
WOAD, A Platform to Deploy Flexible EPRs
in Full Control of End-Users

Federico Cabitza, Stefano Corna, Iade Gesso and Carla Simone
Università degli Studi di Milano-Bicocca

Viale Sarca 336, 20126 Milano, Italy
+39 02 6448 7815

{cabitza,gesso,simone}@disco.unimib.it

ABSTRACT
In this paper we present the architecture of WOAD, a frame-
work that we propose to make clinical end-users more au-
tonomous in tailoring Electronic Patient Records (EPR) to
their changing needs. We provide a short overview of the
main concepts of WOAD and then we present the two visual
tools that we developed to allow end-users to create their
own templates and endow these with proactive and context-
aware mechanisms. Finally, we outline the main flows of in-
teraction that have been implemented in ProDoc, a WOAD-
compliant prototypical patient record.

Keywords
WOAD, ProDoc, Datoms, Didgets, Electronic Patient Record,
End-User, Visual Editor

INTRODUCTION
Electronic Patient Records, under the promises of facilitat-
ing accountability and research and improving care efficiency
and patient safety, have stimulated important investments in
the last twenty years. Therefore this kind of applications are
nowadays become more and more common in clinical set-
tings all over the world, although at a diffusion rate that is
much lower than initially expected [1]. Recently, an increas-
ing number of scholars propose to ascribe this phenomenon
also to the rising perception that going paper-less in hospital
wards is but a trivial endeavor [3, 14, 16]. Thus, although it
is not an easy task to define what failures in ICT projects re-
ally are [4] and although publication bias (i.e. the tendency
not to report bad results or failures) certainly affects ICT lit-
erature [18, 2] (as indeed many other disciplines), the best
estimate is that most EPR projects fail in some way [13].
Analysing the deep reasons why this can happen is out of the
scope of this paper. In short, we can summarize these rea-
sons with the fact that traditional EPRs are developed by ICT
professionals with scarce or no experience about the clinical
domain, and this leads them to not consider the existence of
specific local needs (e.g. the needs of a single hospital ward),
developing extremely rigid EPR systems. Yet, to present our
technological solution we start by taking the stance that de-
signers of EPRs should focus on interaction first and fore-

most, rather than, e.g. exclusively on data types and data-
oriented functionalities. Within the health informatics field,
this stance is in line with those who advocate to adopt the
interaction design tenets [8] to design information systems
that keep the people who will use them “in the loop” and,
more yet, give them the control of how the application must
be tailored to their specific and local needs.

In this line, in the past years we conducted a number of ob-
servational studies (reported in [6]) to elicit the requirements
that doctors and nurses perceived as the most important ones
to avoid that the incumbent EPR project would end by blow-
ing up in their face, either by requiring them more effort in
documental work than the paper-based counterparts, or by
imposing organizational constraints and procedural bottle-
necks that made sense only on paper. We categorized the
main requirements in three classes: support, autonomy and
flexibility. In the light of these requirements we conceived
an architecture, called WOAD (described in [5]) and real-
ized ProDoc, a prototypical EPR that is based on this archi-
tecture, which we described in [7]. While the class ‘sup-
port’ is conceived general enough to encompass all those
traditional data-oriented functionalities that support practi-
tioners in carrying out their tasks (e.g., retrieving records by
multiple parameter queries, chart printing, calculating liq-
uid balances and other scores), ProDoc was intended as a
proof-of-concept application of the latter two: autonomy and
flexibility. Obviously these latter are not uncorrelated, in-
deed we consider flexibility as a necessary requirement to
make EPRs “malleable” and tailorable to the ever changing
needs of their users; but, differently from the mainstream
approaches, we do not think that flexibility can be bestowed
on practitioners “from above” but that rather they have to
make their EPR flexible “on their own”, in an autonomous
manner with respect to both the ICT vendor and the ICT
specialists. Thus in this paper we intend autonomy as a pre-
condition for actual flexibility and as something that must
be guaranteed toward concrete purposes. Specifically, we
will present a computational platform that is aimed at mak-
ing practitioners autonomous in, on the one hand, building
and maintaining over time their own electronic documents
(seen as modular and reusable components of the EPR user
interface); and, on the other hand, in endowing these doc-
uments with simple rules that are executed asynchronously
by the system according to the context and the content that
practitioners progressively fill in.

This platform, WOAD, is then an end-user programming
environment where the application layer of the EPR, like

7



ProDoc is, aggregates patient data in sets of electronic doc-
uments, as if they were physical sheets of the paper-based
record; and where users can employ a specific editor to cre-
ate the data types they need to document their work almost
“on the go” and place the corresponding fields and input ele-
ments in the templates of these sheets, in a manner that pur-
posely mimic the way they used to edit the templates of their
paper-based charts with a regular word processor. In addi-
tion to the template editor, WOAD also encompasses a visual
rule editor, by which practitioners are facilitated in creat-
ing small bunches of if-then logic; these simple rules are in-
tended to be local to the clinical documents and to be defined
according to the conventions currently in use in a specific de-
partment [6]. To this aim, the editor allows the practitioners
to create specific conditions or data patterns over the tem-
plates they have previously created. Although rules can act
on any part of a document, we advocated their creation es-
pecially to modulate how the document’s content looks like,
and therefore to convey what in [6] is called Awareness Pro-
moting Information (API), i.e., any additional indication that
could help practitioners become aware of what is going on
in their setting [10] and recall knowledgeable ways to cope
with the situation.

In the following sections, we will briefly outline the WOAD
architecture and see how its components, including the tem-
plate and rule editors, interact with the end-user to present
clinical data with the typical flexibility provided by the still
efficient and versatile paper-based patient record [11].

THE WOAD FRAMEWORK
WOAD is a design-oriented framework that encompasses
both a conceptual model and a reference software architec-
ture, and is grounded on the concepts of “active document”
and “web of documental artifacts” [5]. In WOAD, docu-
ments are composed by two intertwined parts: a passive part
and an active part.
The passive part contains the content users fill in and ar-
ranges it according to a template. This defines how didgets
(‘documental widget’) are topologically arranged. A did-
get represents the reusable instance of a datom (‘documen-
tal atom’) within a specific document. Datoms are modular
data structures encompassing a set of data fields that coher-
ently represent a specific aspect of the reality of interest. The
active part is composed by a set of mechanisms, i.e., spe-
cialized ‘if-then’ statements that augment the passive part
of a document with context-aware and proactive behaviors.
A mechanism can be defined over either datoms, didgets or
their content and is triggered according to the current con-
tents of the document.

DOCUMENT TEMPLATE EDITING
The Active Document Designer (ADD) represents the means
that allows the end-users to create the WOAD document
templates, and consequently the datoms, that they need. To
this aim, the ADD (Figure 1) encompasses two distinct vi-
sual editors: the Datom Editor (DE) and the Template Editor
(TE). While the DE allows the users to create the datoms by
defining both the data model (e.g., the data type of a field)
and the layout model (e.g., the visual aspect), the TE allows

for the graphical design of the topological arrangement of
the documents.

A user who wants either to create or edit a document tem-
plate has to pick up the datoms from a palette (or stencil),
which contains all the datoms that have been previously cre-
ated with the DE, and place them into the drawing area that
represents the document. Once a datom has been placed in
the template, the corresponding didget is created and added
to another palette, which makes available the didget outside
of the document in which it was created and allows for the
reuse of the same didget into other document templates.

The reuse of the didgets allows for sharing data between dif-
ferent documents, either if those documents are based on
the same template or on a different one. Moreover, the did-
gets can be also used for sharing data regarding different re-
sources (e.g., all the patients of a hospital ward). This feature
of the didgets is specified through their global attribute,
which can assume four different values (see Table 1): G0)
the didget holds some pieces of data that are local to a spe-
cific instance of a document (local data), e.g., the value of
the daily measurement of the patient’s temperature that prac-
titioners inscribe on the Daily Sheet (DS); G1) the content
of a didget is shared between all the instances of a document
based on a particular template and related to a specific re-
source; G2) the didget shares some pieces of data between
the instances of some documents that are based on different
templates, but that are related to a single resource, e.g., some
portions of a patient’s personal data (like the patient ID, her
name and surname); G3) the contents of a didget are shared
between all the document instances without any constraint
both on the template and the resource. When a user who is
editing a template drops a datom and creates the related new
didget, the latter will hold only local data by default (i.e., the
global attribute is set to the G0 value). The user can set the
desired level of globality of a didget simply using a graphic
menu that appears directly under the graphic representation
of the didget in the template draw area.

In a similar way, through the same graphic menu, the users
can also specify if a didget must display its set of fields only
once (“single didget”) or if this set of fields has to be re-
peated in tight succession (“multiple didget”) for a certain
number of times. For instance, the latter case is useful to
handle the need to organize some data in tabular format that
could be repeatable on the same instance of a document (e.g.,
the vital parameters of a newborn within few moments from
delivery), using the structure of the didget (i.e., the related
datom) to define the organization of the rows.

When a user has finished the composition of the document
template, she stores it into the Template Manager (see below
for details about this component). If the user has opened an
already existing document template in order to modify it, the
storing operations are not destructive and adopt a simple ver-
sioning system: each version of a template is labelled with
the timestamp of its creation.

Making the users able to build their documents in a what-

8



Data Shared Between
Instances Templates Resources

G0
G1
G2
G3

Table 1. The levels of the global attribute of a didget.

you-see-is-what-you-get manner allows for increasing time-
liness, high flexibility and ‘tailorability’ with respect to both
creating and modifying operations.
An exemplificatory scenario is the need to add an element to
a document (e.g., a checkbox) by which clinicians can indi-
cate whether the patient has expressed the informed consent
or not. Here the constraint associated with this document
element is that all fill-in operations on any part of the doc-
ument must be inhibited if the informed consent checkbox
has not been marked.
Usually, in a traditional information system, addressing this
need would require to apply a set of changes that may po-
tentially involve the whole system and that have to be neces-
sarily call for the involvement of software analysts and de-
velopers. Adopting this approach requires the users to wait
until the software professionals have completed all the nec-
essary tasks to make the required changes to the system.
On the other hand, using the ADD, the users can directly and
quickly add any new feature to their documents, without in-
volving any other professionals. They have just to edit the
document template that has to be modified, opening it with
the TE. Once the template has been opened, the user has
just to select the previously created (with the DE) “Informed
Consent” datom, dragging it over the template, and drop it at
the desired place. In a similar way, also the application logic
that prevents from or enables the editing of the fields in the
same document could be added using the Mechanism Editor
(see the next section for more details).

Currently, the TE is a prototypical application based on the
Oryx Editor1 (see [9]). The Oryx Editor is a web-based,
extensible editor, that has been initially conceived to model
business processes. This editor adopts a plug-in architecture
that facilitates its extension by adding other graphic editing
features (e.g. the set of third party plug-ins to model the
XForms, Workflows or the Petri Nets).
The Oryx Editor is also coupled with another web applica-
tion, the Oryx Repository, which acts as a simple “file man-
ager” and allows for storing, browsing and managing the
various models that the users create through the Oryx Ed-
itor. Due to its simplicity, we used the Oryx Repository as
the user frontend of the Template Manager.

MECHANISM EDITING
The Mechanism Editor (ME) is the tool that allows the end-
users to create and edit their mechanisms. ME is a web edi-
tor based on Oryx Editor, as well as the TE and the DE. ME
provides users with a simple GUI that allows to create the

1Oryx is an academic project that is mainly developed by the Busi-
ness Process Technology research group at the Hasso-Plattner-
Institute (http://bpt.hpi.uni-potsdam.de/Oryx/).

mechanisms. The composition of the mechanisms is mainly
based on drag & drop, in order to facilitate the use of the ME
for those users with little or no experience in programming.
The GUI is split into three areas (see Figure 2). The top sec-
tion of the left area contains the list of all existing templates
(previously created with ADD). A template can be dropped
both to the central and the right areas, in order to respec-
tively build the if-part and the then-part of the mechanism.
The bottom section of left area contains the list of all the
saved mechanisms. A user can load an existing mechanism
by performing a double click on the mechanism item in this
list. The left area also contains the trash area (like in modern
desktop environments) in which users can drop any action or
condition that they want to delete.

The if-part of a mechanism contains the conditions that the
system must match to the document content; those condi-
tions are defined on one or more didgets that are contained
in one or more templates, as well as on basis of environmen-
tal variables, like system time and current users. A condition
is composed through an interface that appears when a tem-
plate has been dropped into the central area. This interface is
unique for each of the dropped templates, and is composed
by a form and a table where all the created conditions are
listed. The users compose their conditions through the form
area that contains three dropboxes and a textfield. The drop-
boxes allow respectively for the selection of the didgets, the
fields and the constraints. The constraints are filtered ac-
cording to the selected field data type (e.g., for a numeric
field, the constraints will be “greater”, “lower”, “equals” and
“not equals”). The textfield is used to complete the condition
with the value of the constraint. The then-part contains the
actions to be triggered when the above mentioned conditions
are met. An action can be composed in the same way of the
conditions, but in this case the third dropbox contains the list
of the available API (e.g., any annotation, graphical clue, af-
fordance, textual style and indication that could make actors
aware of something closely related to the context of reading
and writing). The execution of the mechanisms can be seen
as the process of API generation, i.e., some operations by
which the affordance and the appearance of the documents
and their content are modified, and additional information
(e.g., some messages), if any, are conveyed to the user. Each
type of API has unique parameters. When a new action is
added, the ME shows a property window that contains a form
with the API parameters (e.g., the Criticality API changes
the field color, and consequently the related property win-
dow contains a color palette).
The actions can be defined to act both on the same docu-
ment in which conditions are met (e.g., an action modifies
the color of the temperature field when its value is higher
than 40 degree) and on some other documents (e.g., an action
creates an alert message in all the documents if the patient
suffers drugs allergy).

In our scenario, the user needs to create a mechanism that
inhibits the fill-in operations on the document where the In-
formed Consent checkbox is placed, if this has not been
checked. The user starts the composition picking up the doc-
ument template from the list in the left area and dropping it

9



����������	


�������	
����
��	����
��

����������	


	
����
��	���

���
���
��

����������	


�������	
����
����
����

����������	


���
����
��
�

����������	


�����
��������
�

����������	


�������������
�

����������	


	��
������
�

����������	


�����������
����

����������	


	��������
����

����������	


�������������

����������	


�����
���
�
���������

����������	


	
����
���������

����������	


	
����
�
�
��
���

����������	


���������
����

��	���
���	

��	���	��	

��	��	���	�

��	������	�

���

���	���	����������

��	��	������
���	

��	��	��

��	��	��

���	���	���	�

���	���	�������	�

��	���	��	

��	� !��	���	��	

��	� !��	���
���	

��	� !��	���	��	

��	��	��

��	���	��	

��	"�#���
���	

��	���
���	������	�

Figure 1. The UML diagram of the components of the WOAD framework.

Figure 2. The Mechanism Editor user interface.

into the central area. Then, she selects the informed consent
field from the fields dropbox, and “equals” from the con-
straints. Finally, she writes in the textbox the “false” value
and pushes the “Add Condition” button. Once the if-part
has been created, the user starts to compose the then-part.
The user drops the previously chosen template in the right
area, and selects all the fields that she needs to protect. Then
she adds the action that makes a field read-only, and pushes
the “Add Action button” to complete. Once mechanism is
defined, the user saves it into the local repository (for future
modifications), and then she converts the mechanism into the
rule engine dialect (i.e., the Drools DRL) in order to make it
available for the Mechanism Interpreter (MI).

INTERACTIONS BETWEEN WOAD COMPONENTS
With respect to the architecture depicted in Figure 1, in this
section we describe how WOAD components interact when
a user requires to read and update an active document (see
also the steps in Figure 3); at the same time, we will provide
a short description of these components and some details
about their current implementation in ProDoc. This descrip-
tion is based on the assumption that the document templates
have already been created with the ADD and stored into the
TM. Similarly, we describe the process of mechanism cre-
ation.

When a user asks for a document, the GUI of the application
sends the request to the Layout Engine (step 1 in Figure 3).

The LE allows for displaying and interacting with the doc-
uments, and currently it is any regular web browser that is
fully compliant with the W3C standards (i.e., HTML, CSS
and JavaScript). The request is forwarded (step 2) to the
Active Document Manager (ADM), the main component of
the WOAD architecture, which builds the passive part of the
document, and provides the data structures to support the ex-
ecution of the mechanisms. Due to its complexity, the ADM
is composed by five subcomponents: the above mentioned
Template Manager (TM), the Didget Manager (DM), the
Document Builder (DB), the Mechanism Interpreter (MI)
and the Markup Tagger (MT).
The TM manages the templates and the related versioning
capabilities, and provides the access to the templates to the
other components of the framework. The DM creates and
manages the didgets, provides the other components with
the access to the definition of the datoms, and works in con-
junction with the Document Data Repository (DDR), a com-
ponent that provides data persistence features2, to keep the
didgets synchronized with their contents.
The DB builds an empty document and, if needed, fills in it
with the related contents of the didgets. To accomplish this
complex task, also the DB is divided into two subcompo-
nents: the Document Composer (DC) and the Markup Man-
ager (MM). The DC composes the document (steps from 3
to 12) by coupling the topological arrangement, the datom
definitions (both UIs and data models) and the contents of
the specific document instance, if any, and produces the rep-
resentation of the whole document using an intermediate for-
mat (i.e., XHTML and XForms). The DC retrieves the in-
stance of the document from its internal memory, and queries
the TM and the DM respectively for the template, the datoms
and the contents. In this phase, the MM acts as a translator3,
getting the intermediate representation of the document from
the DC and transforming it into a markup language expres-
sion (i.e., HTML) that the LE is able to render (steps 12 and
13), with no additional tool. Once the MM has finished with

2The DDR is a Java package based on the HyperJAXB library
(http://java.net/projects/hyperjaxb3/).
3The MM is a customization of the betterFORM XForms processor
(http://www.betterform.de/).

10



the intermediate document, it sends the passive part of the
document to the MT (step 13). The MT4 forwards the re-
ceived document to the LE, and this latter displays the doc-
ument to the user (steps 14 and 15).
On the way round, if the user makes some changes on the
document content (step 16), the LE forwards them to the
MM (step 17). Consequently, the MM invokes the DM (steps
18 to 21) to update its internal data structures. Finally, the
DM sends the new contents to the DDR (step 19) for the sake
of data persistence.

Asynchronously with respect to the other operations, the MI5

constantly monitors both the data structures that the DC and
the DM maintain in their working memory and the execution
context. When the MI detects that something has changed
(e.g., the user edits some document), it checks the mech-
anisms, activating and executing those in which the if-part
is satisfied, following a resolution strategy that is based on
specificity and currentness [12]. When a mechanism is ac-
tivated, the MI executes the operations defined in the then-
part (alt in Figure 3) that can either modify the contents
(step 25) or generate some metadata (step 22) to alter ei-
ther the document aspect (e.g., changing the appearance of a
field) or its behavior (e.g., making a field not writable).
When the MT receives the metadata, it translates them into
rendering attributes (e.g., CSS classes) and procedures (e.g.,
JavaScript functions), and sends the latter to the LE (step
23). Finally, the LE updates the active document, displaying
the new styles and running the new procedures (step 21).

The users can create their own mechanisms (step 1 in Figure
4) using the Mechanism Editor (ME). The ME is a standard
component that allows the users to create, edit and export
mechanisms. ME requests to the TM the list of available
templates (step 2). The TM returns the current template list
(step 3), and the ME fills its template menu and creates an
empty mechanism (step 4).
The user starts to compose a mechanism (step 5) picking up
a template in the list and droping it in either the if-part or the
then-part areas. When a template has been dropped, the ME
requests to the TM the list of the datoms that have been used
in this template (steps 6 and 7). Once the ME has received
this response, it fills the list of datoms, and for each of these
datoms the ME requests the list of their fields to the DM
(steps 8 and 9).
Since the ME gets all these data, the user can start to set the
conditions and actions that define the mechanism (steps 10
and 11). Once the composition of the mechanism has been
completed (step 12), and the user has requested to save it,
the ME processes its internal data structures (i.e., the lists
of conditions and actions) and stores them into a persistent
storage medium (e.g., a file). When the mechanism has been
saved, the user can convert it, and this process consists in the
translation of the mechanism into the Drools language, and
makes the result available to the MI.

4The MT is a Java class that makes active the document coupling
its passive part with the metadata produced by the MI.
5The MI is based on JBoss Drools (http://jboss.org/
drools/)

CONCLUSIONS AND FUTURE WORK
The paper illustrated two main functionalities of the WOAD
architecture: the first one allows for the flexible and modular
definition of the structure of the electronic charts, forms and
documents that mediate care and collaboration in hospital
settings. The second functionality allows practitioners to de-
fine simple rules and associate them to the documents so that
their content can be visually and textually enriched (e.g., in
terms of different affordances) according to the context and
at various levels of scope, from the hospital-wide level to
even the single practitioner one. In this paper we described
these functionalities in terms of both the user interface that
supports them and the architecture that realizes their imple-
mentation. Both the prototypes have been tested and used
in a laboratory environment for one month by volunteer stu-
dents that were called to digitize the charts and forms used
in two real hospital settings. This user session helped the de-
velopment team detect and correct the main anomalies and
identify improvement areas in the experience of unskilled
practitioners.

As said in the Introduction, these two features are intended to
enrich a prototypical application we deployed in the hospital
domain as an innovative and yet lightweight EPR, ProDoc.
Yet, this application can be also seen as a demonstrator of
a wider class of applications supporting collaborative work.
In WOAD compliant applications, coordination is achieved
mainly through documents, with respect to both their visible
structure and to that particular kind of additional information
that can be conveyed through the user interface to promote
“collaboration awareness” [10]. In particular, this informa-
tion is conveyed according to simple rules that end-users are
called to visually create even if they have no specific IT
skill, let alone programming skills. This is the most chal-
lenging part of our research program, which places it within
the scope of both the End-User Development and Interaction
Design fields.

Consequently, our future work will focus on how to present
and afford these functionalities for different classes of users
in order to modulate this kind of support according to their
technical skill and domain expertise. To this aim, the empir-
ical work that inspired the conception of the WOAD frame-
work and its proof-of-concept application, ProDoc, will con-
tinue to both improve its “malleability” [17] to the work con-
text and to validate its applicability in other domains where
we have gained an initial positive feedback [15].

REFERENCES
1. D. Balfour, S. Evans, J. Januska, H. Lee, S. Lewis, S. Nolan, M. Noga,

C. Stemple, and K. Thapar. Health information technology - results
from a roundtable discussion. J. Manag. Care Pharm., 15(1):10–7,
2009.

2. P. A. Bath. Health informatics: current issues and challenges. J.
Inform. Sci., 34(4):501–518, 2008.

3. M. Berg. Implementing information systems in health care
organizations: Myths and challenges. Int. J. Med. Informatics,
64(2-3):143–156, 2001.

4. C. Sauer. Why information systems fail: a case study approach. Alfred
Waller Ltd., Publishers, 1993.

5. F. Cabitza and I. Gesso. Web of Active Documents: An Architecture
for Flexible Electronic Patient Records. In A. Fred, J. Filipe, and

11



���

��������	
�����
������	����	��������
�
��������	����
�
���
������	
�����

�
���	
�����
��������	�������

�
���	�����
������	������

�������


����	
�����
��������	����

�����

�����������

�����������������

�����������	�����������

�������	������������	�
�������	������������	�

�������������	�����������
� ���������	�����������

�!������"�����	����
�#������"�����	����

�������	���
��������	����

������	������	����$��
����

�����%	�������	����$��
����

�������	������	�����������

�����%	�������	�����������

�������	������	�����������

!�����	��������

 ����%	�������	�����������

#����%	���������

�������	������	����

���������&�'���	����

�����������	����(�������

�����%	�������	����

�������
����
��������	����

�����%	�������	����

Figure 3. The UML sequence diagram of the typical interactions between the components of the WOAD framework.

Figure 4. The UML collaboration diagram of the rule creation process.

H. Gamboa, editors, Biomedical Engineering Systems and
Technologies, volume 127 of CCIS, pages 44–56. Springer Berlin
Heidelberg, 2011.

6. F. Cabitza, C. Simone, and M. Sarini. Leveraging coordinative
conventions to promote collaboration awareness. CSCW, 18:301–330,
2009.

7. F. Cabitza, C. Simone, and G. Zorzato. ProDoc: an electronic patient
record to foster process-oriented practices. In ECSCW’09, pages
119–138. Springer, 2009.

8. E. Coiera. Interaction design theory. Int. J. Med. Informatics,
69:205–222, 2003.

9. G. Decker, H. Overdick, and M. Weske. Oryx – An Open Modeling
Platform for the BPM Community. In M. Dumas, M. Reichert, and
M.-C. Shan, editors, Business Process Management, volume 5240 of
Lect. Notes Comput. Sci., pages 382–385. Springer Berlin/Heidelberg,
2008.

10. P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. In CSCW’92, pages 107–114, New York, NY, USA,
1992. ACM Press.

11. G. Fitzpatrick. Understanding the Paper Health Record in Practice:
Implications for EHRs. In HIC2000, Adelaide, Australia, 2000.

12. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artif. Intell., 19(1):17–37, 1982.

13. R. Heeks. Health information systems: Failure, success and
improvisation. Int. J. Med. Informatics, 75:125–137, 2006.

14. M. Jones. “Computers can land people on Mars, why can’t they get
them to work in a hospital?” Implementation of an Electronic Patient
Record system in a UK Hospital. Meth. Inform. Med., 42:410–415,
2003.

15. M. Locatelli, A. Viviana, and F. Cabitza. Supporting learning by doing
in archaeology with active process maps. In eLearning 2010, 2010.

16. C. Nowinski, S. Becker, K. Reynolds, J. Beaumont, C. Caprinia,
E. Hahn, A. Peresa, and B. Arnold. The impact of converting to an
electronic health record on organizational culture and quality
improvement. Int. J. Med. Informatics, 76(1):S174–S183, 2007.

17. K. Schmidt and C. Simone. Coordination mechanisms: Towards a
conceptual foundation of CSCW systems design. CSCW,
5(2/3):155–200, 1996.

18. W. Tierney and C. McDonald. Testing informatics innovations: the
value of negative trials. J. Am. Med. Inform. Assoc., 3(5):358–359,
1996.

12


