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Abstract. Geldenhuys and Hansen have shown that a kind of ω-automaton known
as testing automata can outperform the Büchi automata traditionally used in the
automata-theoretic approach to model checking [8]. This work completes their
experiments by including a comparison with generalized Büchi automata; by us-
ing larger state spaces derived from Petri nets; and by distinguishing violated
formulæ (for which testing automata fare better) from verified formulæ (where
testing automata are hindered by their two-pass emptiness check).

1 Introduction

Context The automata-theoretic approach to model checking linear-time properties [23]
splits the verification process into four operations:
1. Computation of the state-space for the model M. This state-space can be seen as an

ω-automaton AM whose language, L (AM), represent all possible executions of M.
2. Translation of the temporal property ϕ into a ω-automaton A¬ϕ whose language,

L (A¬ϕ), is the set of all executions that would invalidate ϕ.
3. Synchronization of these automata. This constructs a product automaton AM⊗A¬ϕ

whose language, L (AM)∩L (A¬ϕ), is the set of executions of M invalidating ϕ.
4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an

infinite word, and can return such a word (a counterexample) if it does. The model
M verifies ϕ iff L (AM⊗A¬ϕ) = /0.

Problem Different kinds of ω-automata have been used with the above approach. In
the most common case, a property expressed as an LTL (linear-time temporal logic)
formula is converted into a Büchi automaton with state-based acceptance, and a Kripke
structure is used to represent the state-space of the model.

In our tools, we prefer to represent properties using generalized (i.e., multiple)
Büchi acceptance conditions on transitions rather than on states [7]. Any algorithm
that translates LTL into a Büchi automaton has to deal with generalized Büchi accep-
tance conditions at some point, and the process of degeneralizing the Büchi automaton
often increases its size. Several emptiness-check algorithms can deal with generalized
Büchi acceptance conditions, making such an a degeneralization unnecessary and even
costly [5]. Moving the acceptance conditions from the states to the transitions also re-
duces the size of the property automaton [3, 10].
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Unfortunately, having a smaller property automaton A¬ϕ does not always imply
that the product with the model (AM ⊗A¬ϕ) will be smaller, and it is the size of this
product that really affects the efficiency of the model checking. Instead of targeting
smaller property automata, some people have attempted to build automata that are more
deterministic [21]; however even this does not guarantee the product to be smaller.

Hansen et al. [11] introduced a new kind of ω-automaton called Testing Automaton.
These automata are less expressive than Büchi automata since are tailored to repre-
sent stuttering-insensitive properties (such as any LTL property that does not use the
X operator). Also they are often a lot larger than their equivalent Büchi automaton, but
surprisingly their good determinism often lead to a smaller product. The reasons why
and the conditions under which testing automata perform better are still mysterious [8].

Objectives The objective of this paper is to evaluate efficiency of LTL model checking
with these three kinds of ω-automata: classical Büchi Automata (BA), Transition-based
Generalized Büchi automata (TGBA), and Testing Automata (TA). Our main motivation
is to try to establish some rough rules to choose automatically and a priori the technique
that seems most suitable to check a given stuttering-insensitive property on a given
model. This is of interest when a tool offers the choice of several techniques, which is
the case for our model checker Spot [16].

Contents Section 2 provides a brief summary of the three ω-automaton and pointers to
their associated operations for model checking. Then section 3 reports our experimen-
tation procedure and its results before a discussion in section 4.

2 Presentation of the three Approaches

Let AP designate the set of atomic proposition of the model that we might want to use
to build a linear-time property. Any state of the model can be labeled by a valuation
of these atomic propositions. We denote by K = 2AP the set of these valuations. For
instance if AP = {a,b}, then K = 2AP = {āb̄, āb,ab̄,ab}. An execution of the model is
simply an infinite sequence of such valuations, i.e., an element from Kω. A property
can be seen as a set of sequences, i.e. a subset of Kω.

This section presents the three kinds of automata we compare in this paper: Transi-
tions-based Generalized Büchi Automata, Büchi Automata and Testing Automata. For
all of them, we explain how they recognize subsets of Kω to show their differences.
We do not detail the actual operations that must be performed to model check a system
which each approach because this has already been done in other works.

(a) ϕ

āb̄

āb

ab

ab̄ (b) aUGb Gb

ab,ab̄

āb,ab
āb,ab

Fig. 1: (a) A TGBA with acceptance conditions F = { , } recognizing the LTL prop-
erty ϕ = GFa∧GFb. (b) A TGBA with F = { } recognizing the LTL property aUGb.
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2.1 Transition-based Generalized Büchi Automata

A Transition-based Generalized Büchi Automata (TGBA) [10] over an alphabet K =
2AP is an ω-automaton where transitions are labeled by letters from K and some accep-
tance conditions. In our context, the TGBA represents the LTL property to verify.

Definition 1 A TGBA can be formally represented by a tuple G = 〈S, I,R,F〉 where:
– S is finite set of states,
– I ⊆ S is the set of initial states,
– F is a finite set of acceptance conditions,
– R ⊆ S× 2K × 2F × S is the transition relation, where each element (si,Ki,Fi,di)

represents a transition from state si to state di labeled by the non-empty set of
letters Ki, and the set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Kω is accepted by G if there exists an infinite path
(s0,K0,F0,s1)(s1,K1,F1,s2)(s2,K2,F2,s3) . . . ∈ Rω where:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki ⊆ K (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

Fig. 1 shows two examples of TGBA: one deterministic TGBA derived from the
LTL formula GFa∧GFb, and one non-deterministic TGBA derived from aUGb. The
LTL formulæ that label states represent the property accepted starting from this state
of the automaton: they are shown for the reader’s convenience but not used for model
checking. As can be inferred from Fig. 1(a), an LTL formula such as

∧n
i=1 GF pi can be

represented by a one-state deterministic TGBA with n acceptance conditions.

Model checking using TGBA When doing model checking with TGBA the two im-
portant operations are the translation of the linear-time property ϕ into a TGBA A¬ϕ and
the emptiness check of the product AM⊗A¬ϕ. We know of at least four algorithms that
purposedly translate LTL formulæ into TGBA [10, 3, 4, 22]. The one we use is based on
Couvreur’s LTL translation algorithm [3].

Testing a TGBA for emptiness amounts to the search of a strongly connected com-
ponent that contains at least one occurrence of each acceptance condition. It can be
done in two different way: either with a variation of Tarjan or Dijkstra algorithm [3] or
using several nested depth-first searches to save some memory [22]. The latter proved
to be slower [5], so we are using Couvreur’s SCC-based emptiness check algorithm [3].
Another advantage of the SCC-based algorithm is that their complexity does not depend
on the number of acceptance conditions.

2.2 Büchi Automata

A Büchi Automaton (BA) has only one acceptance condition that is state-based.

Definition 2 A BA over the alphabet K = 2AP is a tuple B = 〈S, I,R,F〉 where:
– S is a set of finite set states,
– I ⊆ S is the set of initial states,
– F ⊆ S is a finite set of acceptance states,
– R⊆ S×2K×S is the transition relation where each transition is labeled by a set of

letters of K.
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An execution w = k0k1k2 . . . ∈ Kω is accepted by B if there exists an infinite path
(s0,K0,s1)(s1,K1,s2)(s2,K2,s3) . . . ∈ Rω such that:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀i ∈N, ∃ j ≥ i, s j ∈ F (at least one acceptance state is visited infinitely often).

Model checking using BA A BA can be obtained from a TGBA by a procedure known
as degeneralization [3, 10]. In a worst case, a TGBA with s states and n acceptance
conditions will be degeneralized into a BA with s× (n+1) states (and one acceptance
condition). This is what we do in our experiments. Alternatives include the translation
of the property into a state-based generalized automaton which can then also be degen-
eralized, or the translation of the property into an alternating Büchi automaton that is
then converted into a BA using the Miyano-Hayashi construction [15].

The emptiness check algorithms that can deal with TGBA will also work on BA
(a BA can be seen as a TGBA by pushing the acceptance conditions on the transition
leaving acceptance states). But it can also be done using two nested depth-first searches.
The comparison of these different emptiness checks has raised many studies [9, 20, 5].

Fig. 2 shows the same properties as Fig. 1, but expressed as Büchi automata. The
automaton from Fig. 2(a) was built by degeneralizing the TGBA from Fig. 1(a). The
worst case of the degeneralization occurred here, since the TGBA with 1 state and n
acceptance conditions was degeneralized into a BA with n+ 1 states. It is known that
no BA with less than n+ 1 states can recognize the property

∧n
i=1 GF pi so this Büchi

automaton is optimal [2]. The property aUGb, on the other hand, is easier to express:
the BA has the same size as the TGBA.

(a) ϕ

ϕ

ϕ

ab

ab̄, āb̄

āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

(b) aUGb Gb

ab,ab̄

āb,ab

āb,ab

Fig. 2: Two example BA, with acceptance states shown as double circles. (a) A BA for
the LTL property ϕ = GFa∧GFb obtained by degeneralizing the TGBA for Fig. 1(a).
(b) A BA for the LTL property aUGb.

2.3 Testing Automata

A property, i.e., a set of infinite sequences P ⊆ Kω, is stuttering-insensitive iff any
sequence k0k1k2 . . . ∈ P remains in P after repeating any valuation ki. In other words,
P is stuttering-insensitive iff

k0k1k2 . . . ∈ P ⇐⇒ ki0
0 ki1

1 ki2
2 . . . ∈ P for any i0 > 0, i1 > 0 . . .

It is well known that any LTL\X formula (i.e. an LTL formula that does not use
the X operator) describes a stuttering-insensitive property. (It is possible to build some
stuttering-insensitive LTL formulæ using the X operator [6].)
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Testing Automata (TA) were introduced by Hansen et al. [11] to represent stuttering-
insensitive properties. While a Büchi automaton observes the value of the atomic propo-
sitions AP, the basic idea of TA is to detect the changes in these values; if a valuation
of AP does not change between two consecutive valuations of an execution, the TA can
stay in the same state. To detect execution that ends by stuttering in the same TA state,
a new kind of acceptance states is introduced: "livelock acceptance states".

If A and B are two valuations, let us note A⊕B the symmetric set difference, i.e. the
set of atomic propositions that changed. E.g. ab̄⊕ab = {b}.

Definition 3 A TA over the alphabet K = 2AP is a tuple T = 〈S, I,U,R, F,G〉. where:
– S is a finite set of states,
– I ⊆ S is the set of initial states,
– U : I→ K is a function mapping each initial state to a symbol of K interpreted as a

valuation (the initial configuration),
– R⊆ S×K×S is the transition relation where each transition (s,k,d) is labeled by

a changeset: k ∈ K = 2AP is interpreted as a set of atomic propositions that should
change between states s and d,

– F ⊆ S is a set of Büchi acceptance states,
– G⊆ S is a set of livelock acceptance states.

An execution w = k0k1k2 ... ∈ Kω is accepted by T if there exists an infinite sequence
(s0,k0⊕ k1,s1)(s1,k1⊕ k2,s2) . . .(si,ki⊕ ki+1,si+1) . . . ∈ (S×K×S)ω such that:

– s0 ∈ I with U(s0) = k0,
– ∀i∈N, either (si,ki⊕ki+1,si+1)∈ R (we are progressing in the testing automaton),

or ki = ki+1∧ si = si+1 (the execution is stuttering and the TA does not progress),
– Either, ∀i ∈N, (∃ j ≥ i, k j 6= k j+1)∧ (∃l ≥ i, sl ∈ F) (the automaton is progressing

in a Büchi-accepting way), or, ∃n ∈ N, (sn ∈ G∧ (∀i ≥ n, si = sn ∧ ki = kn)) (the
sequence reaches a livelock acceptance state and then stay on that state because
the execution is stuttering).

Construction of a Testing Automaton from a Büchi Automaton From a BA B =
(SB, IB,RB,FB) over the alphabet K = 2AP, we obtain a TA T = (ST , IT ,UT ,RT ,FT ,GT )
representing the same property in two steps [8]:
1. Converting B into an intermediate form of T with GT = /0:

– ST = SB×K, IT = IB×K, FT = FB×K, and GT = /0

– ∀(s,k) ∈ IT ,UT ((s,k)) = k
– ∀(s1,k1) ∈ ST ,∀(s2,k2) ∈ ST ,

((s1,k1),k1⊕ k2,(s2,k2)) ∈ RT ⇐⇒ ∃k ∈ 2K , ((s1,k,s2) ∈ RB)∧ (k1 ∈ k)
2. Filling GT to simplify T . For that, compute all strongly connected components

using only stuttering transitions (i.e., transitions labeled by /0). If such a SCC is not
trivial (i.e., it contains a cycle) and contains a Büchi acceptance state, then add all
its states to GT . Add to IT or GT any state that can respectively reach IT or GT using
only stuttering transitions. Finally remove all stuttering transitions from RT .

Additionally, the TA can be minimized by merging bisimilar states.
Fig. 3 shows the automaton constructed for aUGb by applying the above construc-

tion on the automaton from Fig. 2(b). The TA for GFa∧GFb is too big to be shown: it
has 11 states and 64 transitions.
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aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b} {a,b}{b}

{a}

{a}

{a}
{a} {a}

(a) Before reduction.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb

Gb,b

{b} {a,b}{b}

{a}

{a}

{a}

{a}

(b) After reduction by bisimulation.

Fig. 3: Two TA for the LTL formula aUGb. States with a double enclosure belong to
either F or G: states in F \G (none here) have a double plain line, states in G\F have
a double dashed line, and state in F ∩G use a mixed dashed/plain style.

Emptiness check using TA A first difference between the BA and TA approaches ap-
pears in the product computation. Indeed, a testing automaton remains in the same state
when the Kripke structure executes a stuttering step.

The emptiness check also requires a dedicated algorithm because there are two
ways to accept an execution: Büchi acceptance or livelock acceptance. In the algo-
rithm sketched by Geldenhuys and Hansen [8], a first pass is used with an heuristic to
detect both Büchi and livelock acceptance cycles. Unfortunately, in certain cases this
first pass fails to report existent livelock acceptance cycles. This implies that when no
counterexample is found by the first pass, a second one is required to double-check for
possible livelock acceptance cycles. These two passes are annoying when the property
is satisfied (no counterexample) since the entire state-space has to be explored twice.

Optimizations Looking at Fig. 3 inspires two optimizations. The first one is based
on the fact that the construction of testing automata described in previous section will
generate a lot of bisimilar states such as (Gb, āb) and (Gb,ab). This is because the
construction considers all the elements of K that are compatible with Gb. Had the LTL
formula been over AP= {a,b,c}, e.g., (a∨c)UGb, then we would have had four bisim-
ilar states: (Gb, ābc̄), (Gb, ābc), (Gb,abc̄), and (Gb,abc). These state are necessarily
isomorphic, because they only differ in a and c, some propositions that the formula Gb
does not observe.

A more efficient way to construct the testing automaton (and to construct the au-
tomaton from Fig. 3b directly) would be to consider only the subset of atomic propo-
sitions that are observed by the corresponding state of the Büchi automaton or its de-
scendants (if the state is labeled by an LTL formula, the atomic propositions occurring
in this formula give an over-approximation of that set).

A second optimization relies on the fact any state that no part of a SCC (also called
trivial SCC) can be added to F without changing the language of the automaton. This
is true for the three kinds of automata. For instance on Fig. 3 the state (aUGb, āb) can
be added to F . Since this state is not part of any cycle, it cannot occur infinitely often
and therefore cannot change the accepted language of the automaton.

Proceedings of CompoNet and SUMo 2011

70



This change allows further simplifications
aUGb, ab̄ab̄

aUGb, abab

Gb,b

āb

{b}

{a,b}

{b}

{a}

{a}

Fig. 4: Reduced TA for aUGb.

by bisimulation: the state (aUGb, āb) is now
obviously equivalent to the (Gb,b) state. Fig. 4
shows the resulting automaton. Note that putting
any trivial SCC x in F before preforming bisim-
ulation could hinder the reduction if x was
isomorphic to some state not in F . However
if x has only successors in F , as in our exam-
ple, then it can be put safely in F : indeed, it can only be isomorphic to an F-state, or to
another trivial SCC that will be added to F . This condition is similar to the one used by
Löding before minimizing deterministic weak ω-automata [14].

3 Experimentation

This section presents our experimentation of the various types of automata within our
tool Spot [16]. We first present the Spot architecture and the way the variation on the
model checking algorithm was introduced. Then we present our benchmarks (formulæ
and models) prior to the description of our experiments.

3.1 Implementation on top of Spot

Spot is a model-checking library offering several algorithms that can be combined to
build a model checker [7]. Fig. 5 shows the building blocks we used to implement the
three approaches. The TGBA and BA approaches share the same synchronized product
and emptiness check, while a dedicated algorithms is required by the TA approach.

In order to evaluate our approach on “realistic” models, we decided to couple the
Spot library with the CheckPN tool [7]. CheckPN implements Spot’s Kripke structure
interface in order to build the state space of a Petri net on the fly. This Kripke structure
is then synchronized with an ω-automaton (TGBA, BA, or TA) on the fly, and fed
to the suitable emptiness check algorithm. The latter algorithm drives the on-the-fly
construction: only the explored part of the product (and the associated states of the
Kripke structure) will be constructed.

Constructing the state space on-the-fly is a double-edged optimization. Firstly, it
saves memory, because the state-space is computed as it is explored and thus, does not
need be stored. Secondly, it also saves time when a property is violated because the

Kripke
Structure

LTL
Formula

Synchr.
Product

LTL2TGBA

TGBA2BA

BA2TA

Synchr.
Product 2

Emptiness
Check

Emptiness
Check 2

TRUE or
counterexample

Fig. 5: The experiment’s architecture. Two command-line switches controls which one
of the three approaches is used to verify an LTL formula on a Kripke structure.
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emptiness check can stop as soon as it has found a counterexample. However, on-the-
fly exploration is costlier than browsing an explicit graph: an emptiness check algorithm
such as the one for TA [11] that does two traversals of the full state-space in the worst
case (e.g. when the property holds) will pay twice the price of that construction.

In the CheckPN implementation of the Kripke structure, the Petri Net marking are
compressed to save memory. The marking of a state has to be uncompressed every time
we compute its successors, or when we compute the value of the atomic properties on
this state. These two operations often occur together, so there is a one-entry cache that
prevents the marking from being uncompressed twice in a row.

3.2 Benchmark Inputs

We selected some Petri net models and formulæ to compare these approaches.

Toy Examples A first class of four models were selected from the Petri net literature [1]:
the flexible manufacturing system (FMS), the Kanban system, the dining philosophers,
and the slotted-ring system. All these models have a parameter n. For the dining philoso-
phers, and the slotted-ring, the model are composed of n identical 1-safe subnets. For
FMS and Kanban, n only influences the number of tokens in the initial marking.

We chose values for n in order to get state space having between 2×105 to 3×106

nodes. The objective is to have comparable state spaces to be synchronized.

Case Studies The following two bigger models, were taken from actual cases studies.
They come with some dedicated properties to check.

MAPK models a biochemical reaction: Mitogen-activated protein kinase casca-
de [12]. For a scaling value of 8 (that influences the number of tokens in the initial
marking), it contains 22 places and 30 transitions. Its state space contains 6.11× 106

states. The authors propose to check that from the initial state, it is necessary to pass
through states RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

Φ1 = ¬((¬RafP)UMEKP)∧¬((¬MEKP)UMEKPP)∧
¬((¬MEKPP)UERKP)∧¬((¬ERKP)UERKPP)

PolyORB models the core of the µbroker component of a middleware [13] in an
implementation using a Leader/Followers policy [18]. It is a Symmetric Net and, since
CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for
a configuration involving three sources of data, three simultaneous jobs and two threads
(one leader, one follower) is composed of 189 places and 461 transitions. Its state space
contains 61 662 states3. The authors propose to check that once a job is issued from a
source, it must be processed by a thread (no starvation). It corresponds to:

Φ2 = G(MSrc1→ F(DOSrc1))∧G(MSrc2→ F(DOSrc2))∧G(MSrc3→ F(DOSrc3))

Types of Formulæ As suggested by Geldenhuys and Hansen [8], the type of formula
may affect the performances of the various algorithms. In addition to the formulæ Φ1
and Φ2 above, we consider two classes of formulæ:

3 This is a rather small value compared to MAPK but, due to the unfolding, each state is a 189-
value vector. PolyORB with three sources of data, three simultaneous jobs and three threads
would generate 1 137 096 states with 255-value vectors, making the experiment much too slow.
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– RND: randomly generated LTL formulæ (without X operator). Since random for-
mulæ are very often trivial to verify (the emptiness check needs to explore only a
handful of states), for each model we selected only random formulæ that required
to explore more than 2000 states with the TGBA approach.

– WFair: properties of the form (
∧n

i=1 GF pi)→ ϕ, where ϕ is a randomly gener-
ated LTL formula. This represents the verification of ϕ under the weak-fairness
hypothesis

∧n
i=1 GF pi. The automaton representing such a formula has at least n

acceptance conditions which means that the BA will in the worst case be n+1 times
bigger than the TGBA. For the formulæ we generated for our experiments we have
n≈ 3.19 on the average.
All formulæ were translated into automata using Spot, which was shown experi-

mentally to be very good at this job [19].

3.3 Results

Table 1 and 2 show how the three approaches deal with toy models and random formulæ
(Table 1) and with toy models against WFair formulæ (Table 2). Table 3 shows the
results of the two cases studies against random, weak-fairness, and dedicated formulæ.

These tables separate cases where formulæ are verified from cases where they are
violated. In the former (left sides of the tables), no counterexample are found and the
full state space had to be explored; in the latter (right sides) the on-the-fly exploration of
the state space stopped as soon as the existence of a counterexample could be computed.

The numbers displayed in parentheses on both sides of the tables are the number
of formulæ involved in the experiment. For instance (reading Table 2) we checked
Kanban5 against 98 weak-fairness formulæ that had no counterexample, and against
102 weak-fairness formulæ that had a counterexample. The average and maximum are
computed separately on these two sets of formulæ.

Column-wise, these tables show the average and maximum sizes (states and transi-
tions) of: (1) the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗AM
of the property with the model; and (3) the subset of this product that was actually ex-
plored by the emptiness check. For verified properties, the emptiness check of TGBA
and BA always explores the full product so these sizes are equal, while the emptiness
check of TA always performs two passes on the full product so it shows double values.
On violated properties, the emptiness check aborts as soon as it finds a counterexample,
so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled “T”: this is the time (in
hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check, includ-
ing the on-the-fly computation of the subset of the product that is explored. The time
spent constructing the property automata from the formulæ is not shown (it is negligible
compared to that of the emptiness check). These tests were performed on a 64bit Linux
system running on an Intel Core i7 CPU 960 at 3.20GHz, with 24GB of RAM. Running
this entire benchmark with four tasks in parallel took us two days.
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4 Discussion

Although the state space of cases studies can be very different from random state
spaces [17], a first look at our results confirms two facts already observed by Gelden-
huys and Hansen using random state spaces [8]: (1) although the TA constructed from
properties are usually a lot larger than BA, the average size of the full product is smaller
thanks to the more deterministic nature of the TA. (2) For violated properties, the TA
approach explores less states and transitions on the average than the BA.

We complete this picture by showing run times, by separating verified properties
from violated properties, and by also evaluating the TGBA approach.

On verified properties, the results are very straightforward to interpret: the BA are
slightly worse than the TGBA because they have to be degeneralized. In fact, the av-
erage number of acceptance conditions needed in random formulæ (Table 1 and 3) is
so close to 1 that the degeneralization barely changes the sizes of the automata. With
weak-fairness formulæ (Table 2 and 3), the number of acceptance conditions is greater,
so TGBA are favored over BA. Surprisingly, both TGBA and BA, although they are
not tailored to stuttering-insensitive properties like TA, appear more effective to prove
that a stuttering-insensitive property is verified. In the three tables, although the full
product of the TA approach is smaller than the other approaches, it has to be explored
twice (as explained in section 2.3): the emptiness-check consequently explores more
states and transitions. This double exploration is not enough to explain the big runtime
differences. Two other subtler implementation details contribute to the time difference:

– To synchronize a transition of a Kripke structure with a transition (or a state in
case of stuttering) of a TA, we must compute the symmetric difference l(s)⊕ l(d)
between the labels of the source and destination states. The same synchronization
in the TGBA and BA approaches requires to know only the source label.
Computing these labels is a costly operation in CheckPN because Petri net marking
are compressed in memory to save space. Although we implemented some (limited)
caching to alleviate the number of such label computation, profiling measures re-
vealed the TA approach was 3 times slower than the TGBA and BA approaches,
but that labels where computed 9 times more.

– A second implementation difference, this time in favor of the TA approach, is that
transitions of testing automata are labeled by elements of K, while transitions of
TGBA and BA are labeled by elements of 2K . That means that once l(s)⊕ l(d) ∈ K
has been computed, we can use a hash table to immediately find matching transi-
tions of the testing automaton. In the TGBA and BA implementations, we linearly
scan the list of transitions of the property automaton until we find one compatible
with l(s). The BA and TGBA approaches could be improved by replacing each
transition labeled by an element of 2K by many transitions labeled by an elements
of K, and then using a hash table, but we have not implemented it yet.
In an implementation where computing labels is cheap, the run time should be pro-

portional to the number of transitions explored by the emptiness check, so it is important
not to consider only the run time provided by our experiments.

On violated properties, it is harder to interpret these tables because the emptiness
check will return as soon as it finds a counterexample. Changing the order in which
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non-deterministic transitions of the property automaton are iterated is enough to change
the number of states and transitions to be explored before a counterexample is found: in
the best case the transition order will lead the emptiness check straight to an accepting
cycle; in the worst case, the algorithm will explore the whole product until it finally finds
an accepting cycle. Although the emptiness check algorithms for the three approaches
share the same routines to explore the automaton, they are all applied to different kinds
of property automata, and thus provide different transition orders.

This ordering luckiness explains why the BA approach sometimes outperforms the
TGBA approach: one very bad case is enough to bias the average case. For instance this
occurred on the Philo8 model with random formulæ: the worst TGBA case explored 4
times more transitions than the BA case, although the full product was twice smaller.

We believe that the TA, since they are more deterministic, are less sensible to this
ordering. They also explore a smaller state space on the average. This smaller explo-
ration is not always tied a good runtime because of the extra computation of labels
discussed previously. Again, looking at the average number of transition explored by
the emptiness check indicates that the TA approach would outperform the others if the
computation of labels was cheap.

Finally in all of our experiments the TA approach has always found the counterex-
ample in the first pass of the emptiness check algorithm. This supports Geldenhuys
and Hansen’s claim that the second pass was seldom needed for debugging (less than
0.005% of the cases in their experiments [8]).

5 Conclusion

Geldenhuys and Hansen have evaluated the performance of the BA and TA approaches
with small random Kripke structures checked against LTL formulæ taken from the lit-
erature [8]. In this work, we have completed their experiments by using actual models
and different kinds of formulæ (random formulæ not trivially verifiable, random for-
mulæ expressing weak-fairness formulæ, and a couple of real formulæ), by evaluating
the TGBA approach, and by distinguishing violated formulæ and verified formulæ in
the benchmark.

For verified formulæ, we found that the state space reduction achieved by the TA
approach was not enough to compensate for the two-pass emptiness check this approach
requires. It is therefore better to use the TGBA approach to prove that a stuttering-
insensitive formula is verified and TA approach in an earlier “debugging phase”.

When the formulæ are violated, the TA approach usually processes less transitions
than the BA approach and TGBA to find a counterexample. This approach should there-
fore be a valuable help to debug models (i.e. when counterexamples are expected). This
is especially true on random formulæ. With weak-fairness formulæ, generalized au-
tomata are advantaged and are able to beat the TA on the average in 3 of our 6 examples
(Philo8, Ring6, PolyORB 3/2/2).
Future work We plan to combine the ideas of TA and TGBA approaches. We believe
it would be interesting to have testing automata with transition-based generalized ac-
ceptance conditions. We think the LTL translation algorithm we use to produce TGBAs
could be adjusted to product such automata directly.
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