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Abstract. Symbolic BDD-based verification techniques successfully tackle com-
binatorial explosion in many cases. However, the models to be verified become
increasingly larger and more complex, including - for instance - additional fea-
tures like quantitative requirements and/or a very high number of components.
The need to improve performances for verification tools thus remains a challenge.
In this work, we extend the framework of Instantiable Transition Systems in order
to (i) take into account time constraints in a model and (ii) capture the symmetry
of instances which share a common structure, thus significantly increasing the
power of our tool. For point (i), we implement timed models with discrete time
semantics and for (ii), we introduce scalar sets as a special form of composition.
We also report on experiments including comparisons with other tools. The re-
sults show a good scale up for our approach.

1 Introduction

Context. Model checking is now widely used as an automatic and exhaustive way to
verify complex systems. However, this approach suffers from an intrinsic combinatorial
explosion, due to both a high number of synchronized components and a high level of
expressivity in these components.

Among the different methods proposed to tackle the problem, using decision di-
agrams [8] or partial order based techniques [21] have proved successful. Moreover,
exploitation of symmetries [13] or compositional model checking [2, 16] can be most
successful, especially when several components share the same structure (like the train
models in the train crossing example or the processes in Fischer’s protocol).

With respect to the expressivity issue, we consider the particular problem of intro-
ducing explicit time constraints in the components of a system. In this modeling step,
the choice of a time domain is important, impacting on the size of the resulting model,
the class of properties which can be verified and the performances of the verification.

During the last twenty years, numerous variants of dense time models have been
extensively studied. Among them, Time Petri Nets [19] (TPN) and networks of Timed
Automata [1] (TA) benefit from verification tools, which implement techniques relying
on the construction of a class graph (for TPN) or zone graph (for TA), with dedicated
and efficient data structures to represent zones, like Difference Bounded Matrices [10]
(DBM), which have been used in both cases.
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If we now consider a growing number of timed components, the two problems of
expressivity and sizeoccur together, but the symbolic DBM encoding only applies to
time zones and does not concern the discrete part of the states. Furthermore, the union
of DBM may not be convex, thus cannot be encoded as a DBM, so mixing DBM tech-
nology with a symbolic encoding of discrete states is difficult.

Directly interpreting models over a discrete time domain is usually easier to handle
than dense time because mechanisms elaborated for model checking of discrete systems
can be reused, even though state space explosion can be worse. The relations between
dense and discrete time analysis have been discussed for various models, showing that,
in many cases, discrete time computation is sufficient to preserve reachability or time-
bounded properties [14, 22]. Contrary to common belief, while the discretized approach
is sensitive to the maximum clock values in a model, it can often outperform dense time
approaches.

Contribution. In this work, we modify and extend the framework of Instantiable
Transition Systems proposed in [24] to include two new features. The first one is a spe-
cial operation of composition, building what we callscalar setsto capture symmetries
in components sharing the same structure. The second one is the implementation of
discrete time semantics for Time Petri Nets, following the latter approach to propose a
new fully symbolic technique for reachability analysis of discrete time specifications.
The new tool Roḿeo/SDD thus relies on hierarchical set decision diagrams (SDD [9])
that offer state of the art automatic symbolic saturation algorithms [12].

We experiment on two classical benchmark examples combining both features, and
compare the performances with those of several other tools handling discrete or dense
time, showing gains of several orders of magnitude.

Outline. We first recall the definition and semantics of Time Petri Nets in Section
2, along with the train crossing example. Section 3 describes the Instantiable Transi-
tion Systems framework with the additional features and briefly presents the encoding
technique. Finally, in Section 4, we give the performances obtained with our prototype
implementation, with comments and comparisons.

2 Discrete time Petri nets

To handle time constraints, we propose to use discrete time models. As mentioned in the
introduction, this can lead to larger state spaces due to sensitivity to constants. However,
the main advantage of this approach is to reduce the problem of timed verification to a
plain event-based verification.

Let us first recall the classical definition of Discrete Timed Transition Systems
(DTTS), where all standard actions (from some setA) are considered instantaneous
and delay transitions are added, in a time domain restricted to the setN of natural num-
bers. Without loss of generality, we consider only delay steps of exactly one time unit
(special action1 below). Having a single basic operation to handle time delay is more
effective in a symbolic setting than attempting to find at each step the maximal integer
delay consistent with synchronization of several components in a set of states.

Definition 1 (DTTS). Let A be a set of action labels and let1 /∈ A be a special action
representing a one time unit delay. A Discrete Timed Transition System over A is a
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tuple T = 〈S,s0,A,−→〉 where S is a set ofstates, s0 ∈ S is the initial state, and−→⊆
S× (A⊎{1})×S is the transition relation (⊎stands for disjoint union).

We consider the model of Time Petri Nets (TPN) with discrete time semantics.
TPN are used to compactly model concurrent timed behaviors. Besides, regarding the
problem of marking reachability, discrete time semantics capture all possible behaviors
[22, 18], even those with dense time semantics, which makes it possible to compare
experimentation results in both cases.

We choose an extended definition of TPN because this leads to easier and more
compact modeling abilities. There is a quite strong community of extended TPN users
and our definition below captures a wide superset of what is understood as TPN in the
literature: we consider an enabling predicate and a firing function as syntactic require-
ments, instead of defining various sorts of arcs. This homogeneously subsumes exten-
sions such as reset arcs, read (or test) arcs, inhibitor arcs, and even non-deterministic
extensions like hyper-arcs (becausefire maps to 2N

Pl
), which are offered for instance by

the Roḿeo tool [11]. The rich formalism demonstrates the flexibility of our tool, which
supports arbitrary models with (finite) DTTS semantics.

Definition 2 (TPN). A Time Petri Net is a tupleN = 〈Pl,Tr,A,enabled,fire, ℓ,m0,α,β〉
where:

– Pl is a finite set ofplaces, Tr is a finite set oftransitions(with Pl∩Tr = /0),
– A is a finite set (alphabet) ofaction labelswhich contains a distinguishedlocal

label⊤,
– enabled: NPl×Tr 7→ {true, f alse}is anenabling predicate, fire: NPl×Tr 7→ 2N

Pl

is a transition firing function,ℓ : Tr 7→ A is a labeling function,
– m0 ∈N

Pl is theinitial markingof the net,
– α : Tr 7→ N and β : Tr 7→ N∪ {∞} are functions satisfying∀t ∈ Tr,α(t) ≤ β(t)

called respectivelyearliest (α)and latest (β)transition firing times.

For instance, standard Place/Transition nets are usually defined using pre (noted
Pre) and post (notedPost) functions :Pl×Tr 7→N. Then, for a markingm∈N

Pl and
a transitiont ∈ Tr, enabling is defined byenabled(m,t) iff ∀p ∈ Pl, m(p)≥ Pre(p,t)
and transition firing byfire(m,t) = {m′} with ∀p ∈ Pl, m′(p) = m(p)−Pre(p,t) +
Post(p,t). Inhibitor arcsInh and test arcsTest are defined similarly and add enabling
conditions to a transition:enabled(m,t) iff ∀p∈Pl, m(p)< Inh( p,t)∧m(p)≥Test(p,t).
Note that theenablingpredicate only considers markings while timing conditions are
defined separately. In definition 2, transitions are equipped with labels for further com-
position of nets (see Section 3).

The classicaltrain crossing example[5] is partly described by the three TPNs in
Fig. 1. Each train triggers a sensor App when approaching the critical zone, then takes
3 to 5 time units to reach the crossing, and 2 to 4 time units to leave it, where it triggers
the Exit sensor. The controller of Fig. 2 keeps track of how many trains are in the critical
zone (this model considersn tracks go through the gate, so up ton trains could be in
the zone). It strives to identify when the first train enters the area, or when the last train
leaves it, essentially by counting trains as they trigger App and Exit sensors. Finally the
gate itself is modeled as a TPN which reacts to control commands (App and Exit) but
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with some delays introduced to model the time it takes to open or close the gate. These
three TPNmodels are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 1.Train Component (default time interval is[0,∞[)
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Fig. 2.Controller module for 2 trains
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Fig. 3.Gate module (default time interval is[0,∞[)

The discrete timesemantics of a TPN is described by a Discrete Time Transition
System (DTTS). Avaluation vis an element ofNT . Thus, for a transitiont ∈ T, v(t)
represents the value inN of an implicit clock associated witht.

Definition 3 (Discrete Time Semantics of a TPN).For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, ℓ,m0,α,β〉, the semantics is a transition systemSN = 〈S,s0,A∪{1},→〉
where:

– S= N
Pl ×N

Tr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple0 corresponds to the value0 for all transition clocks.
– −→⊆ S× (A⊎{1})×S is the transition relation defined for states〈m,v〉,〈m′,v′〉 by:

Thediscrete transition relation:
〈m,v〉

a
−→ 〈m′,v′〉 iff there is a transition t∈ Tr such that



















ℓ(t) = a∧enabled(m,t)∧v(t) ≥ α(t)

and m′ ∈ fire(m,t)

and∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t 6= t ′

0 otherwise
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Thedelay transition relation:

〈m,v〉
1
−→ 〈m′,v′〉 iff m′ = m and for all t∈ Tr,























enabled(m,t) =⇒ v(t) < β(t) (urgent clocks prevent elapse)

v′(t) =















v(t)+1 if enabled(m′, t)∧β(t) 6= ∞ (normal elapse)
v(t)+1 if enabled(m′, t)∧β(t) = ∞∧v(t) < α(t)

(only progress up toα)
v(t) otherwise

Note that we use hereatomicsemantics and anewly disabledcriterion to reset dis-
abled transition clocks, ensuring a disabled transition has a clock value set to 0.

The rule(only progress up toα) allows us to handle the infinity problem due to
unbounded latest firing times (e.g. for transitions with firing interval[α(t),∞[). With
this strategy, we do not let clocks of the corresponding transitions progress up to more
than their lowest significant valueα(t). The behavior can thus be accurately represented
on a finite support. If the logic used to express properties involves atomic propositions
with test of clock values, the rule can be relaxed to let the clock progress be tracked up
to the highest value tested in the logic, rather thanα(t).

3 Instantiable Transition Systems

This section defines Instantiable Transition Systems (ITS), a framework designed to
exploit the hierarchical characteristics of SDD [9], the data structure used in the tool
to encode the state space, for the description of component based systems. ITS were
introduced in [24], but the definitions below are more expressive. In particular,multisets
over an alphabet of action labels are replaced bywords. We then introduce additional
ITS types, to build ”regular” composite types and to capture the semantics of (discrete)
timed models.

3.1 ITS types, instances and composites

ITS describe a minimal Labeled Transition System (LTS) style formalism using notions
of typeand instanceto emphasize locality of actions and to exploit the similarity of
instances of a given type. The composition mechanism is based solely on transition
synchronizations(no explicit shared memory or channel).
Notations: The set of finite words over a finite alphabetA is denoted byA⋆, with ε for
the empty word and· (or no symbol) for the concatenation operation. We denote by
z.X,z.Y . . . the elementX (resp.Y. . . ) of a tuplez= 〈X,Y, · · ·〉.

Definition 4 sets an abstract contract or interface that must be implemented by con-
crete ITS types.

Definition 4 (ITS Semantics).An ITS type is a tupleτ = 〈S,A,Locals,Succ〉where:

– S is a set of states; A is a finite set of public action labels;
– Locals: S 7→ 2S is a local successors function;
– Succ: S×A⋆ 7→ 2S is a transition function satisfying:∀s∈ S,Succ(s,ε) = {s}.
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Let T be a set of ITS types. AnITS instance i is defined by an ITStype type(i) ∈ T and
a set of states type(i).S.

Reachability: A state s′ is reachable in an instance i from the state s0 iff ∃s1, . . .sn ∈
type(i).S such that s′ = sn and∀1≤ j ≤ n,sj ∈ type(i).Locals(sj−1).

The two functionsLocalsandSuccare used for different purposes:Locals repre-
sents moves that may occur within an instance autonomously or independently from
the rest of the system. Hence it returns states reachable through occurrences of local
events. The functionSuccproduces successors by explicitly synchronizing actions via
a word over the alphabet of action labels. Synchronizing on an empty word leaves the
state of the instance locally unchanged. Note thatSuccis the only way to control the
behavior of a (sub)system from outside.

Remark 1. The transition relation of a full system can only be defined in terms of sub-
system synchronizations usingSuccand of independent local behaviors. A full system
is defined by a single instance of a particular type in a specific initial state. Because it is
self-contained (there is no notion of environment that could triggerSucc) reachability
only depends on the definition ofLocals.
Remark 2. Apart from distinguishing the special time delay action label1, a DTTS
is thus simply a labeled transition system and is immediately compatible with the ITS
framework, if the DTTS has a local label⊤. Interpreting timed models such as Time
Petri Nets (but also Timed Automata) over discrete time makes it possible to use the ITS
model-checking engine, and also profit from the Composite and Scalar set definitions
below to build compositional models.

We now define acomposite ITS type, designed to offer support for the hierarchical
composition of ITS instances. A version of a composite type was presented in [24] but it
introduced more syntactic elements, and was less expressive than the version presented
here. This version is aligned with standard labeled synchronized product definitions (e.g
[3, 16]), with the addition of the possible aggregation of several steps into an atomic
transition sequence, by a word composed of action labels.
Notations: Given a cartesian productZ = Z1× ·· ·×Zn of setsZ1, · · · ,Zn, we denote
by πi the projection operatorZ 7→ Zi . For a setI = {i1, . . . , in} of ITS instances (where
an arbitrary order is chosen),SI is the settype(i1).S× . . .× type(in).SandAI is the set
type(i1).A⋆ × . . .× type(in).A⋆. Cardinality ofI is denoted by|I |.

Definition 5 (Composite).A composite is a tuple C= 〈I ,Sync,A,λ〉 where:

– I is a finite set of ITS instances, said to becontainedby C. We further require that
the type of each ITS instance already exists when defining I, in order to prevent
circular or recursive type definitions.

– Sync⊂ AI is the finite set of synchronizations; A is a set of action labels, which
contains the label⊤ andλ : Sync7→ A is the labeling function

Notations: The next state functionNextI : SI ×AI 7→ 2SI , used in definition 6 below, is
defined fors,s′ ∈ SI andσ ∈ AI by:

s′ ∈ NextI (s,σ) iff ∀i ∈ I ,πi(s′) ∈ type(i).Succ(πi(s),πi(σ))
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Definition 6 (ITS Semantics of a Composite).The ITS typeτ = 〈S,A,Locals,Succ〉
correspondingto a composite C= 〈I ,Sync,A′,λ〉, is defined by:

– S= SI ; A = A′ \{⊤};
– Locals: S 7→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I ,πi(s′) ∈ type(i).Locals(πi(s))∧∀ j ∈ I , j 6= i, π j(s′) = π j(s)
or ∃σ ∈ Sync,λ(σ) = ⊤,s′ ∈ NextI (s,σ)

– Succ: S×A⋆ 7→ 2S is defined for s,s′ ∈ S, w = a1 · · ·an ∈ A⋆ by: s′ ∈ Succ(s,w) iff
∃σ1, . . . ,σn ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], λ(σ j) = a j ∧sj ∈ NextI (sj−1,σ j)∧
s0 = s∧sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action ofLocals in any
nested instance (without affecting the other instances), or states reachable fromsthrough
the occurrence of any synchronization associated to the local label⊤.

Succ(s,w) is obtained by composing the effects of each labela in the wordw using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train λ
App ε App

ε App App
Exit ε Exit

ε Exit Exit
1 1 1

Fig. 4.Synchronization for 2
trains

tg: TrainGroupcc: ContrGateλ
Exit Exit ⊤
App App ⊤
1 1 1

Fig. 5. Synchronization for the
complete system

g: gatec: controller λ
App EnterFirst App

ε Enter App
Exit ExitLast Exit

ε Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controllerand a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instancest0 andt1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labelsApp, Exit and1. A states of this
composite is thus defined as a cartesian product of the state of instancet0 (notedπt0(s))
and t1. The successors obtained bySucc(s, App) are the states in which eithert0 or
t1 have firedApp and the state of the other instance is unchanged (e.g.s′ such that
πt0(s

′) ∈ Train.Succ(πt0(s)) andπt1(s
′) = πt1(s) or vice versa). There is no local (⊤

labeled) synchronization in this example, thus successors byLocalsare states in which
eithert0 or t1 have progressed byTrain.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roḿeo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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3.2 Regular Models

While the definition of an ITS compositepermits hierarchical modeling, the notion
of Scalar SetITS type, where the synchronizations are defined in a parametric way,
deals with “regular” or symmetrically composed systems. This definition is not more
expressive than the one for a composite but it allows us to build several equivalent
composite representations of a system (see Figures 7 and 8), with a possible impact
on performances. We thus offer a way of describing symmetric models, so that the
manually built recursive encodings presented in [24] can be easily applied to symmetric
problems. The scalar set captures a frequent symmetric synchronization pattern when
using a set of identical instances and its definition is the same as those proposed in
symmetric Uppaal [17], Murphi [15] or in symmetric nets.

Definition 7 (Scalar Set).A scalar set is a tupleS = 〈τ,n,s0,D,CSync〉where:

– τ = 〈S,A,Locals,Succ〉is the ITS type of the contained instances.
– n∈N is the the number of instances
– s0 ∈ τ.S is the initial state of the instances
– D is a subset ofτ.A×{ANY,ALL}×{public,private}, called the set ofdelegates,
– CSync is a subset ofτ.A× τ.A×{public,private}, called the set ofcircular syn-

chronizations.

A scalar set can thus be seen as a subclass of composite, containingn identical
instances of a typeτ, and offering only two ways of synchronizing them,ANYandALL.
A delegated = 〈a,t,v〉 of typet = ANY affects exactly one of the contained instances,
chosen arbitrarily. In other words, anANY delegate maps ton synchronization lines:
each line affects a single instance with actiona. In contrast, a delegate of typet = ALL
targets all contained instances simultaneously, and maps to a single synchronization
line of as. Thevisibility v of a delegate gives the labeling function of the composite: the
label of the resulting synchronization lines is⊤ if privateis used, or actiona otherwise.

For instance, the train group model for 2 trains (see Figure 4) can be expressed as
the following scalar set:

〈Train,2,s0,{〈App,ANY, public〉,〈Exit,ANY, public〉,〈1,ALL, public〉}, /0〉.
A scalar set represents a regular model pattern and produces a homogeneous repre-

sentation of parametric models. Furthermore, because this pattern is very constrained,
different semantically equivalent encodings can be considered at the SDD level. In par-
ticular, as introduced in [24], recursive encodings can be used. For instance, the train
group model for 4 trains can be represented as a composite of 4 trains, or a composite
containing 2 instances of a composite with two trains (Figures 7 and 8).

Circular synchronizations (CSyncin Def. 7) capture another frequent composition
pattern: topological rings, where a component synchronizes with its successor in the
ring. For instance, Dijkstra’s classical dining philosophers example forN philosophers
can be written as:
〈PhiloFork,N,s0, /0,{〈getFork,getLe f t, private〉,〈putFork, f inishEating, private〉}〉.
In this set,PhiloFork is a composite of a Fork and a Philosopher,getForkandputFork
are actions that take or return the fork,getLeftandfinishEatingare actions where the
Philosopher acquires or releases his left neighbor’s fork.
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t0: train t1: train t2: train t3: train λ
App ε ε ε App

ε App ε ε App
ε ε App ε App
ε ε ε App App

Exit ε ε ε Exit
ε Exit ε ε Exit
ε ε Exit ε Exit
ε ε ε Exit Exit
1 1 1 1 1

Fig. 7.Flat representation of 4 trainscalar set.

t0: train2 t1: train2 λ
App ε App

ε App App
Exit ε Exit

ε Exit Exit
1 1 1

Fig. 8. Recursive representation of4
train scalar set, as two times two trains.
The type ”train2” corresponds to the
composite of figure 4

In [24], several strategies were manually experimented to encode such regular mod-
els, the most basic one building a composite containingn instances of the embedded
type. This can be generalized by building a composite ofn/k instances of a composite
containingk instances (ork+1 to capture the remainder of the divisionn/k) of the basic
type. More subtle are recursive encoding strategies, where the type of a (sub-)composite
containingk instances is itself defined as a group of groups of instances. This recursive
strategy leads in some cases (like for the dining philosophers) to logarithmic overall
complexity in time and memory.

With these additional definitions of scalar set, the encoding strategy can be config-
ured by the user at run time, by simply setting an option. Two parameters guide the
encoding: The width gives the number of variables at any given level of composite, and
the depth gives the number of levels of hierarchy or nesting introduced. The user can
choose to bound one or the other and select the more efficient. For instance the flat en-
coding of Fig. 7 has width 4 and depth 1, while the encoding of Fig. 8 has width 2 and
depth 2.

We thus generalize for easy reuse the very favorable encodings from [24] (for un-
timed systems), which thanks to hierarchy can be exponentially more efficient than what
is available with other decision diagram variants.

3.3 ITS Tools

The ITS tools can be used for modeling and analysis of ITS specifications. The graphi-
cal front-end is an Eclipse plugin built upon Coloane (configurecoloane.lip6.fr/night-
updates in eclipse update sites), thus runs on all platforms. The actual analysis tools
are provided onddd.lip6.fr as pre-compiled binaries for common platforms (Linux,
MacOS, Windows).

In the modeling environment, TPN can be used as building bricks to define ITS
instances. The tool currently features import/export functionality for both Roméo and
Tina formats, full modeling capability, the ability to ”flatten” a composite ITS defini-
tion to an equivalent TPN, use of variables in arc labels and time constraints, and CTL
model-checking for analysis. To jump-start new users, both examples used in this pa-
per are available directly through the ”New->Example” eclipse menu. Figure 9 shows
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if ti enabledthen
if clock(ti) < ti .l f t then

incrementclock(ti)
else

return /0
end

else
returnId

end
Algorithm 1: Part of the encoding for1 transition.

a screenshot of the modeling tool, where composite and scalar types use a graphical
syntax.

The analysis engine of the tool uses the powerful hierarchical set decision diagram
(SDD) technology. SDD are a variant of reduced decision diagrams producing a com-
pact representation of very large state spaces. Their main characteristic exploited in
this work is that edges of the decision diagram can bear references to SDD, allowing a
hierarchical encoding of the state-space.

The semantics of TPN and composite ITS are directly expressed by operations act-
ing on the SDD. The delay transition1 uses a conjunction (over all transitions) of
if-then-else constructs to increment the currently enabled clocks or forbid time elapse
if a latest firing time has been reached. An informal presentation is given for this1

operation on transitionti by Algorithm 1: returning/0 indicates there are no successors,
while returningId indicates that with respect to this transition no updates to the current
state are needed. This algorithm is slightly adapted to take into account infinite latest
firing times, as explained in the discrete TPN semantics paragraph above.

4 Experiments and comparisons to related work

Table 1 reports our results collected on a 1.83GHz Intel Xeon, with 4GB of RAM.
Two classical benchmark problems from the literature [4, 25, 17] are modeled using
ITS: Berthomieu’s version of the train-gate controller with multiple tracks and Fischer’s
mutual exclusion protocol (described below). These models are parameterized and thus
easily scalable for benchmarking.

Fischer’s protocol. This protocol is modeled using two elementary TPN. We use re-
set (respectively read) arcs, according to their classical definition, which means they
allow to reset (resp. check the non-emptiness) the marking of the associated place. The
process type (Fig.10) represents the behavior of a single process. The resource type
(Fig. 11) is used to block processes in theidle state during the execution of the protocol
(i.e.at least one process has already reachedwait or cs).

Then, we build a process group (Fig. 12) containing a scalar set of processes in
the system, similarly to the approach used for the train group. Finally, this group of
processes is composed with an instance of the resource according to the synchroniza-
tions defined in Fig. 13. Note (line 3) the use of a word inA⋆ for synchronisation: for a
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Fig. 9.Coloane based ITS modeler

given process to fireMytur n, we need to first reset allgo places of the processes, and
synchronouslyResetthe state of the resource.

In view of these performances, we now compare Roméo/SDD with existing tools.

Dense Time, Explicit data structures.The standard approach for verification of timed
models relies on difference bounded matrices (DBMs), an efficient data structure to rep-
resent time zones under dense time time hypothesis. Its efficiency has led to the devel-
opment of several verification tools (so-called timed model-checkers) such as TINA [4],
Roméo [11] for Time Petri Nets and UPPAAL [17], Kronos [26] for Timed Automata.

Roméo suffers from the discrete state space explosion (i.e.in number of classes).
It was stopped after one day of CPU and consumed a high amount of memory. The
performances of UPPAAL without symmetries (not reported due to lack of space in the
paper) are similar to those of Roméo’s. Underlying technology is DBM in both cases.

Thanks to the symmetry management, UPPAAL/sym copes very well with these
regular models. It uses a canonization procedure which is costly in time, but can in
favorable cases represent only a fraction of the state space. It significantly outperforms
all the other tools tested except our own tool. However, computation time grows quicker
than memory consumption (possibly due to the canonization complexity) and becomes
the limiting factor.

Proceedings of CompoNet and SUMo 2011

27



idle

cs go

wait

waitcs

myturnEndcs

[0,0]

Wantcs
Delay

Myturn

Reset

Deny

Entercs

[0,0]

[2,2]

[1,1]

Fig. 10.Process type for Fischer.

Reset

Read

Put

lock
Test arc

Reset arc

Fig. 11.The resource type.

〈Process,N,s0,























〈Wantcs,ANY, public〉,
〈Myturn,ANY, public〉,
〈Endcs,ANY, public〉,
〈Reset,ALL, public〉,
〈1,ALL, public〉























, /0〉.

Fig. 12.A Scalar set type ProcessGroup

r: Resourcepg: ProcessGroupλ
Read Wantcs ⊤
Put Endcs ⊤

Reset Reset·Myturn ⊤
1 1 1

Fig. 13. Synchronization for the com-
pleteFischer system.

Dense Time, Symbolic data structures.To bring the benefits of BDD technology to
model-checking of TA, many fully symbolic encodings that use dedicated BDD-like
data structures have been proposed (e.g. DDD [20]). The most successful seems to be
Clock Restriction Diagrams used in the tool RED [25]. In some instances, this approach
can outperform DBM technology, particularly when the number of clocks increases,
and backward reachability is used. Other approaches that map the timed reachability
problem to a problem solvable using standard BDD exist (e.g.TMV tool [23]), but the
performances as reported are comparable to those using DBM.

We compare in this category to the tool RED, which builds a zone graph using
Clock Restriction Diagrams in a fully symbolic approach. The fully symbolic approach
implemented in RED is fast in CPU time, but also grows very fast in memory. This is
consistent with reports from experiments with RED [25], which manages to go a bit
further than DBM as it is more resistant to an increase in the number of locations.

Discrete Time, Symbolic data structures.When considering discrete time seman-
tics, the only viable way to tackle the combinatorial explosion seems to be symbolic
data structures. Direct encoding of counters with an explicit model-checker is bound to
fail (unless some abstraction or acceleration is used), the number of states grows very
fast (up to 10512 in our experiments). This excludes the use of non symbolic discrete
approaches, which could be experimented by using UPPAAL with discrete variables
instead of clocks.

Among the different tools based on standard BDD structures and discrete time se-
mantics, SMI (based on Kronos) [7], and Rabbit [6] are the closest to our approach with
Roméo/SDD, which also belongs to this category. Although this discretized approach is
sensitive to the maximum clock values in a model, it can often outperform dense time
approaches.

However, comparison is difficult because both SMI and Rabbit are old prototypes
no longer maintained (current distribution of Rabbit is from 2002). The input of Rabbit
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Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106

9 73 0711.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106

10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107

170 - - - - OOM 7 783 47 95657 971 23 101 896 2.27 10120

700 - - - - - DNF - - 1391 1.82 106 2.66 10491

730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106

7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107

8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108

13 - - - - - 2 634 13 18879 598 26 56 660 3.02 1014

15 - - - - - 60 86061 256 42 86 360 5.11 1016

16 - - - - - DNF - - 52 104 848 6.65 1017

44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1.Performances measured for theFischerandtrain models. Executiontime is in
seconds (columntm), memory occupation in KB (columnmm). Columnsmprovides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set.Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide:(i) automatic saturation,(ii)
shared representation of subsystems and(iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) withn instances side by side for the train model (i.e. ngroups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.
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For the Fischer model, we used a setting with a recursive definition of hierarchy
in the systembounded by 12 variables per level. In other words, the depth is left un-
bounded while the width is at most 12. The standard flat setting (depth = 1) was able to
reach 200 processes while a setting with groups of about 10 processes let us reach 400
processes (depth fixed at 2, 40 groups of ten process).

Although experimentation on industrial case studies remains to be done, this bench-
mark shows that appropriate data structures applied to discrete time can deal with mod-
els that could not be analyzed before due to combinatorial explosion in time and/or
memory.

5 Conclusion

This work proposes an approach to compute the state space for a large number of dis-
crete timed components, which relies on hierarchical set decision diagrams (SDD) and
scalar sets defined in the ITS framework. It allows a hierarchical definition of a timed
system, and offers an efficient fully symbolic reachability engine thanks to the auto-
matic activation of saturation. Because of its generality, ITS can be reused to encode
any formalism with discrete time semantics and mix several timed models within the
same specification while enabling efficient state space generation.

Performance comparisons with reference tools, for both discrete and dense time,
show gains of several orders of magnitude. This significant improvement is due to our
fully symbolic encoding, instead of a classical symbolic approach for time zones only.

SDD and ITS are both available as C++ libraries under the terms of GNU LGPL, at
http://ddd.lip6.fr. A new version of Roḿeo integrating a SDD engine will soon
be available. A front-end to build TPN and their composition is already provided within
the Coloane modeling environment. We are currently working at providing full dis-
crete temporal logic model-checking capabilities on top of this reachability computa-
tion, with a focus on TCTL.
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