Towards Dependable Number Entry for Medical Devices

Abigail Cauchi! Paul Curzon? Parisa Eslambolchilar! Andy Gimblett:]
Huayi Huang2 Paul Lee? Yungiu Li! Paolo Masci? Patrick Oladimeji]
Rimvydas RukSénas? Harold Thimbleby?

(1) Swansea University, (2) Queen Mary University of London, (3) Singleton Hospital, Swansea

CHI-MED: Computer-Human Interaction for Medical Devices
www.chi-med.ac.uk

ABSTRACT

Number entry is an ubiquitous task in medical devices,
but is implemented in many different ways, from deci-
mal keypads to seemingly simple up/down buttons. Op-
erator manuals often do not give clear and complete ex-
planations, and all approaches have subtle variations,
with details varying from device to device. This paper
explores the design issues, critiques designs, and shows
that methods have advantages and disadvantages, par-
ticularly in terms of undetected error rates.

Author Keywords

Medical devices; modelling; formal methods; HCI; health-

care; number entry

Note. This is a working paper that we will develop
further through interactive workshop participation. We
will engage additional authors as necessary for contin-
ued work to progress towards a high-quality journal pa-
per fully covering the relationship of all relevant medi-
cal, manufacturing and computing factors. It is an im-
portant topic that we want to get right.

1. INTRODUCTION

There are many applications where numbers have to
be entered into computer systems, from setting alarm
clocks to programming infusion pumps. In most appli-
cations the consequences of mistakes are limited, but in
many cases—in particular with medical devices—they
are potentially critical. Mistakes in entering numbers

*Corresponding author.

’

Copyright © 2011 for the individual papers by the papers
authors. Copying permitted only for private and academic
purposes. This volume is published and copyrighted by
the editors of EICS4Med 2011.

53

into infusion and syringe pumps could lead to incorrect
doses being delivered, causing harm.

There are several inter-related properties of importance
in a safety-critical number entry system: efficiency in
entering numbers, the likelihood that errors are made
and the efficiency of recovery from error [1]. In a hos-
pital it is vital that nurses can use pumps efficiently as
they are very busy and multitasking is the norm. Ob-
servational studies have suggested that nurses may fre-
quently make minor mistakes in entering numbers, for
example not following the ‘golden path’ that is the most
efficient way of entering a particular number, but that
these errors are caught and corrected. Thus it might
be argued that number entry is not a particularly se-
vere safety critical problem; however, efficiency remains
an important concern in a busy ward. Therefore a de-
vice where such mistakes do not need to be constantly
corrected or where the golden path is most often the
one naturally followed would provide significant bene-
fit, given the number of times such devices need to be
set. Furthermore, work in resilience engineering sug-
gests that single mistakes rarely lead to disasters. It
is when a range of different causes combine. If a large
number of trivial and normally unproblematic errors are
being made then this increases the potential for other
rarer causes to interact with them and lead to a critical
incident—as in Reason’s “swiss cheese model” [5].

If a patient is given an incorrect drug dose, perhaps
ten times higher than intended, the patient may die or
have some other adverse outcome. It is therefore cru-
cial that number entry is dependable, that there are no
design defects, no mismatches between user conceptual
models and device behaviour, and that users can (so far
as reasonably possible) detect and correct their errors.
This paper shows that this problem is more intricate
than might appear at first sight, that many medical de-
vices and their operator manuals fall short, and that
better solutions are possible.

Our goal is to identify a set of properties that pro-
grammers of medical devices should implement—or if
we cannot do that, to recommend a set of key prop-
erties to consider before implementation—to minimize
error rates, specifically for number entry. It is not obvi-
ous how to do this, as it involves a variety of tradeoffs,
and thus we propose a debate within the EICS4Med
workshop to explore the issues. We bring to the de-
bate prepared material and a variety of demonstration
resources to explore ideas. In this paper we highlight
the issues involved to promote that debate.

1.1 Typographic conventions

We render arrow keys pressed by users as: («)(»)(a)(¥).
We represent number displays with a box around each
visible digit, some of which might be empty. For ex-
ample, I - I shows a six-digit display with
two decimal places, showing the number 209.4, with the
cursor in the tens column; if the display were reduced to

only one decimal place, we’d write it as [o I

2. PRIOR WORK

There is much prior work on user interface design prin-
ciples in general, such as Nielsen’s Usability Engineer-
ing [4], but they are very vague for programmers. For
example, undo (which Nielsen recommends) can be im-
plemented in many ways.

Work on human computer interaction specifically linked
to number entry is varied and little has been applied
specifically in the medical domain.

For example, Hourizi and Johnson [2] consider a number
entry error that resulted from a mode error, and which
led to the crash of an A320 airliner with loss of life.
They argue that this should not be seen as a perception
or knowledge error, but rather as due to an inadequate
communication protocol between pilot and autopilot; a
variation on the design based on this hypothesis was
found to eliminate the error in simple user tests.

Brumby et al. [1] investigated trade-offs between effi-
ciency of entering mobile phone numbers vs avoiding er-
rors in driving. Their analysis suggests that interleaving
number entry at chunk boundaries efficiently trades the
time given up to dialling with that of ensuring enough
attention is paid to driving to avoid drifting.

It is well known that device design can encourage cer-
tain number entry errors in medicine. For example
Zhang et al [7] report an incident where a nurse in-
tending to program a pump at 130.1ml/h inadvertently
programmed the pump at 1301ml/h — a rate 10 times
larger than the intended rate. Unknown to the nurse,
the decimal point on the interface of the pump only
works for numbers up to 99.9.

Thimbleby and Cairns [6] show that out by 10 errors
in number entry systems, like the one described above,
can be halved with better interaction design focussing

54

Figure 1. Screenshot of interactive Alaris GP simulation

on error management .

3. EXAMPLE DEVICES

We have investigated and simulated a number of med-
ical devices in order to explore their behaviour and re-
lated HCI issues; in this section we introduce the two
particular devices, both infusion pumps, whose num-
ber entry behaviour is both typical and interesting, and
around which the rest of this paper is built.

The Alaris GP infusion pump (figure 1) exemplifies a
number entry interface style found on a variety of sy-
ringe and infusion pumps: two pairs of buttons change
the displayed value; one pair increases the value, the
other decreases it. In each pair, one of the buttons
causes a bigger change than the other. Each button
can also be held down to increase the rate of change of
the number on the screen.

The B.Braun Infusomat Space pump (figure 2) has three
distinct number entry systems used for different tasks,
all based around a set of («)(»)(a)(¥) buttons; it exhibits
a number of interesting behaviours. It is a good exam-
ple of the way in which number entry is widely perceived
as unproblematic and trivial, while in fact harbouring
potential for surprises and difficult. Its user manual
has very little to say on the topic: “When editing pa-
rameters, switch digits/levels using («J(»). White back-
ground indicates current digit/level. Use (&) or (¥] to
change current setting.” Elsewhere in the manual, the
arrows are described as: “Arrow up and down: Scroll
though menus, change setting of numbers from 0-9, an-
swer Yes/No questions. Arrow left and right: Select
data from a scale and switch between digits when num-
bers are entered. Open a function while pump is run-
ning or stopped with the left arrow key.”

This description is inadequate; for example, it suggests

[a] Modli\

VTBI _ _10f |

Bl Undo

2D
®E

Figure 2. Screenshot of interactive B.Braun simulation

that if the display is == - B (say) and (4] is
pressed, then the display will become |y . =
In fact, it becomes | o MM, i.e. an arithmetic

operation was performed (9 + 1)

More concerningly, if the display is [— NI and
(v) is pressed, it becomes H DD The arith-
metic operation performed in this case was 10 - 100
= -10, which result was then clamped to a minimum
value, 0.1. It is easy to imagine scenarios in which this
behaviour leads to an underdose, perhaps harmfully.
The pump has similarly surprising and inconsistent be-
haviour around the maximum value. These issues are
described further in the next section.

For a new user, the infusion pump is likely to behave un-
predictably, though we do not know what implications
this unpredictability has on safety in medical scenarios.
The lack of symmetry between minimum and maximum
behaviour might have an impact on usability, as do the
arithmetic operations, particularly when subtracting a
value which results in a number less than 0.

4. RESOURCES FOR DEBATE
In order to support debate around these issues, we will
bring a range of resources to the workshop.

Simulations — We have implemented a variety of user
interfaces for entering numbers, closely based on real in-
fusion pumps, specifically those described above. These
simulations allow detailed exploration of the properties
of the devices’ number entry systems, and comparisons
between different designs—there are many possible vari-
ations to experiment with, as described in more detail
in the next section. In particular, several variants of the
B.Braun Infusomat Space VI'BI number entry interface
have been implemented.

Workshop annotation mechanism — We also in-
troduce the concept of state annotation as a research
tool to enhance collaborative critique of an interactive
system. Members of this session will be able to add
annotations to any states in the interactive simulations
to identify or mark issues regarding the usability, safety
or design of the system being evaluated. Annotations
will be automatically saved with information about the
current state of the system as well as the user interac-
tions that led to that state starting from power up, and
are automatically shared among all clients connected to
the simulation.

55

Number entry techniques

Serial entry

?

Incremental entry

Decade Arithmetic

Figure 3. Number entry—basic classification

Commercial simulations — We have some commer-
cial simulations, intended for hospital training purposes,
including for versions C and D of the B.Braun; our phys-
ical pump is version E. The simulation diverges from
observed behaviour (at least) in that it does not clamp
to a minimum value as described above, but rather to
0. This suggests that the defaulting minimum value is
introduced in version E.

Physical devices and manuals — Finally we will
bring some real physical devices together with their op-
erator manuals for comparison with our and the com-
mercial simulations.

5. A TAXONOMY FOR NUMBER ENTRY

In order to support discussion in the workshop, in this
section we propose an initial ‘taxonomy’ of features and
behaviours of number entry interfaces, particularly con-
sidering some of the behaviours described above. We
hope that further debate will refine and augment this
list. As we describe the taxonomy we make some obser-
vations and speculations about relevance to usability,
simplicity of conceptual models, etc. but our main pur-
pose in this paper is to ask questions and so promote
discussion, not provide answers specifically — most of
this space remains intellectually unexplored.

At the top level, we distinguish between serial and incre-
mental entry. Serial entry involves entering the number
as a string, usually via a numeric keypad; consider en-
tering a number into a desktop calculator, for example.
Conversely, incremental entry involves making a series
of incremental changes to some displayed value in order
to obtain the desired value — often but not necessar-
ily on a digit-by-digit basis. As incremental entry can
be implemented using just a few keys, typically (a] ()
(«) (»), which may already be present for navigational
purposes, it is a common style on the kinds of medi-
cal devices we are interested in. As such, and as it is
used by each of our example devices, we concentrate
on issues surrounding this style, though serial entry is
still interesting and appropriate further exploration, are
questions as to which style is preferable in general and
in particular situations, and why.

Focusing on incremental number entry, we identify three
major aspects of interest: basic behaviour (decade vs
arithmetic, see figure 3); behaviour at minimum and
maximum values (see figure 4); and digit visibility.

First we consider basic behaviour, which may be decade

or arithmetic style. In decade style, each digit is edited
independently, and typically subject to wraparound at

0 and 9. For example, given a display of i - B
if the user hits (a), the new value is [o[BI —the
9 increased by 1, modulo 10, wrapping round to 0, and
all other digits are unaffected. In this style the number
really must be dialled in one digit at a time.

In arithmetic style, user actions cause arithmetic modi-
fications to the value displayed: add 1, subtract 10, etc.
On the Alaris GP there are dedicated up/down buttons
of differing magnitude; on the B.Braun (<) and (»] nav-
igate between digits and (a) and (¥) modify values. Re-
peating the previous example in arithmetic style leads
to a display of 1 o JEIIMIE with the increment in the
tens column being ‘carried’ to the hundreds. It is un-
clear if or when this would be preferable to users, though
one can imagine that for fine adjustments around some
value it is easier and would involve less («}/(») actions.

Either of these ‘starting points’ may be implemented
using little code, and with very simple logic. (See our
example simulations.) They each provide a clear con-
ceptual model of the interface which users ought to be
able to fathom completely with very little experimenta-
tion. Edge cases are often where problems arise; thus,
what happens around the maximum and minimum val-
ues? There are a number of subtleties, not immediately
obvious. First: what are the maximum and minimum
values? Either might be a function of what we can
fit in the display (which might change over time —
see below), or some semantically-relevant value. The
minimum could be the negative of the maximum, or
(more often) zero, or something else. For VTBI en-
try on the B.Braun, the minimum is either 1 or 0.1
depending on digit visibility (see below), and can only
be zeroed by an exact operation. Thus, for example,

o I followed by (v) leads to [o EIIENM (‘min-
imum’ value), whereas [Jj JHIN followed by (v] leads
to [l o JHI (true zero). This leads to some strange
behaviour and a messy conceptual model, and we are
presently unable to imagine any user-driven motivation
for implementing this feature, though we note that 0 is
not an allowed value for VTBI (the button doesn’t
work when the display is 0).

Assuming we know what the maximum and minimum
ought to be, how should a device behave at those val-
ues? For the decade interface this issue can be ignored:
the interface ‘wraps round’ naturally; one could in fact
apply the following strategies in that context instead,
but doing so breaks the conceptual model badly.

Arithmetic entry can also wrap round between min/max
values, but now we are wrapping on the total value,
not individual digits. Consider i o Il on a display
with boundaries at 0 and 9999, followed by (v); this

subtracts 100, taking us to [o). Then (4) un-
does this, adding 100 with wraparound, returning to

56

Minimum /maximum value handling

Wraparound Clamped

Absolute Stateful Invertible

Figure 4. Number entry—boundary value handling

[o). This retains a clean conceptual model, but
with the danger of allowing large numbers to be easily

entered accidentally: a single (v] takes us from an ini-

tial (and safe) N | to I o [—though at least

this is easy to undo.

More commonly, arithmetic interfaces restrict (‘clamp’)
numbers to the boundaries. Here, we identify three
approaches, which we call absolute clamping, stateful
clamping, and invertible—see figure 4.

In absolute clamping, an attempt to move the value be-
yond a limit stops at the limit. E.g., then (a)
leads to 1 o JEEY; similarly, [o JENIEIEEY then (v) leads
to[o I This is a fairly natural behaviour, easy to
program and conceptually clear once discovered; how-
ever, as it throws information away it could be annoying
to users. In the face of annoyed users, a natural exten-
sion is stateful clamping where some state is introduced
allowing accidental clamping operations to be undone.

Here 1 o I then (a) gives 1 o JEIE but an imme-

date (v] restores | oM (without state, we would

get I < EIE)); anything other than (v] throws away
the state and disallows the undo. This is how VTBI

entry on the B.Braun operates, for example.

In decade style (a) and (¥) are inverses of each other,
and it’s always possible to undo the last change easily.
This is lost with absolute clamping, even with state,
e.g. [IE then (a) (a) (v] (v) gives K1 - JENEA ot
B - @ An extension which seeks to fix this without
introducing wraparound is to make all successful oper-
ations invertible. Here, if an operation would take the
value beyond its maximum or minimum, it doesn’t hap-
pen, and this is indicated to the user via a beep (say).
Now B o Il then (4] leaves the value unchanged, but
the user is alerted that this is the case. The more gen-
eral rule is: any operation that does not have an inverse
has no effect other than a warning such as a beep; now
the user knows, if they hear a beep, the normal inverse
behaviour doesn’t apply; otherwise, they know without
looking that they can undo the last operation.

The third general area of interest we identify is that
of digit visibility, around which there are several re-
lated issues. First, consider a decade-style system im-
plemented in hardware — a physical device with one

Y

_3 900 1

A

4

> Q<

Figure 5. An improved number entry interface in action.

wheel per digit: spinning the wheel naturally wraps
around modulo 10 (indeed, we obtain the name ‘decade
system’ from such devices, which have one wheel per
decade to be entered). On such a system, every digit is
always visible, which can lead to confusion: for exam-

BEEEEE. We are aware of two strategies for mit-
igating this: blanking leading/trailing zeros, and hiding
digits entirely. The first strategy is obvious: only show
significant digits. There are (at least) two questions
to ask: what to display for blank (a space? an un-
derscore?) and whether to ‘follow the cursor’ filling in
zeros prospectively (e.g. do you display [o I or
Il EY’); the cognitive implications of either choice
remain uninvestigated. On some systems we also see
use of a second strategy, where digits are shown /hidden
depending on the magnitude of the value being en-
tered, usually on grounds of semantic relevance. For
example and in particular, for VIBI mL entry, the
B.Braun hides the hundredths and then tenths digits
if the hundreds and thousands digits (respectively) are
non-blank (including while ‘following the cursor’ as de-
scribed above.) Similarly, ten-thousands is only shown
if tenths is hidden. This is semantically sensible, but
slightly disorienting to the user as the display is always
right-aligned, so sometimes one digit disappears, an-
other disappears, and the whole thing shifts to the right.
Related to this: is the decimal point visible if no frac-
tional digits are filled in? Canada’s Institute for Safe
Medication Practices (ISMP) says it should not be —
and also mandates reducing the size of fractional digits,
to more clearly distinguish 5.0 from 50 (say); changing
colour may also be a worthwhile tactic here [3]. On the
B.Braun, the decimal point is visible while the tenths
column is visible, whether it is empty or not.

We’ve identified a large design space for the apparently
simple question of incremental number entry; the task
remains to identify the trade-offs each of these choices
involves, and how they affect the conceptual mappings
users build between their actions and their effects.

6. A SAMPLE BETTER INTERFACE?
Figure 5 shows a working mock-up of a potentially bet-

ter user interface, to be operated by (<) (»])(a) (] keys
as on the B.Braun. It has several interesting features:

e The cursor (shown on the right-most digit position)
and the decimal point are highly salient.

e Digits to the right of the decimal point are high-
lighted and smaller. The decimal point remains but
is dimmed when the decimal digits are zero.

57

e Following good practice, leading and trailing zeroes
are suppressed (shown as). However, they behave

exactly like Jff in how they are controlled by (a)(¥).

e The number has upper and lower bounds (for the
5-digit example shown below, the bounds must be
within 0 to 999.99).

e There is no hidden state. The behaviour of the inter-
face is predictable from the display alone.

e Sometimes keys cannot work: as shown the (») cannot
move the cursor further right; or if the display showed
BEREBEEEE no digit could be incremented; and so
on. Whenever a key is pressed that cannot do any-
thing, the interface beeps and otherwise does nothing.
(Thus adding 1 to 999.00 does not increase it to the
maximum value 999.99.)

e Always, a key beeps or its effect can be cancelled by
pressing the opposite key: thus always («](») and the
other 3 pairs do nothing unless the first key pressed
causes a beep, in which case the second key behaves
normally.

e The rule above can be followed with the arithmetic
style of interaction or with decade style. We prefer
the arithmetic style, since after pressing (a) or (v] the
number is always changed by +10™ or 0 if the key
beeps. With the decade style, there can be a beep
(if the number would hit a limit) or the number may
change either by £10™ (most often) or at most +9x10"
(about 1 in 10 times); this behaviour is much less
predictable.

e Hence, (a)(v) work on arithmetic; that is, they al-
ways add £10™ to the displayed number (n depend-
ing solely on the cursor position), or they beep (and
otherwise do nothing) if +10™ would have resulted in
overflow.

e The design generalises readily, for instance to times
by using different bases for each digit (i.e., base 10,
10, 6, 10 respectively, with an upper bound of 2359).

e If the application requires a movable decimal point,

then (») pressed when the cursor is in the right-most
column and the left-most digit is [# then the decimal

point will move left (and conversely for («]). This
behaviour ensures no significant figures are ever lost
and that the decimal point is always shown within the
display. Again, the precision is limited by bounds and
if the decimal point cannot move, then the key beeps.

Starting with the example on the left in figure 5: press-
ing (»] (beeps and otherwise does nothing) then (v) (<]

(<) (a) obtains the view on the left in figure 5. Notice
number carry, moved cursor and changed decimal point
style.

7. DISCUSSION AND FUTURE WORK

Our aim here is to start debate and exploration of these
issues; future work is to continue that systematically.
Here we identify some key challenges and opportunities.

A problem with work of this sort is that seemingly sen-
sible design properties have unexpected impacts on how
users behave. Therefore the workshop must help iden-
tify issues for empirically-based research. Consider, for
example, the ‘undo’ design heuristic recommended by
Nielsen [4]. How might we arrive at a more detailed
set of properties for programmers of medical devices?
Let us suppose we start by asking the following two re-
search questions: 1) Is the ‘undo’ heuristic a significant
affector for both serial and incremental number entry
in terms of error rates? 2) Are error rates on systems in
the same ‘class’ effected in similar ways by the level of
undo offered? Formally-guided experimental investiga-
tion could help answer these questions. To avoid empir-
ical experimentation on every possible variant of num-
ber entry, we might identify a set of distinct ‘centroid-
cases’ (specific variants representative of some ‘cluster’
of similar variants), by preliminary exploration via a
formal model of human-device interaction; this process
could also produce a suitable feature-set for classify-
ing different kinds of number entry system, formalising
and completing the taxonomy suggested above. The re-
sults from experimental investigation following the for-
mal modelling step would give a more precise descrip-
tion of the trends seen for these determining features of
keypads with respect to ‘undo’ and error-rate.

The question of how users’ mental models of number en-
try systems develop and relate to the developers’ models
and the code they write, is of particular interest. We
propose that users of medical devices largely develop
their mental models of device behaviour through inter-
action with the devices themselves, and by existing con-
ventions; how can devices be designed to optimise this
learning process, guiding users to the ‘golden path’?

This paper has mainly described incremental interfaces;
serial entry of course also needs to be explored. The re-
lated task of time entry is also critical and worthy of
attention. For example, in the B.Braun most of the in-
terface principles of the VIBI and Rate number entry
interface are found in the time entry interface: pre-set
maximums and minimums, jumping to the minimum if
the edited number is less than the minimum, for exam-
ple. Interestingly, if the VI BI is set to 99999 and we try
to set the time, when we press (a) on any position the
time jumps up to 83:20; we remain unable to explain
this behaviour.

58

8. CONCLUSIONS

Interactive number entry is deceptively complex, and
particularly for dependable applications — medicine and
healthcare — must be done well on the basis of a thor-
ough analysis of requirements. This paper has therefore
explored the related design issues and principles, and
through case studies and analysis, developed potentially
more dependable approaches. Ideally after appropri-
ate empirical testing (particularly in real environments)
and iterative design, this work will lead to a definitive
approach for dependable number entry.

9. ACKNOWLEDGMENTS

Funded as part of the CHI+MED: Multidisciplinary
Computer-Human Interaction research for the design
and safe use of interactive medical devices project, EP-
SRC Grant Number EP/G059063/1 and Formally-based
tools for user interface analysis and design, EPSRC
Grant Number EP/F020031/1.

10. REFERENCES

1. D. P. Brumby, D. D. Salvucci, and A. Howes. Focus
on driving: how cognitive constraints shape the
adaptation of strategy when dialing while driving.
In Proceedings of the 27th international conference
on Human factors in computing systems, CHI ’09,
pages 1629-1638, New York, NY, USA, 2009. ACM.

2. R. Hourizi and P. Johnson. Unmasking mode
errors: A new application of task knowledge
principles to the knowledge gaps in cockpit design.
In Proceedings of Interact 2001, 8th IFIP TC Conf.
on Human Computer Interaction. IOS Press, 2001.

3. Institute for Safe Medication Practices. List of
error-prone abbreviations, symbols and dose
designations. www.ismp.org/tools/abbreviations,
2006.

4. J. Nielsen. Usability Engineering. Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

5. J. Reason. Human error: models and management.

BM.J, 320(7237):768-770, March 2000.

6. H. Thimbleby and P. Cairns. Reducing number
entry errors: Solving a widespread, serious problem.
Journal Royal Society Interface, 7(51):1429-1439,
2010.

7. J. Zhang, V. L. Patel, T. R. Johnson, and E. H.
Shortliffe. A cognitive taxonomy of medical errors.
J. of Biomedical Informatics, 37:193-204, June
2004.

