining [17], and genetic mining [18]). Moreover,
in [6] a similar representation is used for conformance checking. On the other
hand, C-nets use declarative semantics not based on a local firing rule. This way
a larger fraction of models (if not all) is considered to be correct.

A C-net is a graph where nodes represent activities and arcs represent causal
dependencies. Each activity has a set of possible input bindings and a set of
possible output bindings. Consider, for example, the causal net shown in Fig. 2.
Activity a has only an empty input binding as this is the start activity. There
are two possible output bindings: {b, d} and {c, d}. This means that a is followed
by either b and d, or c and d. Activity e has two possible input bindings ({b, d}
and {c, d}) and three possible output bindings ({g}, {h}, and {f}). Hence, e
is preceded by either b and d, or c and d, and is succeeded by just g, h or f .
Activity z is the end activity having two input bindings and one output binding
(the empty binding). This activity has been added to create a unique end point.
All executions commence with start activity a and finish with end activity z.
Note that unlike, Petri nets, there are no places in the causal net; the routing
logic is solely represented by the possible input and output bindings.

Definition 1 (Causal net [2]). A Causal net (C-net) is a tuple C = (A, ai, ao,
D, I, O) where:

– A is a finite set of activities;
– ai ∈ A is the start activity;
– ao ∈ A is the end activity;

89

a

register
request

b

examine
thoroughly

c

examine
casually

d

check
ticket

decide

pay
compensation

reject
request

e

g

h

f

end

reinitiate
request

z

XOR-split AND-split OR-split

XOR-join AND-join OR-join

Fig. 2. Example of a C-net and some of the typical input and output bindings present
in conventional business process modeling languages [2]

– D ⊆ A×A is the dependency relation,
– AS = {X ⊆ P(A) | X = {∅} ∨ ∅ �∈ X};1
– I ∈ A → AS defines the set of possible input bindings per activity; and
– O ∈ A → AS defines the set of possible output bindings per activity,

such that

– D = {(a1, a2) ∈ A×A | a1 ∈ ⋃
as∈I(a2)

as};
– D = {(a1, a2) ∈ A×A | a2 ∈ ⋃

as∈O(a1)
as};

– {ai} = {a ∈ A | I(a) = {∅}};
– {ao} = {a ∈ A | O(a) = {∅}}; and
– all activities in the graph (A,D) are on a path from ai to ao.

An activity binding is a tuple (a, asI , asO) denoting the occurrence of activity
a with input binding asI and output binding asO. For example, (e, {b, d}, {f})
denotes the occurrence of activity e in Fig. 2 while being preceded by b and
d, and succeeded by f . A binding sequence σ is a sequence of activity bind-
ings. A possible binding sequence for the C-net of Fig. 2 is σex = 〈(a, ∅, {b, d}),
(b, {a}, {e}), (d, {a}, {e}), (e, {b, d}, {g}), (g, {e}, {z}), (z, {g}, ∅)〉.
1 P(A) = {A′ | A′ ⊆ A} is the powerset of A. Hence, elements of AS are sets of sets
of activities.

90

A binding sequence is valid if a predecessor activity and successor activity
always “agree” on their bindings. For a predecessor activity x and successor
activity y we need to see the following “pattern”: 〈. . . , (x, {. . .}, {y, . . .}), . . . ,
(y, {x, . . .}, {. . . }), . . .〉, i.e., the occurrence of activity x with y in its output
binding needs to be followed by the occurrence of activity y and the occurrence
of activity y with x in its input binding needs to be preceded by the occurrence
of activity x. σex is an example of a valid sequence.

For technical details regarding these notions we refer to [2]. It is important
to note that the behavior of C-nets is limited to valid binding sequences. C-nets
are not driven by local firing rules (like a Petri net), but by the more declarative
notion of valid binding sequences in which activities always “agree” on their
bindings.

It can be shown that C-nets are more expressive than Petri nets. For any
sound WF-net one can construct a C-net such that any full firing sequence of the
WF-net corresponds to a valid binding sequence of the C-net and vice versa. Note
that at first sight, C-nets seem to be related to zero-safe nets [10]. The places
in a zero-safe net are partitioned into stable places and zero places. Observable
markings only mark stable places, i.e., zero places need to be empty. In-between
observable markings zero places may be temporarily marked. In [15] an approach
is described to synthesize zero-safe nets. However, zero places cannot be seen as
bindings because the “agreement” between two activities may be non-local, i.e.,
an output binding may create the obligation to execute an activity occurring
much later in the process.

For process discovery, the representational bias provided by C-nets is more
suitable than the representational bias provided by Petri nets.

– Since the behavior of C-nets is limited to valid binding sequences, any C-net
is in principle correct. Therefore, we do not need to consider a search space
in which most models are internally inconsistent (deadlocks, etc.)

– C-nets can capture important process patterns in a direct manner. For ex-
ample, OR-splits (Multi-Choice pattern) and OR-joins (Synchronizing Merge
pattern) can be modeled directly. Moreover, there is no need to introduce
silent transitions or multiple transitions with the same label to discover a
suitable model for event logs such as L = [〈a, b, c〉20, 〈a, c〉30]. C-nets are
closely connected to languages such as BPMN, EPCs, UML, YAWL, etc.
However, the interpretation is different as we only consider valid binding
sequences. Models may be “cleaned up” as a post optimization.

– There is no need to “invent” modeling elements such as places and silent
transitions. We only need to find the set of possible input and output bind-
ings per activity. Note that input and output bindings have a more direct
connection to the event log than routing elements encountered in conven-
tional languages such as Petri nets (places and silent/duplicate transitions),
BPMN (gateways, events, etc.), and EPCs (connectors and events).

– The representational bias of C-nets is tailored towards finding a proper bal-
ance between overfitting and underfitting. It is easy to define the types of
input and output bindings that are preferred, e.g., an AND-split or XOR-

91

split is preferred over an OR-split. For example, it is possible to associate
thresholds to extending the set possible bindings.

4 Conclusion

This short paper does not aim to provide a new process discovery algorithm.
Instead, its purpose is to trigger a discussion on the representational bias used
by existing process mining algorithms. We showed that Petri nets are less suitable
as a target language. We introduced C-nets as an alternative representational
bias. C-nets are able to express behavioral patterns in a more direct manner.
Moreover, by limiting the behavior of C-nets to valid binding sequences, we
obtain a more suitable search space. We believe that our formalization sheds
new light on the representations used in [6,17,18,20,21].

It is interesting to investigate how classical region theory [8,11,13,14,16] can
be applied to the synthesis of C-nets. For example, it seems possible to adapt
region-based mining approaches as described in [23] to C-nets. However, the
straightforward encoding of the synthesis problem into an Integer Linear Pro-
gramming (ILP) problem makes discovery intractable for realistic examples.
Moreover, existing region-based mining techniques have problems dealing with
noise and incompleteness. As a result, the discovered models typically do not
provide a good balance between overfitting and underfitting.

C-nets are very suitable for genetic process mining [18]. It is also possible
to use a mixture of heuristic mining [20,21] and genetic mining [18]. For exam-
ple, one can first discover the dependency relation D using heuristics and then
optimize the input bindings I and output bindings O using genetic algorithms.
Genetic operators such as crossover and mutation can be defined on C-nets in
a straightforward manner. The fitness function can be based on replay, e.g., the
fraction of events and process instances in the log that fit into the model. Here
we suggest using the technique described in [6]. Moreover, we also suggest to
incorporate the complexity of the model in the fitness function.

Currently, ProM already provides basic support for C-nets (ProM 6 can be
downloaded from www.processmining.org). In the future, we aim to add more
plug-ins working directly on C-nets.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, Berlin, 2011.

3. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

4. W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler,
and C.W. Günther. Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling, 9(1):87–111, 2010.

92

5. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

6. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards Robust Con-
formance Checking. In M. zur Muehlen and J. Su, editors, BPM 2010 Workshops,
Proceedings of the Sixth Workshop on Business Process Intelligence (BPI2010),
volume 66 of Lecture Notes in Business Information Processing, pages 122–133.
Springer-Verlag, Berlin, 2011.

7. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on
Regions of Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, Inter-
national Conference on Business Process Management (BPM 2007), volume 4714
of Lecture Notes in Computer Science, pages 375–383. Springer-Verlag, Berlin,
2007.

8. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri Nets from
Finite Partial Languages. Fundamenta Informaticae, 88(4):437–468, 2008.

9. R.P. Jagadeesh Chandra Bose, W.M.P. van der Aalst, I.Zliobaite, and M. Pech-
enizkiy. Handling Concept Drift in Process Mining. In H. Mouratidis and C. Rol-
land, editors, International Conference on Advanced Information Systems Engi-
neering (Caise 2011), volume 6741 of Lecture Notes in Computer Science, pages
391–405. Springer-Verlag, Berlin, 2011.

10. R. Bruni and U. Montanari. Zero-Safe Nets: Comparing the Collective and Indi-
vidual Token Approaches. Information and Computation, 156(1-2):46–89, 2000.

11. M.P. Cabasino, A. Giua, and C. Seatzu. Identification of Petri Nets from Knowl-
edge of Their Language. Discrete Event Dynamic Systems, 17(4):447–474, 2007.

12. J. Carmona and J. Cortadella. Process Mining Meets Abstract Interpretation. In
J.L. Balcazar, editor, ECML/PKDD 210, volume 6321 of Lecture Notes in Artificial
Intelligence, pages 184–199. Springer-Verlag, Berlin, 2010.

13. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

14. P. Darondeau. Unbounded Petri Net Synthesis. In J. Desel, W. Reisig, and
G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 413–438. Springer-Verlag, Berlin, 2004.

15. P. Darondeau. On the Synthesis of Zero-Safe Nets. In Concurrency, Graphs
and Models, volume 5065 of Lecture Notes in Computer Science, pages 364–378.
Springer-Verlag, Berlin, 2008.

16. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

17. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 328–343.
Springer-Verlag, Berlin, 2007.

18. A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery, 14(2):245–304, 2007.

19. M. Sole and J. Carmona. Process Mining from a Basis of Regions. In J. Lilius and
W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of
Lecture Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin, 2010.

93

20. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

21. A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). BETA
Working Paper Series, WP 334, Eindhoven University of Technology, Eindhoven,
2010.

22. L. Wen, W.M.P. van der Aalst, J. Wang, and J. Sun. Mining Process Models with
Non-Free-Choice Constructs. Data Mining and Knowledge Discovery, 15(2):145–
180, 2007.

23. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process Discovery using Integer Linear Programming. Fundamenta Informaticae,
94:387–412, 2010.

94

