
Generalized Büchi Automata versus Testing Automata
for Model Checking

A.-E. Ben Salem1,2, A. Duret-Lutz1, and F. Kordon2

1 LRDE, EPITA, Le Kremlin-Bicêtre, France
ala@lrde.epita.fr, adl@lrde.epita.fr

2 LIP6, CNRS UMR 7606, Université P. & M. Curie — Paris 6, France
Fabrice.Kordon@lip6.fr

Abstract. Geldenhuys and Hansen have shown that a kind of ω-automaton known
as testing automata can outperform the Büchi automata traditionally used in the
automata-theoretic approach to model checking [8]. This work completes their
experiments by including a comparison with generalized Büchi automata; by us-
ing larger state spaces derived from Petri nets; and by distinguishing violated
formulæ (for which testing automata fare better) from verified formulæ (where
testing automata are hindered by their two-pass emptiness check).

1 Introduction

Context The automata-theoretic approach to model checking linear-time properties [23]
splits the verification process into four operations:
1. Computation of the state-space for the model M. This state-space can be seen as an

ω-automaton AM whose language, L (AM), represent all possible executions of M.
2. Translation of the temporal property ϕ into a ω-automaton A¬ϕ whose language,

L (A¬ϕ), is the set of all executions that would invalidate ϕ.
3. Synchronization of these automata. This constructs a product automaton AM⊗A¬ϕ

whose language, L (AM)∩L (A¬ϕ), is the set of executions of M invalidating ϕ.
4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an

infinite word, and can return such a word (a counterexample) if it does. The model
M verifies ϕ iff L (AM⊗A¬ϕ) = /0.

Problem Different kinds of ω-automata have been used with the above approach. In
the most common case, a property expressed as an LTL (linear-time temporal logic)
formula is converted into a Büchi automaton with state-based acceptance, and a Kripke
structure is used to represent the state-space of the model.

In our tools, we prefer to represent properties using generalized (i.e., multiple)
Büchi acceptance conditions on transitions rather than on states [7]. Any algorithm
that translates LTL into a Büchi automaton has to deal with generalized Büchi accep-
tance conditions at some point, and the process of degeneralizing the Büchi automaton
often increases its size. Several emptiness-check algorithms can deal with generalized
Büchi acceptance conditions, making such an a degeneralization unnecessary and even
costly [5]. Moving the acceptance conditions from the states to the transitions also re-
duces the size of the property automaton [3, 10].

Proceedings of CompoNet and SUMo 2011

65



Unfortunately, having a smaller property automaton A¬ϕ does not always imply
that the product with the model (AM ⊗A¬ϕ) will be smaller, and it is the size of this
product that really affects the efficiency of the model checking. Instead of targeting
smaller property automata, some people have attempted to build automata that are more
deterministic [21]; however even this does not guarantee the product to be smaller.

Hansen et al. [11] introduced a new kind of ω-automaton called Testing Automaton.
These automata are less expressive than Büchi automata since are tailored to repre-
sent stuttering-insensitive properties (such as any LTL property that does not use the
X operator). Also they are often a lot larger than their equivalent Büchi automaton, but
surprisingly their good determinism often lead to a smaller product. The reasons why
and the conditions under which testing automata perform better are still mysterious [8].

Objectives The objective of this paper is to evaluate efficiency of LTL model checking
with these three kinds of ω-automata: classical Büchi Automata (BA), Transition-based
Generalized Büchi automata (TGBA), and Testing Automata (TA). Our main motivation
is to try to establish some rough rules to choose automatically and a priori the technique
that seems most suitable to check a given stuttering-insensitive property on a given
model. This is of interest when a tool offers the choice of several techniques, which is
the case for our model checker Spot [16].

Contents Section 2 provides a brief summary of the three ω-automaton and pointers to
their associated operations for model checking. Then section 3 reports our experimen-
tation procedure and its results before a discussion in section 4.

2 Presentation of the three Approaches

Let AP designate the set of atomic proposition of the model that we might want to use
to build a linear-time property. Any state of the model can be labeled by a valuation
of these atomic propositions. We denote by K = 2AP the set of these valuations. For
instance if AP = {a,b}, then K = 2AP = {āb̄, āb,ab̄,ab}. An execution of the model is
simply an infinite sequence of such valuations, i.e., an element from Kω. A property
can be seen as a set of sequences, i.e. a subset of Kω.

This section presents the three kinds of automata we compare in this paper: Transi-
tions-based Generalized Büchi Automata, Büchi Automata and Testing Automata. For
all of them, we explain how they recognize subsets of Kω to show their differences.
We do not detail the actual operations that must be performed to model check a system
which each approach because this has already been done in other works.

(a) ϕ

āb̄

āb

ab

ab̄ (b) aUGb Gb

ab,ab̄

āb,ab
āb,ab

Fig. 1: (a) A TGBA with acceptance conditions F = { , } recognizing the LTL prop-
erty ϕ = GFa∧GFb. (b) A TGBA with F = { } recognizing the LTL property aUGb.

Proceedings of CompoNet and SUMo 2011

66



2.1 Transition-based Generalized Büchi Automata

A Transition-based Generalized Büchi Automata (TGBA) [10] over an alphabet K =
2AP is an ω-automaton where transitions are labeled by letters from K and some accep-
tance conditions. In our context, the TGBA represents the LTL property to verify.

Definition 1 A TGBA can be formally represented by a tuple G = 〈S, I,R,F〉 where:
– S is finite set of states,
– I ⊆ S is the set of initial states,
– F is a finite set of acceptance conditions,
– R ⊆ S× 2K × 2F × S is the transition relation, where each element (si,Ki,Fi,di)

represents a transition from state si to state di labeled by the non-empty set of
letters Ki, and the set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Kω is accepted by G if there exists an infinite path
(s0,K0,F0,s1)(s1,K1,F1,s2)(s2,K2,F2,s3) . . . ∈ Rω where:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki ⊆ K (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

Fig. 1 shows two examples of TGBA: one deterministic TGBA derived from the
LTL formula GFa∧GFb, and one non-deterministic TGBA derived from aUGb. The
LTL formulæ that label states represent the property accepted starting from this state
of the automaton: they are shown for the reader’s convenience but not used for model
checking. As can be inferred from Fig. 1(a), an LTL formula such as

∧n
i=1 GF pi can be

represented by a one-state deterministic TGBA with n acceptance conditions.

Model checking using TGBA When doing model checking with TGBA the two im-
portant operations are the translation of the linear-time property ϕ into a TGBA A¬ϕ and
the emptiness check of the product AM⊗A¬ϕ. We know of at least four algorithms that
purposedly translate LTL formulæ into TGBA [10, 3, 4, 22]. The one we use is based on
Couvreur’s LTL translation algorithm [3].

Testing a TGBA for emptiness amounts to the search of a strongly connected com-
ponent that contains at least one occurrence of each acceptance condition. It can be
done in two different way: either with a variation of Tarjan or Dijkstra algorithm [3] or
using several nested depth-first searches to save some memory [22]. The latter proved
to be slower [5], so we are using Couvreur’s SCC-based emptiness check algorithm [3].
Another advantage of the SCC-based algorithm is that their complexity does not depend
on the number of acceptance conditions.

2.2 Büchi Automata

A Büchi Automaton (BA) has only one acceptance condition that is state-based.

Definition 2 A BA over the alphabet K = 2AP is a tuple B = 〈S, I,R,F〉 where:
– S is a set of finite set states,
– I ⊆ S is the set of initial states,
– F ⊆ S is a finite set of acceptance states,
– R⊆ S×2K×S is the transition relation where each transition is labeled by a set of

letters of K.

Proceedings of CompoNet and SUMo 2011

67



An execution w = k0k1k2 . . . ∈ Kω is accepted by B if there exists an infinite path
(s0,K0,s1)(s1,K1,s2)(s2,K2,s3) . . . ∈ Rω such that:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀i ∈N, ∃ j ≥ i, s j ∈ F (at least one acceptance state is visited infinitely often).

Model checking using BA A BA can be obtained from a TGBA by a procedure known
as degeneralization [3, 10]. In a worst case, a TGBA with s states and n acceptance
conditions will be degeneralized into a BA with s× (n+1) states (and one acceptance
condition). This is what we do in our experiments. Alternatives include the translation
of the property into a state-based generalized automaton which can then also be degen-
eralized, or the translation of the property into an alternating Büchi automaton that is
then converted into a BA using the Miyano-Hayashi construction [15].

The emptiness check algorithms that can deal with TGBA will also work on BA
(a BA can be seen as a TGBA by pushing the acceptance conditions on the transition
leaving acceptance states). But it can also be done using two nested depth-first searches.
The comparison of these different emptiness checks has raised many studies [9, 20, 5].

Fig. 2 shows the same properties as Fig. 1, but expressed as Büchi automata. The
automaton from Fig. 2(a) was built by degeneralizing the TGBA from Fig. 1(a). The
worst case of the degeneralization occurred here, since the TGBA with 1 state and n
acceptance conditions was degeneralized into a BA with n+ 1 states. It is known that
no BA with less than n+ 1 states can recognize the property

∧n
i=1 GF pi so this Büchi

automaton is optimal [2]. The property aUGb, on the other hand, is easier to express:
the BA has the same size as the TGBA.

(a) ϕ

ϕ

ϕ

ab

ab̄, āb̄

āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

(b) aUGb Gb

ab,ab̄

āb,ab

āb,ab

Fig. 2: Two example BA, with acceptance states shown as double circles. (a) A BA for
the LTL property ϕ = GFa∧GFb obtained by degeneralizing the TGBA for Fig. 1(a).
(b) A BA for the LTL property aUGb.

2.3 Testing Automata

A property, i.e., a set of infinite sequences P ⊆ Kω, is stuttering-insensitive iff any
sequence k0k1k2 . . . ∈ P remains in P after repeating any valuation ki. In other words,
P is stuttering-insensitive iff

k0k1k2 . . . ∈ P ⇐⇒ ki0
0 ki1

1 ki2
2 . . . ∈ P for any i0 > 0, i1 > 0 . . .

It is well known that any LTL\X formula (i.e. an LTL formula that does not use
the X operator) describes a stuttering-insensitive property. (It is possible to build some
stuttering-insensitive LTL formulæ using the X operator [6].)

Proceedings of CompoNet and SUMo 2011

68



Testing Automata (TA) were introduced by Hansen et al. [11] to represent stuttering-
insensitive properties. While a Büchi automaton observes the value of the atomic propo-
sitions AP, the basic idea of TA is to detect the changes in these values; if a valuation
of AP does not change between two consecutive valuations of an execution, the TA can
stay in the same state. To detect execution that ends by stuttering in the same TA state,
a new kind of acceptance states is introduced: "livelock acceptance states".

If A and B are two valuations, let us note A⊕B the symmetric set difference, i.e. the
set of atomic propositions that changed. E.g. ab̄⊕ab = {b}.

Definition 3 A TA over the alphabet K = 2AP is a tuple T = 〈S, I,U,R, F,G〉. where:
– S is a finite set of states,
– I ⊆ S is the set of initial states,
– U : I→ K is a function mapping each initial state to a symbol of K interpreted as a

valuation (the initial configuration),
– R⊆ S×K×S is the transition relation where each transition (s,k,d) is labeled by

a changeset: k ∈ K = 2AP is interpreted as a set of atomic propositions that should
change between states s and d,

– F ⊆ S is a set of Büchi acceptance states,
– G⊆ S is a set of livelock acceptance states.

An execution w = k0k1k2 ... ∈ Kω is accepted by T if there exists an infinite sequence
(s0,k0⊕ k1,s1)(s1,k1⊕ k2,s2) . . .(si,ki⊕ ki+1,si+1) . . . ∈ (S×K×S)ω such that:

– s0 ∈ I with U(s0) = k0,
– ∀i∈N, either (si,ki⊕ki+1,si+1)∈ R (we are progressing in the testing automaton),

or ki = ki+1∧ si = si+1 (the execution is stuttering and the TA does not progress),
– Either, ∀i ∈N, (∃ j ≥ i, k j 6= k j+1)∧ (∃l ≥ i, sl ∈ F) (the automaton is progressing

in a Büchi-accepting way), or, ∃n ∈ N, (sn ∈ G∧ (∀i ≥ n, si = sn ∧ ki = kn)) (the
sequence reaches a livelock acceptance state and then stay on that state because
the execution is stuttering).

Construction of a Testing Automaton from a Büchi Automaton From a BA B =
(SB, IB,RB,FB) over the alphabet K = 2AP, we obtain a TA T = (ST , IT ,UT ,RT ,FT ,GT )
representing the same property in two steps [8]:
1. Converting B into an intermediate form of T with GT = /0:

– ST = SB×K, IT = IB×K, FT = FB×K, and GT = /0

– ∀(s,k) ∈ IT ,UT ((s,k)) = k
– ∀(s1,k1) ∈ ST ,∀(s2,k2) ∈ ST ,

((s1,k1),k1⊕ k2,(s2,k2)) ∈ RT ⇐⇒ ∃k ∈ 2K , ((s1,k,s2) ∈ RB)∧ (k1 ∈ k)
2. Filling GT to simplify T . For that, compute all strongly connected components

using only stuttering transitions (i.e., transitions labeled by /0). If such a SCC is not
trivial (i.e., it contains a cycle) and contains a Büchi acceptance state, then add all
its states to GT . Add to IT or GT any state that can respectively reach IT or GT using
only stuttering transitions. Finally remove all stuttering transitions from RT .

Additionally, the TA can be minimized by merging bisimilar states.
Fig. 3 shows the automaton constructed for aUGb by applying the above construc-

tion on the automaton from Fig. 2(b). The TA for GFa∧GFb is too big to be shown: it
has 11 states and 64 transitions.

Proceedings of CompoNet and SUMo 2011

69



aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b} {a,b}{b}

{a}

{a}

{a}
{a} {a}

(a) Before reduction.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb

Gb,b

{b} {a,b}{b}

{a}

{a}

{a}

{a}

(b) After reduction by bisimulation.

Fig. 3: Two TA for the LTL formula aUGb. States with a double enclosure belong to
either F or G: states in F \G (none here) have a double plain line, states in G\F have
a double dashed line, and state in F ∩G use a mixed dashed/plain style.

Emptiness check using TA A first difference between the BA and TA approaches ap-
pears in the product computation. Indeed, a testing automaton remains in the same state
when the Kripke structure executes a stuttering step.

The emptiness check also requires a dedicated algorithm because there are two
ways to accept an execution: Büchi acceptance or livelock acceptance. In the algo-
rithm sketched by Geldenhuys and Hansen [8], a first pass is used with an heuristic to
detect both Büchi and livelock acceptance cycles. Unfortunately, in certain cases this
first pass fails to report existent livelock acceptance cycles. This implies that when no
counterexample is found by the first pass, a second one is required to double-check for
possible livelock acceptance cycles. These two passes are annoying when the property
is satisfied (no counterexample) since the entire state-space has to be explored twice.

Optimizations Looking at Fig. 3 inspires two optimizations. The first one is based
on the fact that the construction of testing automata described in previous section will
generate a lot of bisimilar states such as (Gb, āb) and (Gb,ab). This is because the
construction considers all the elements of K that are compatible with Gb. Had the LTL
formula been over AP= {a,b,c}, e.g., (a∨c)UGb, then we would have had four bisim-
ilar states: (Gb, ābc̄), (Gb, ābc), (Gb,abc̄), and (Gb,abc). These state are necessarily
isomorphic, because they only differ in a and c, some propositions that the formula Gb
does not observe.

A more efficient way to construct the testing automaton (and to construct the au-
tomaton from Fig. 3b directly) would be to consider only the subset of atomic propo-
sitions that are observed by the corresponding state of the Büchi automaton or its de-
scendants (if the state is labeled by an LTL formula, the atomic propositions occurring
in this formula give an over-approximation of that set).

A second optimization relies on the fact any state that no part of a SCC (also called
trivial SCC) can be added to F without changing the language of the automaton. This
is true for the three kinds of automata. For instance on Fig. 3 the state (aUGb, āb) can
be added to F . Since this state is not part of any cycle, it cannot occur infinitely often
and therefore cannot change the accepted language of the automaton.

Proceedings of CompoNet and SUMo 2011

70



This change allows further simplifications
aUGb, ab̄ab̄

aUGb, abab

Gb,b

āb

{b}

{a,b}

{b}

{a}

{a}

Fig. 4: Reduced TA for aUGb.

by bisimulation: the state (aUGb, āb) is now
obviously equivalent to the (Gb,b) state. Fig. 4
shows the resulting automaton. Note that putting
any trivial SCC x in F before preforming bisim-
ulation could hinder the reduction if x was
isomorphic to some state not in F . However
if x has only successors in F , as in our exam-
ple, then it can be put safely in F : indeed, it can only be isomorphic to an F-state, or to
another trivial SCC that will be added to F . This condition is similar to the one used by
Löding before minimizing deterministic weak ω-automata [14].

3 Experimentation

This section presents our experimentation of the various types of automata within our
tool Spot [16]. We first present the Spot architecture and the way the variation on the
model checking algorithm was introduced. Then we present our benchmarks (formulæ
and models) prior to the description of our experiments.

3.1 Implementation on top of Spot

Spot is a model-checking library offering several algorithms that can be combined to
build a model checker [7]. Fig. 5 shows the building blocks we used to implement the
three approaches. The TGBA and BA approaches share the same synchronized product
and emptiness check, while a dedicated algorithms is required by the TA approach.

In order to evaluate our approach on “realistic” models, we decided to couple the
Spot library with the CheckPN tool [7]. CheckPN implements Spot’s Kripke structure
interface in order to build the state space of a Petri net on the fly. This Kripke structure
is then synchronized with an ω-automaton (TGBA, BA, or TA) on the fly, and fed
to the suitable emptiness check algorithm. The latter algorithm drives the on-the-fly
construction: only the explored part of the product (and the associated states of the
Kripke structure) will be constructed.

Constructing the state space on-the-fly is a double-edged optimization. Firstly, it
saves memory, because the state-space is computed as it is explored and thus, does not
need be stored. Secondly, it also saves time when a property is violated because the

Kripke
Structure

LTL
Formula

Synchr.
Product

LTL2TGBA

TGBA2BA

BA2TA

Synchr.
Product 2

Emptiness
Check

Emptiness
Check 2

TRUE or
counterexample

Fig. 5: The experiment’s architecture. Two command-line switches controls which one
of the three approaches is used to verify an LTL formula on a Kripke structure.

Proceedings of CompoNet and SUMo 2011

71



emptiness check can stop as soon as it has found a counterexample. However, on-the-
fly exploration is costlier than browsing an explicit graph: an emptiness check algorithm
such as the one for TA [11] that does two traversals of the full state-space in the worst
case (e.g. when the property holds) will pay twice the price of that construction.

In the CheckPN implementation of the Kripke structure, the Petri Net marking are
compressed to save memory. The marking of a state has to be uncompressed every time
we compute its successors, or when we compute the value of the atomic properties on
this state. These two operations often occur together, so there is a one-entry cache that
prevents the marking from being uncompressed twice in a row.

3.2 Benchmark Inputs

We selected some Petri net models and formulæ to compare these approaches.

Toy Examples A first class of four models were selected from the Petri net literature [1]:
the flexible manufacturing system (FMS), the Kanban system, the dining philosophers,
and the slotted-ring system. All these models have a parameter n. For the dining philoso-
phers, and the slotted-ring, the model are composed of n identical 1-safe subnets. For
FMS and Kanban, n only influences the number of tokens in the initial marking.

We chose values for n in order to get state space having between 2×105 to 3×106

nodes. The objective is to have comparable state spaces to be synchronized.

Case Studies The following two bigger models, were taken from actual cases studies.
They come with some dedicated properties to check.

MAPK models a biochemical reaction: Mitogen-activated protein kinase casca-
de [12]. For a scaling value of 8 (that influences the number of tokens in the initial
marking), it contains 22 places and 30 transitions. Its state space contains 6.11× 106

states. The authors propose to check that from the initial state, it is necessary to pass
through states RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

Φ1 = ¬((¬RafP)UMEKP)∧¬((¬MEKP)UMEKPP)∧
¬((¬MEKPP)UERKP)∧¬((¬ERKP)UERKPP)

PolyORB models the core of the µbroker component of a middleware [13] in an
implementation using a Leader/Followers policy [18]. It is a Symmetric Net and, since
CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for
a configuration involving three sources of data, three simultaneous jobs and two threads
(one leader, one follower) is composed of 189 places and 461 transitions. Its state space
contains 61 662 states3. The authors propose to check that once a job is issued from a
source, it must be processed by a thread (no starvation). It corresponds to:

Φ2 = G(MSrc1→ F(DOSrc1))∧G(MSrc2→ F(DOSrc2))∧G(MSrc3→ F(DOSrc3))

Types of Formulæ As suggested by Geldenhuys and Hansen [8], the type of formula
may affect the performances of the various algorithms. In addition to the formulæ Φ1
and Φ2 above, we consider two classes of formulæ:

3 This is a rather small value compared to MAPK but, due to the unfolding, each state is a 189-
value vector. PolyORB with three sources of data, three simultaneous jobs and three threads
would generate 1 137 096 states with 255-value vectors, making the experiment much too slow.

Proceedings of CompoNet and SUMo 2011

72



– RND: randomly generated LTL formulæ (without X operator). Since random for-
mulæ are very often trivial to verify (the emptiness check needs to explore only a
handful of states), for each model we selected only random formulæ that required
to explore more than 2000 states with the TGBA approach.

– WFair: properties of the form (
∧n

i=1 GF pi)→ ϕ, where ϕ is a randomly gener-
ated LTL formula. This represents the verification of ϕ under the weak-fairness
hypothesis

∧n
i=1 GF pi. The automaton representing such a formula has at least n

acceptance conditions which means that the BA will in the worst case be n+1 times
bigger than the TGBA. For the formulæ we generated for our experiments we have
n≈ 3.19 on the average.
All formulæ were translated into automata using Spot, which was shown experi-

mentally to be very good at this job [19].

3.3 Results

Table 1 and 2 show how the three approaches deal with toy models and random formulæ
(Table 1) and with toy models against WFair formulæ (Table 2). Table 3 shows the
results of the two cases studies against random, weak-fairness, and dedicated formulæ.

These tables separate cases where formulæ are verified from cases where they are
violated. In the former (left sides of the tables), no counterexample are found and the
full state space had to be explored; in the latter (right sides) the on-the-fly exploration of
the state space stopped as soon as the existence of a counterexample could be computed.

The numbers displayed in parentheses on both sides of the tables are the number
of formulæ involved in the experiment. For instance (reading Table 2) we checked
Kanban5 against 98 weak-fairness formulæ that had no counterexample, and against
102 weak-fairness formulæ that had a counterexample. The average and maximum are
computed separately on these two sets of formulæ.

Column-wise, these tables show the average and maximum sizes (states and transi-
tions) of: (1) the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗AM
of the property with the model; and (3) the subset of this product that was actually ex-
plored by the emptiness check. For verified properties, the emptiness check of TGBA
and BA always explores the full product so these sizes are equal, while the emptiness
check of TA always performs two passes on the full product so it shows double values.
On violated properties, the emptiness check aborts as soon as it finds a counterexample,
so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled “T”: this is the time (in
hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check, includ-
ing the on-the-fly computation of the subset of the product that is explored. The time
spent constructing the property automata from the formulæ is not shown (it is negligible
compared to that of the emptiness check). These tests were performed on a 64bit Linux
system running on an Intel Core i7 CPU 960 at 3.20GHz, with 24GB of RAM. Running
this entire benchmark with four tasks in parallel took us two days.

Proceedings of CompoNet and SUMo 2011

73



Property
verified

(no
counterexam

ple)
Property

violated
(a

counterexam
ple

exists)
A

utom
aton

Fullproduct
E

m
ptiness

check
A

utom
aton

Fullproduct
E

m
ptiness

check
st.

tr.
st.

tr.
st.

tr.
T

st.
tr.

st.
tr.

st.
tr.

T

FMS5 (70)T
G

B
A

A
vg

5.9
67.1

698
449

4
750

201
698

449
4
750

201
740

6.3
75.8

8
190

410
73

457
965

118
742

681
874

109

FMS5 (230)

M
ax

24
310

5
961

942
54

621
333

5
961

942
54

621
333

7
685

30
493

35
692

168
462

702
111

4
554

970
28

262
831

4
127

B
A

A
vg

7.3
79.6

790
859

5
389

591
790

859
5

389
591

830
7.6

89.9
8

848
201

79
645

055
89

948
451

848
77

M
ax

28
338

8
310

792
72

673
494

8
310

792
72

673
494

9
582

63
1

037
37

211
496

473
322

666
3

085
939

23
927

298
3

565

TA
A

vg
27.1

365.5
521

260
4
023

469
1

042
519

8
046

939
1

865
26.8

389.6
8

235
551

67
897

061
61

0
9
5

3
38

6
0
7

9
1

M
ax

82
2

256
4

078
242

32
815

605
8

156
484

65
631

210
14

490
123

3
255

34
897

110
295

594
539

1
860

929
14

720
770

3
819

Kanban5 (100)T
G

B
A

A
vg

5.2
48.5

852
364

7
279

249
852

364
7
279

249
909

7.0
71.6

7
126

650
77

809
374

47
984

237
295

33

Kanban5 (100)

M
ax

27
264

6
694

184
70

465
136

6
694

184
70

465
136

8
373

22
292

21
715

730
241

387
835

1
604

560
11

177
672

1
510

B
A

A
vg

6.1
56.3

852
493

7
279

889
852

493
7
279

889
910

8.6
87.6

8
041

841
87

518
994

36
085

194
392

25
M

ax
29

296
6

694
184

70
465

136
6

694
184

70
465

136
8

335
38

472
23

997
065

270
130

066
1

628
283

11
232

778
1

513

TA
A

vg
20.2

227.2
651

299
6
074

858
1

302
598

12
149

717
2

451
29.7

368.3
7

162
575

70
438

470
17

7
6
6

1
41

6
3
0

2
9

M
ax

114
1

858
6

409
984

62
033

608
12

819
968

124
067

216
25

344
134

2
221

17
551

016
175

769
251

1
163

547
10

736
232

2
217

Philo8 (100)T
G

B
A

A
vg

6.1
87.0

219
303

1
232

080
219

303
1
232

080
257

7.3
99.2

637
670

4
950

129
36

161
168

189
37

Philo8 (100)

M
ax

20
338

830
533

6
366

282
830

533
6

366
282

1
172

27
360

1
489

852
16

311
100

634
183

5
245

872
963

B
A

A
vg

7.1
98.5

220
049

1
234

944
220

049
1
234

944
258

9.1
122.0

737
638

5
767

111
29

216
105

082
25

M
ax

21
367

830
533

6
366

282
830

533
6

366
282

1
174

38
604

3
005

819
32

843
222

344
134

1
308

577
317

TA
A

vg
30.9

541.9
148

562
1
029

393
297

124
2

058
786

662
36.6

619.0
636

866
4

677
877

18
9
2
5

89
6
7
0

3
3

M
ax

110
3

123
554

335
3

980
981

1
108

670
7

961
962

2
472

160
3

225
2

491
222

20
365

681
217

114
1

549
281

497

Ring6 (100)T
G

B
A

A
vg

5.4
58

476
612

2
940

953
476

612
2
940

953
564

7.0
90.4

1
702

969
11

452
375

144
848

694
019

136

Ring6 (100)

M
ax

18
236

4
162

012
45

176
784

4
162

012
45

176
784

7
181

20
385

5
172

800
35

474
194

1
172

951
7

407
167

1
401

B
A

A
vg

6.3
65.7

494
077

3
012

946
494

077
3

012
946

582
8.5

109.2
1

865
260

12
543

141
117

181
576

625
110

M
ax

22
326

4
378

216
46

903
064

4
378

216
46

903
064

7
683

25
401

5
211

769
43

250
640

1
323

327
8

460
521

1
584

TA
A

vg
22.6

310.0
379

088
2
163

360
758

175
4

326
721

1
329

33.8
540.6

1
697

686
10

029
775

68
8
0
7

3
66

6
0
0

11
3

M
ax

122
2

382
2

232
820

14
106

432
4

465
640

28
212

864
8

130
141

3
531

4
891

128
28

812
656

946
951

5
415

785
1

726

Table
1:C

om
parison

of
the

three
approaches

on
toy

exam
ples

w
ith

random
form

ulæ
,w

hen
counterexam

ples
do

notexist(left)
or

w
hen

they
do

(right).

Proceedings of CompoNet and SUMo 2011

74



Property
verified

(no
counterexam

ple)
Property

violated
(a

counterexam
ple

exists)
A

utom
aton

Fullproduct
E

m
ptiness

check
A

utom
aton

Fullproduct
E

m
ptiness

check
st.

tr.
st.

tr.
st.

tr.
T

st.
tr.

st.
tr.

st.
tr.

T

FMS5 (37)T
G

B
A

A
vg

3.1
26

5
197

375
43

078
717

5
197

375
43

078
717

6
191

5.4
49.5

9
935

82
8

8
9
55

0
0
59

627
618

3
517

626
559

FMS5 (163)

M
ax

7
104

9
866

094
91

499
667

9
866

094
91

499
667

13
282

12
212

21
413

973
319

212
813

5
865

891
51

379
790

7
313

B
A

A
vg

7.3
58.4

7
325

010
53

471
546

7
325

010
53

471
546

7
708

11.8
112.6

17
297

219
154

876
145

651
799

3
894

388
593

M
ax

35
526

11
338

161
103

816
053

11
338

161
103

816
053

13
394

49
578

64
477

308
784

721
607

17
345

804
148

875
504

21
435

TA
A

vg
36.0

361.1
3
967

433
31

419
765

7
934

866
62

839
531

14
231

60.6
656.7

15
339

186
126

259
786

2
1
6
32

1
1
5
26

8
60

3
64

M
ax

215
3

460
9

002
196

70
152

851
18

004
392

140
305

702
31

515
205

2
985

47
074

692
415

672
995

3
732

706
30

145
223

7
165

Kanban5 (98)T
G

B
A

A
vg

2.7
14.9

2
730

709
23

071
387

2
730

709
23

071
387

2
788

3.5
25

5
484

209
55

893
401

526
015

3
049

738
410

Kanban5 (102)

M
ax

7
56

8
092

182
78

624
126

8
092

182
78

624
126

10
214

10
140

13
900

320
166

038
726

2
895

449
24

460
029

3
005

B
A

A
vg

5.9
31

3
382

871
26

705
745

3
382

871
26

705
745

3
183

7.1
53.2

8
408

110
82

426
568

531
367

3
035

376
415

M
ax

20
150

12
307

085
113

079
575

12
307

085
113

079
575

11
962

30
354

23
144

848
300

434
051

6
104

368
43

693
336

6
384

TA
A

vg
21.0

123.6
1
923

597
17

403
907

3
847

194
34

807
815

6
891

32.8
281.9

6
365

280
61

028
298

1
4
6
61

9
1
2
00

4
63

2
40

M
ax

108
1

364
6

677
524

63
784

672
13

355
048

127
569

344
26

651
187

2
554

18
114

712
190

516
984

1
163

652
10

736
394

2
146

Philo8 (100)T
G

B
A

A
vg

3.0
19.1

191
233

1
072

039
191

233
1
072

039
225

4.1
40.9

388
35

6
2
83

6
79

6
1
1
52

6
22

5
40

8

Philo8 (100)

M
ax

10
72

961
946

8
584

333
961

946
8

584
333

1
581

11
110

1
106

279
10

139
160

148
028

667
632

153

B
A

A
vg

7.2
47.7

226
231

1
219

657
226

231
1

219
657

254
9.5

107.3
925

540
6

664
879

13
374

32
724

1
0

M
ax

24
213

961
946

8
584

333
961

946
8

584
333

1
577

29
459

3
369

900
24

286
322

290
681

1
107

465
265

TA
A

vg
32.3

245.9
141

303
969

063
282

607
1

938
127

615
68.0

839.7
898

752
6

458
513

1
1
21

2
24

6
75

13
M

ax
128

1
746

665
509

5
048

600
1

331
018

10
097

200
3

026
205

3
027

2
280

459
16

828
197

99
824

619
861

200

Ring6 (100)T
G

B
A

A
vg

3.5
21.3

362
296

2
072

837
362

296
2
072

837
413

3.7
37.3

903
90

9
5
51

8
05

2
2
7
11

4
1
05

1
30

23

Ring6 (100)

M
ax

10
98

2
116

458
13

877
156

2
116

458
13

877
156

2
531

12
109

2
573

186
16

268
868

831
566

4
479

900
929

B
A

A
vg

7.2
44.9

436
729

2
370

915
436

729
2

370
915

476
8.6

92.8
2

112
826

12
623

603
39

004
168

105
35

M
ax

22
240

2
868

218
17

192
038

2
868

218
17

192
038

3
168

37
528

6
641

645
42

624
886

1
123

128
5

300
114

1
145

TA
A

vg
30.3

220.1
329

599
1
831

831
659

198
3

663
661

1
121

61.6
732.3

2
166

241
12

573
562

2
7
64

5
1
41

5
49

44
M

ax
154

2
020

1
658

112
9

402
736

3
316

224
18

805
472

5
629

237
3

456
5

113
422

30
167

566
793

363
4

498
438

1
408

Table
2:C

om
parison

of
the

three
approaches

on
toy

exam
ples

w
ith

w
eak-fairness

form
ulæ

,w
hen

counterexam
ples

do
notexist(left)

or
w

hen
they

do
(right).

Proceedings of CompoNet and SUMo 2011

75



A
utom

aton
Fullproduct

E
m

ptiness
check

A
utom

aton
Fullproduct

E
m

ptiness
check

st.
tr.

st.
tr.

st.
tr.

T
st.

tr.
st.

tr.
st.

tr.
T

MAPK 8
RND (100)T

G
B

A
A

vg
4.4

40.7
539

552
6

674
103

539
552

6
674

103
887

5.2
52.5

13
077

352
168

677
550

41
840

182
026

33

RND (100)

M
ax

14
191

15
567

779
261

545
658

15
567

779
261

545
658

31
855

16
256

28
096

430
392

571
703

2
245

468
13

298
596

2
249

B
A

A
vg

5.2
47.4

539
557

6
674

123
539

557
6
674

123
885

6.0
59.2

14
328

287
186

237
286

49
451

258
493

43
M

ax
19

227
15

567
780

261
545

660
15

567
780

261
545

660
31

558
19

304
50

416
848

723
868

664
1

880
880

13
168

794
2

059

TA
A

vg
16.8

192.1
471

923
5
943

950
943

846
11

887
899

2
623

19.4
263.6

13
631

076
176

047
549

2
6
69

8
15

8
68

6
41

M
ax

90
2

148
12

969
362

172
035

602
25

938
724

344
071

204
73

136
61

1
606

37
259

478
491

488
765

1
126

525
12

146
182

2
855

WFair (100)T
G

B
A

A
vg

2.7
20.3

1
536

626
16

368
553

1
536

626
16

368
553

2
330

3.6
29.4

8
18

7
969

105
69

8
15

1
79

943
663

821
96

WFair (100)

M
ax

9
116

11
888

331
160

777
864

11
888

331
160

777
864

21
133

10
102

29
833

996
474

629
285

5
845

125
56

616
219

7
964

B
A

A
vg

6.8
55.8

1
948

686
18

950
258

1
948

686
18

950
258

2
731

7.8
67.7

20
075

109
258

176
409

20
787

92
900

15
M

ax
29

234
18

595
927

201
692

352
18

595
927

201
692

352
29

129
29

379
63

544
808

777
667

365
435

162
2

407
814

391

TA
A

vg
37.9

360.8
1
193

177
14

474
879

2
386

354
28

949
758

6
473

47.5
462.0

18
994

457
243

894
317

1
2
90

6
8
3
09

9
19

M
ax

151
2

068
10

842
174

134
517

672
21

684
348

269
035

344
60

556
205

2
765

49
024

627
623

237
293

607
938

6
462

486
1

350

Φ1 T
G

B
A

–
6

165
46

494
302

350
46

494
302

350
40

B
A

–
6

165
46

494
302

350
46

494
302

350
37

TA
–

38
1

245
33

376
289

235
66

752
578

470
121

PolyORB 3/3/2
RND (100)T

G
B

A
A

vg
7.0

98.1
63

442
163

279
63

442
163

279
303

6.2
97.2

95
338

234
746

4
9
02

6
11

3
88

9
2
32

RND (100)

M
ax

22
378

185
103

528
174

185
103

528
174

888
36

832
400

890
1

518
043

114
641

339
747

540

B
A

A
vg

8.4
114.6

64
662

165
861

64
662

165
861

309
7.6

120.3
101

418
251

469
4
9
65

0
11

5
62

1
2
35

M
ax

38
550

218
541

608
274

218
541

608
274

1
045

54
1

240
558

927
1

950
778

114
641

339
810

540

TA
A

vg
28.7

492
59

497
127

607
118

994
255

214
598

33.6
646.2

105
717

228
225

52
554

116
077

264
M

ax
71

2
264

184
974

396
105

369
948

792
210

1
863

164
3

600
319

171
725

255
193

931
436

562
990

WFair (100)T
G

B
A

A
vg

4.1
40.6

58
539

132
985

58
539

132
985

278
3.4

34.4
67

654
1
4
5
39

4
5
5
16

0
12

0
79

6
2
62

WFair (100)

M
ax

9
128

122
817

373
584

122
817

373
584

582
8

136
152

049
351

735
116

340
274

221
552

B
A

A
vg

9.6
103.9

88
845

197
798

88
845

197
798

420
7.9

84.3
146

686
316

641
100

382
221

237
474

M
ax

38
612

243
637

522
549

243
637

522
549

1
145

29
379

283
274

615
449

191
284

443
762

909

TA
A

vg
65.1

771.1
92

749
198

283
185

498
396

567
933

57.9
681

168
325

361
321

105
868

232
165

533
M

ax
244

4
132

288
852

618
696

577
704

1
237

392
2

927
205

2
765

348
705

752
969

199
777

442
369

1
017

Φ2 T
G

B
A

–
7

576
345

241
760

491
345

241
760

491
1
642

B
A

–
7

576
345

241
760

491
345

241
760

491
1
646

TA
–

79
14

526
342

613
742

815
685

226
1

485
630

3
532

Table
3:C

om
parison

ofthe
three

approaches
forthe

case
studies

w
hen

counterexam
ples

do
notexist(left)orw

hen
they

do
(right).

Proceedings of CompoNet and SUMo 2011

76



4 Discussion

Although the state space of cases studies can be very different from random state
spaces [17], a first look at our results confirms two facts already observed by Gelden-
huys and Hansen using random state spaces [8]: (1) although the TA constructed from
properties are usually a lot larger than BA, the average size of the full product is smaller
thanks to the more deterministic nature of the TA. (2) For violated properties, the TA
approach explores less states and transitions on the average than the BA.

We complete this picture by showing run times, by separating verified properties
from violated properties, and by also evaluating the TGBA approach.

On verified properties, the results are very straightforward to interpret: the BA are
slightly worse than the TGBA because they have to be degeneralized. In fact, the av-
erage number of acceptance conditions needed in random formulæ (Table 1 and 3) is
so close to 1 that the degeneralization barely changes the sizes of the automata. With
weak-fairness formulæ (Table 2 and 3), the number of acceptance conditions is greater,
so TGBA are favored over BA. Surprisingly, both TGBA and BA, although they are
not tailored to stuttering-insensitive properties like TA, appear more effective to prove
that a stuttering-insensitive property is verified. In the three tables, although the full
product of the TA approach is smaller than the other approaches, it has to be explored
twice (as explained in section 2.3): the emptiness-check consequently explores more
states and transitions. This double exploration is not enough to explain the big runtime
differences. Two other subtler implementation details contribute to the time difference:

– To synchronize a transition of a Kripke structure with a transition (or a state in
case of stuttering) of a TA, we must compute the symmetric difference l(s)⊕ l(d)
between the labels of the source and destination states. The same synchronization
in the TGBA and BA approaches requires to know only the source label.
Computing these labels is a costly operation in CheckPN because Petri net marking
are compressed in memory to save space. Although we implemented some (limited)
caching to alleviate the number of such label computation, profiling measures re-
vealed the TA approach was 3 times slower than the TGBA and BA approaches,
but that labels where computed 9 times more.

– A second implementation difference, this time in favor of the TA approach, is that
transitions of testing automata are labeled by elements of K, while transitions of
TGBA and BA are labeled by elements of 2K . That means that once l(s)⊕ l(d) ∈ K
has been computed, we can use a hash table to immediately find matching transi-
tions of the testing automaton. In the TGBA and BA implementations, we linearly
scan the list of transitions of the property automaton until we find one compatible
with l(s). The BA and TGBA approaches could be improved by replacing each
transition labeled by an element of 2K by many transitions labeled by an elements
of K, and then using a hash table, but we have not implemented it yet.
In an implementation where computing labels is cheap, the run time should be pro-

portional to the number of transitions explored by the emptiness check, so it is important
not to consider only the run time provided by our experiments.

On violated properties, it is harder to interpret these tables because the emptiness
check will return as soon as it finds a counterexample. Changing the order in which

Proceedings of CompoNet and SUMo 2011

77



non-deterministic transitions of the property automaton are iterated is enough to change
the number of states and transitions to be explored before a counterexample is found: in
the best case the transition order will lead the emptiness check straight to an accepting
cycle; in the worst case, the algorithm will explore the whole product until it finally finds
an accepting cycle. Although the emptiness check algorithms for the three approaches
share the same routines to explore the automaton, they are all applied to different kinds
of property automata, and thus provide different transition orders.

This ordering luckiness explains why the BA approach sometimes outperforms the
TGBA approach: one very bad case is enough to bias the average case. For instance this
occurred on the Philo8 model with random formulæ: the worst TGBA case explored 4
times more transitions than the BA case, although the full product was twice smaller.

We believe that the TA, since they are more deterministic, are less sensible to this
ordering. They also explore a smaller state space on the average. This smaller explo-
ration is not always tied a good runtime because of the extra computation of labels
discussed previously. Again, looking at the average number of transition explored by
the emptiness check indicates that the TA approach would outperform the others if the
computation of labels was cheap.

Finally in all of our experiments the TA approach has always found the counterex-
ample in the first pass of the emptiness check algorithm. This supports Geldenhuys
and Hansen’s claim that the second pass was seldom needed for debugging (less than
0.005% of the cases in their experiments [8]).

5 Conclusion

Geldenhuys and Hansen have evaluated the performance of the BA and TA approaches
with small random Kripke structures checked against LTL formulæ taken from the lit-
erature [8]. In this work, we have completed their experiments by using actual models
and different kinds of formulæ (random formulæ not trivially verifiable, random for-
mulæ expressing weak-fairness formulæ, and a couple of real formulæ), by evaluating
the TGBA approach, and by distinguishing violated formulæ and verified formulæ in
the benchmark.

For verified formulæ, we found that the state space reduction achieved by the TA
approach was not enough to compensate for the two-pass emptiness check this approach
requires. It is therefore better to use the TGBA approach to prove that a stuttering-
insensitive formula is verified and TA approach in an earlier “debugging phase”.

When the formulæ are violated, the TA approach usually processes less transitions
than the BA approach and TGBA to find a counterexample. This approach should there-
fore be a valuable help to debug models (i.e. when counterexamples are expected). This
is especially true on random formulæ. With weak-fairness formulæ, generalized au-
tomata are advantaged and are able to beat the TA on the average in 3 of our 6 examples
(Philo8, Ring6, PolyORB 3/2/2).
Future work We plan to combine the ideas of TA and TGBA approaches. We believe
it would be interesting to have testing automata with transition-based generalized ac-
ceptance conditions. We think the LTL translation algorithm we use to produce TGBAs
could be adjusted to product such automata directly.

Proceedings of CompoNet and SUMo 2011

78



References
1. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient symbolic state-space construction for

asynchronous systems. In Proc. of ICATPN’00, vol. 1825 of LNCS, pp. 103–122. Springer.
2. J. Cichoń, A. Czubak, and A. Jasiński. Minimal Büchi automata for certain classes of LTL

formulas. In Proc. of DEPCOS’09, pp. 17–24. IEEE Computer Society.
3. J.-M. Couvreur. On-the-fly verification of temporal logic. In Proc. of FM’99, vol. 1708 of

LNCS, pp. 253–271. Springer.
4. J.-M. Couvreur. Un point de vue symbolique sur la logique temporelle linéaire. In Actes

du Colloque LaCIM 2000, vol. 27 of Publications du LaCIM, pp. 131–140. Université du
Québec à Montréal, Aug. 2000.

5. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks for general-
ized Büchi automata. In Proc. of SPIN’05, vol. 3639 of LNCS, pp. 143–158. Springer.

6. J. Dallien and W. MacCaull. Automated recognition of stutter-invariant LTL formulas. At-
lantic Electronic Journal of Mathematics, (1):56–74, 2006.

7. A. Duret-Lutz and D. Poitrenaud. SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In Proc. of MASCOTS’04, pp. 76–83. IEEE
Computer Society Press.

8. J. Geldenhuys and H. Hansen. Larger automata and less work for LTL model checking. In
Proc. of SPIN’06, vol. 3925 of LNCS, pp. 53–70. Springer.

9. J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verification more
efficient. In Proc. of TACAS’04, vol. 2988 of LNCS, pp. 205–219. Springer.

10. D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulæ to Büchi automata. In Proc. of FORTE’02, vol. 2529 of LNCS, pp. 308–326.

11. H. Hansen, W. Penczek, and A. Valmari. Stuttering-insensitive automata for on-the-fly de-
tection of livelock properties. In Proc. of FMICS’02, vol. 66(2) of Electronic Notes in Theo-
retical Computer Science. Elsevier.

12. M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and synthetic biology. In
Proc. of SFM’08, vol. 5016 of LNCS, pp. 215–264. Springer.

13. J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Barrir, and T. Vergnaud. On the for-
mal verification of middleware behavioral properties. In Proc. of FMICS’04, vol. 133 of
Electronic Notes in Theoretical Computer Science, pp. 139–157. Elsevier.

14. C. Löding. Efficient minimization of deterministic weak ω-automata. Information Process-
ing Letters, 79(3):105–109, 2001.

15. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer
Science, 32:321–330, 1984.

16. MoVe/LRDE. The Spot home page: http://spot.lip6.fr, 2011.
17. R. Pelánek. Properties of state spaces and their applications. International Journal on Soft-

ware Tools for Technology Transfer (STTT), 10(5):443–454, 2008.
18. I. Pyarali, M. Spivak, R. Cytron, and D. C. Schmidt. Evaluating and optimizing thread pool

strategies for RT-CORBA. In Proc. of LCTES’00, pp. 214–222. ACM.
19. K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking. In Proc. of SPIN’07, vol. 4595 of

LNCS, pp. 149–167. Springer.
20. S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In Proc. of

TACAS’05, vol. 3440 of LNCS. Springer.
21. R. Sebastiani and S. Tonetta. "more deterministic" vs. "smaller" Büchi automata for efficient

LTL model checking. In Proc. of CHARME’03, vol. 2860 of LNCS, pp. 126–140. Springer.
22. H. Tauriainen. Automata and Linear Temporal Logic: Translation with Transition-based

Acceptance. PhD thesis, Helsinki University of Technology, Espoo, Finland, Sept. 2006.
23. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of Banff’94,

vol. 1043 of LNCS, pp. 238–266. Springer.

Proceedings of CompoNet and SUMo 2011

79



Proceedings of CompoNet and SUMo 2011

80


	07-sumo-2



