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ABSTRACT
One of the major issues of monitoring activities in smart
environments is the building of activity models from sen-
sor’s timed data. This work proposes a general theoretical
approach to this aim, based on a Knowledge Engineering
methodology and a Machine Learning process that are both
funded on a general theory of dynamic process modeling,
the Timed Observation Theory. In the proposed frame-
work, activity recognition is an abstraction process where
the activities are conceived as entities at different abstrac-
tion levels. This paper aims at showing that prior expert’s
knowledge about resident activities can be compared with
posterior knowledge induced from timed data. The proposed
approach is described through the database of the prototyp-
ical home of the GerHome project.

Keywords
Smart Environment, Human Activity, Dynamic Process Mod-
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1. INTRODUCTION
Physical or cognitive functional limitations and difficulties
in activities of daily living (ADL) and in instrumental ac-
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tivities of daily living (IADL) increase with the age and,
in general, are higher among people 60 years or more [29].
These restrictions affect the autonomy and the well-being of
people in the last phases of life. Many older adults or people
with disabilities wish to remain in their home for as long as
possible even when their daily needs are affected. Certain
surveys indicates that nearly 75 percent of respondents age
45 or older hope to stay in their homes as they age [1]. Un-
der these considerations, and taking into account that the
autonomy of a person depends not only of its capacities to
accomplish acts of daily life, but also on the possibilities
that the environment can provide, there is a growing inter-
est in observing ADLs and monitoring health through smart
environments [33, 6].

A smart environment ”is able to acquire and apply knowledge
about an environment and also to adapt to its inhabitants in
order to improve their experience in that environment” [8].
An example of smart environment is a smart home as Aware
Home [2], EasyLiving [5], MavHome [7, 17], CUS Smart
Home [31], iDorm [16], QuoVADis [15], CASAS [28, 24] and
GerHome [34, 35], where inhabitant behavior is recorded by
sensors and monitored by a program in order to detect the
activity carried out (such as cooking, eating, watching TV,
etc.).

Activity monitoring consists of comparing resident behavior
with activity models to determine the executed activity and
to detect anomalies or behaviors that require automatic in-
tervention of the environment. Nevertheless, the definition
of models for human activity monitoring is one of the ma-
jor issues due to the randomness of human behavior and,
therefore, to the subjective notion of the concept activity.

The work presented in this paper proposes a general theo-



retical framework which conceptually defines the notion of
activity and relates Knowledge Engineering methodologies
with Data Mining techniques to define and to identify res-
ident activities. The application of this approach is illus-
trated through the GerHome project of Centre Scientifique
et Technique du Bâtiment (CSTB, France). The aim of this
project is to develop technical solutions to the problem of
providing greater autonomy and better quality of life to the
elderly at home; and thus, to work on the prevention of ac-
cidents such as fall down originating in the frailty increase
of the person. The hold method is to track the frailty trends
by monitoring the daily activity and to compare a learned
model with sensor data recorded from effective activities.
This research path leads the way to detect activity mod-
els and could offer an appropriate and reliable method to
extract relevant and coherent daily activity patterns.

In Section 2, we introduce related works and the motivation
of our approach. Section 3 presents the theoretical frame-
work proposed for modeling and recognizing the resident’s
activities. Section 4 describes our proposal applied to the
GerHome project. Finally, in Section 5, our conclusions are
presented.

2. RELATED WORKS
Human activity recognition in perceptual environments in-
volves severe challenges due to the erratic nature of human
behavior. To determine what is being done can be compli-
cated if different activities are executed at the same time;
e.g., to cook while watching TV. Besides, the same detected
action can be associated with several activities depending on
the context in which it is carried out then, to discriminate
what is the right activity is not trivial; e.g., to open sink
water tap can be part of cooking or washing dishes. More-
over, activities can be interleaved: while washing dishes the
phone rings, the activity is paused, the phone is answered
and then, the activity is taken up again. Thus, to determine
what a person is doing at a particular time is not a simple
task.

The problem lies in the meaning and the interpretation of
the perceptual inputs due to the large gap that exists be-
tween the low level signals, as pixels, sensor signals, etc.,
and that one that is inferred in a higher level, for example,
washing dishes.

Different works propose a characterization and a definition
of human activity in smart environments. In particular, an
activity can be considered in terms of space (activity loca-
tion), of time (temporal patterns), of goals (intentions) and
in terms of ethnographic data [3]. On the other hand, as
proposed in [20], activities are directly linked with human
acts which can be specified by constructing a probabilis-
tic context-free grammar (PCFG), whose alphabet consists
of poses (Figure 1(a)). Thus, activity recognition is based
on a successive abstraction process where human activities
are defined from the visual observation of body poses ob-
tained from video data and, three levels of abstraction are
conceived (Figure 1): continuous signal (optical flow), dis-
crete event (body pose) and activity (sequence of discrete
events). In [19], activities depend on temporal, logical and
causal constraints linked with an intention and three ab-
straction levels are also presented: low level sensory stim-

(a) Activity definition (Pick Up) [18]

(b) Motion patterns from sensor data
(Sit and Stand) [20]

Figure 1: Activity definition by using PCFG

Figure 2: Activity hierarchical model constructed
from MavHome data [9]

uli, notion of causality amongst some qualitative activity de-
scriptors and notion of context-sensitive intent. Similarly,
[21] proposes three levels of abstraction as well: movements
as low-level semantic primitives, activities as sequences of
states and movements and human behavioral actions as high
level semantic events.

The MavHome (managing and adaptive versatile home) project
[32] is focused on providing smart environments, whose goals
are to maximize the comfort of the inhabitants, minimize the
consumption of resources, and maintain the safety of the



Table 1: Different notions of the concept human activity in smart environment.
Level MavHome

[32, 9]
CASAS [24,
26, 25, 27]

Semantic Lev-
els [21]

Abstraction
Levels [19]

PCFG [20] Conceptual Ac-
tivity

level 2 activity
(space taxon-
omy)

temporal tax-
onomy

behavioral
action (inter-
action with
the environ-
ment, causal
relationships)

activities
(triples of con-
text, behavior,
state)

activity activity
(defined from a
set of primary
activities)

level 1 event se-
quence (start
and end)

abstract event
level (se-
quences of
events, start
and end)

activity
(sequences
of states and
movement,
knowledge
related to
statistics of
temporal
sequences)

semantically
meaningful
activity-
descriptors
(rules of causal-
ity, context-
sensitive)

discrete event primary activity
(defined from a
set of discrete
events)

level 0 discrete event sensor level
(discrete
event)

human move-
ment (does
not require
contextual
or temporal
knowledge)

low level sen-
sory stimuli
(there is not
notion of time,
physical states
or causality)

continuous
signal

discrete event

Figure 3: Example hierarchical activity model con-
structed from CASAS data [26]

environment and its residents. In this project, once again,
three levels of abstraction are proposed (discrete events com-
ing from sensors, event sequence and activity) and the move
from an abstraction level to the other is based on models
that are produced using a process of Knowledge Discovering
from Databases (the Apriori algorithm [30] or Hiden Markov
models, Figure 2). A similar approach is used in CASAS [27,
25, 26, 23], an adaptive smart home system that discovers
and adapts to changes in the resident’s preferences in order
to generate satisfactory automation policies. In this case, a
temporal point of view about the different levels of abstrac-
tion (Figure 3) is considered. It is to note that CASAS uses
an algorithm of pattern adaptation miner (PAM) in order

to adapt to changes in the behavior patterns.

All of these approaches include the idea of hierarchical ab-
straction, and define three levels of abstraction (Table 1):
discrete events, sequence of discrete events and a taxonomic
classification at the highest level. Nevertheless, these def-
initions about the concept activity depend mainly on the
techniques used to build models for activity recognition.

We propose then a general paradigm to define a conceptual
notion of human activity that is not subject to a particular
application and which considers three levels of abstraction:
at level 0 timed observations or discrete event, at level 1 pri-
mary activities as specific timed observation sequences, and
finally activity as sequences of primary activities. Besides,
we present a general procedure to define activity models
which combines Knowledge Engineering with Data Mining.
The advantage of our approach is to facilitate the definition
of the principles of a general abstraction process from data.

3. A THEORETICAL FRAMEWORK FOR
MODELING HUMAN ACTIVITIES

Our proposal is based on relating a Knowledge Engineer-
ing Methodology to a Timed Data Mining technique, i.e.
the Timed Observations Modeling For Diagnosis (TOM4D)
methodology [22, 14, 13] and the machine learning process
called Timed Observations Mining For Learning (TOM4L)
[4, 12]. Both TOM4D and TOM4L come from the math-
ematical Theory of Timed Observations [11] that provides
a theoretical framework to facilitate the dynamic process
modeling for monitoring, diagnosis and control.

3.1 Human Activities As Observation Classes
In this framework, a process is an arbitrary set X(t) =
{xi(t)}i=1...r of time functions xi(t) defined on R (i.e. sig-
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Θ(X2, Δ2)

Ω1

Ω2

L2=<X2, Δ2, C2, M1>

L1=<X1, Δ1, C1, M0>

L0=<X0, Δ0, C0, ∅>

Figure 4: Activity abstraction process

nals provided by sensors). A timed observation is a couple
(δi, tk) which corresponds to the assignation of a predicate
θ(xi, δi, tk) where δi is constant and tk ∈ R a time stamp.
When making an abuse of language, such a predicate can
always be interpreted as the predicate EQUALS(xi, δi, tk)
(i.e. xi(tk) = δi). A monitoring program Θ(X,∆) is a
program Θ that analyzes the set of time functions xi(t) as-
sociated to the set of variables X = {xi}i=1...r. The aim of
a monitoring program is to write timed observations (δi, tk)
in a database whenever a time function xi(t) ∈ X(t) satisfies
some predicate θ(., ., .). Generally speaking, such a predicate
is satisfied when xi(t) matches against a behavioral model
[10] that can be as simple as the switch of an interrupter
or, requiring complex techniques, such as signal processing
techniques for artificial vision.

Definition 1. Let X be a set of variable names of a process
X(t) = {xi(t)}i=1...r and let ∆ =

⋃
x∈X ∆x be such that ∆x

is a set of values assumable by the variable x ∈ X via a
program Θ. An observation class Ci is a set of pairs (x, δ)
such that x ∈ X ∧ δ ∈ ∆x.

In other words, an observation class Ci associates variables
x ∈ X with constants δ ∈ ∆x. For simplicity reasons, an ob-
servation class is usually defined as a singleton Ci = {(x, δ)}.
This allows to formally define usual notions of events:

• A discrete event is a pair (x, δ) with x ∈ X, δ ∈ ∆x,
denoting that the value δ is assumed by the variable
x. A discrete event corresponds then to a singleton
observation class Ci = {(x, δ)}.

• A discrete event occurrence is a triplet (x, δ, tk) with
x ∈ X, δ ∈ ∆x, tk ∈ R denoting that the value δ is
assumed by the variable x at the time tk. A discrete
event occurrence is then a timed observation (δ, tk) of
an singleton observation class Ci = {(x, δ)}.

The notion of observation class also contemplates different
levels of abstractions; that is to say, a particular set C` =
{C`1, ..., C`n}, n ∈ N of observation classes C`i can be defined

for any level of abstraction ` (` ∈ N). Thus, the following
definitions are introduced.

Definition 2. Let X` be a set of abstract variables belong-
ing to an abstraction level ` and let ∆` =

⋃
x`∈X` ∆`

x` be

such that ∆`
x` is a set of values assumable by the variable

x`. An abstract observation class at the abstraction level `
is a singleton C`i = {(x`, δ`)}, with x` ∈ X` and δ` ∈ ∆`

x` .

Definition 3. A behavioral model M ` defined at abstrac-
tion level ` is a set of n-ary timed relations between obser-
vation classes defined at the abstraction level `.

The move from an abstraction level ` − 1 to the level ` is
made when associating a particular set of behavioral models
(at level ` − 1) to a given observation class C`i (at level `).
Considering this as a general principle, Definition 4 specifies
the notion of abstraction level.

Definition 4. An abstraction level ` is a structure L` =<
X`,∆`, C`,M `−1 > where

• X` is a set of variable names defined at level `,

• ∆` is a set of values assumable by the variables,

• C` is the set of observation classes belonging to the
level `, such that each observation class C`i ∈ C` is a
singleton and,

• M `−1 is a behavioral model defined at level `− 1.

Consequently, the variables X = {xi}i=1...r of a process
X(t) = {xi(t)}i=1...r are associated with the lowest level
0: L0 =< X0,∆0, C0,M−1 > where X0 = X and, nat-
urally, M−1 = ∅ since there is not observation classes in
a previous level and so no behavioral models can be de-
fined with the timed observation paradigm. At level 1,
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MTOM4L
ℓ

Figure 5: Definition of activity models (Expert symbol has been taken of www.civicore.com)

L1 =< X1,∆1, C1,M0 > where the variables and the ob-
servation classes are abstract. Each class of C1 is associ-
ated with a behavioral model of M0; that is, a set of n-
ary relations included in M0. Similarly, at level 2 where
L2 =< X2,∆2, C2,M1 >, variables and observation classes
are abstract and each observation class of C2 is associated
with a sub-set of M1.

The definition of these abstraction levels allows to specify:
the different types of discrete events (sensor data) as obser-
vation classes at level 0 (C0

i ∈ C0), each primary activity
as an observation class at level 1 (C1

i ∈ C1) and; finally, an
activity as an observation class at level 2 (C2

i ∈ C2).

The passage of a level `− 1 to a level `, where each class of
C` is associated with a behavioral model of M `−1, can be
accomplished by a program Θ(X`,∆`) which analyzes the
flow of timed observations at level ` − 1. In other words,
Θ(X`,∆`) assumes the matching of the flow of timed obser-
vations at level `−1 against the models in M `−1, and records
the corresponding timed observation (δ`, tk) in a database.
Figure 4 illustrates these concepts in the context of the Ger-
Home project where a monitoring program Θ′ registers a set
Ω0 of sequences of discrete events, considered as timed ob-
servations at level 0, from sensors that perceive the process
”the resident’s behavior at home”. For its part, Θ(X`,∆`)
(` = 1, 2) writes occurrences of observation classes defined
at level `, from a model M `−1 that allows to recognize the
behavior at level ` − 1 and interpret it as more abstract
activities at the higher level.

3.2 Activity Model Definition Process
The abstraction process requires to establish the different
levels; and therefore, to define behavioral models M `. To
this aim, we propose a procedure of activity definition based
on the combination of learning from data using Data Mining
techniques (TOM4L process), and the use of expert’s knowl-
edge through Knowledge Engineering (TOM4D methodol-
ogy). Figure 6 shows the logic-precedence structure of the
process of model construction where the relations are be-
tween passive entities (as knowledge base, process model
and timed observations) and conceptually active entities (as
TOM4D, TOM4L, the expert and the monitoring program
Θ). Thus, an passive entity can be obtained trough an active
entity which can require another passive entity. In the fig-
ure, a model can be built from a priori knowledge by means

Process Model

£(X,¢)

TOM4D TOM4L

Timed Observation 
Sequences

Expert

Knowledge
Base

Figure 6: Structure of logical precedence in the con-
struction of models from data (Expert symbol has been

taken of www.civicore.com)

of the methodology TOM4D or from timed observations in
a database through TOM4L. Knowledge can come from ex-
perts’ knowledge or can be new knowledge acquired from
the built models validated by experts. In turn, the timed
observations are obtained through a monitoring program Θ
which uses models to detect changes in the process and thus,
it writes timed observations in a database. This structure
of logic precedence allows to organize the available elements
to carry out a procedure of model definition.

Figure 5 illustrates the process of definition of the inhabi-
tant’s activities for the GerHome project, where an moni-
toring agent Θ′ produces the timed observations in Ω0 (i.e.
coming from sensors). The application of the TOM4L pro-
cess (through the software ElpLab) to timed observations in
Ω` (at level `) produces a behavioral model M `

TOM4L rep-
resentative of these observations. This model is analyzed
through the TOM4D methodology and a source of knowl-
edge (documents, data, experts, etc.) in order to define a
behavioral model of interest M ` ⊆ M `

TOM4L and the ab-
stract observation classes linked to this one (i.e. activi-
ties at the next level ` + 1). Thus, the abstraction level
L`+1 =< X`+1,∆`+1, C`+1,M ` > can be specified in order
that an agent Θ detects in Ω` occurrences of M ` and reg-
isters occurrences of observation classes Ω`+1. In a similar
way, a new application of TOM4L on Ω`+1 begins the cy-
cle to define the activities of the next level which are later
validated by experts.



The TOM4L process provides both a general matching pro-
gram Θ(X`,∆`) and a general algorithm to discover models
M ` at any abstraction level. The next section illustrates the
application of the TOM4L process to the GerHome project.

4. APPLICATION
Previous works on GerHome implement systems for moni-
toring elderly activities from video event and environment
event [33, 34, 35]. The first efforts to define activity mod-
els were carried out in a manual way from scenarios de-
fined by experts. Nevertheless, the randomness of human
behavior leads to that the manual definition of activities is
extremely complex. Consequently, we aim to define activ-
ities by means of using the TOM4L automatic techniques
combined with available knowledge interpreted trough the
TOM4D methodology.

Activity definition is accomplished from data registered by
sensors in the laboratory GerHome. This laboratory is an
apartment made up living room, bathroom, kitchen and
room, where different kinds of sensors record inhabitant be-
havior (Figure 7).

LIVING 
ROOM

BATHROOM

K
IT

C
H

E
N

Sensors

temperature, humidity, 
luminosity

volumetric presence

occupation (bed, chair,...)

water consumption

electricity consumption

water consumption

opening (doors, windows)

opening (furnitures)

image

data concentrator

ROOM

Figure 7: GerHome layout with sensors

GerHome’s logs, as depicted in Figure 8, are timed data
of the form ”yymmdd-hhmmss.mss/Msg” where ”yymmdd-
hhmmss.mss” (like 080313-122225.825) is a time stamp tk
and ”Msg” (like USAGE.KITCHEN.MICRO_WAVE_OWEN.begin),
is a constant δ associated with an observation class C0

i . The
ElpLab software, which implements the TOM4L approach,
uses a natural number i to identify the class.

[...]
080313-122225.825/USAGE/KITCHEN.MICRO_WAVE_OWEN/begin
080313-122226.145/OPENCLOSE/KITCHEN.REFRIGERATOR/open
080313-122228.929/OPENCLOSE/KITCHEN.REFRIGERATOR/close
[...]

Figure 8: GerHome’s logs

In particular, a spatial taxonomy is considered for the pur-
pose of analyzing behavior in each area of home, so logs are
classified according to the different spaces (Figure 7).

In this section we describe how the activity definition can
be carried out by means of complementing knowledge about
activities with data analysis. On the one hand, from a priori

knowledge, the different abstraction levels of an activity can
be specified; and thus, to analyze if the activity is represen-
tative of the available data. On the other hand, to analyze
the available data to extract behavioral models and then, to
define activities at different levels of abstraction.

4.1 From a priori Activity Definition to Data
Analysis

Documents, set of data, information transmitted by experts
and common sense allow to interpret sensor signals and to
define what sequences of events determine an activity. Once
this established, each activity can be validate by experts
and collated with the resident’s behavior registered in a
database. Activities in the living room will be considered
in order to illustrate part of the process of activity defini-
tion in which the starting point is a priori knowledge.

The living room of GerHome has five sensors registering
the resident’s behavior: three detecting presence and other
two detecting use of the phone and use of the TV. Each
message of a timed data registered from sensors is inter-
preted through TOM4D as a variable that assumes a par-
ticular value; that is to say, as an observation class. For ex-
ample, the messages PRESENCE.LIVING_ROOM.CHAIR.1.true

and PRESENCE.LIVING_ROOM.CHAIR.1.false are interpreted
as a binary variable x0L1 (PRESENCE.LIVING_ROOM.CHAIR.1)
that takes values true or false. Thus, the observation classes
C0

1027 = {(xL1, false)} and C0
1028 = {(xL1, true)} can be

specified. Similarly, the other variables in the living room
are identified: x0L2 (PRESENCE.LIVING_ROOM.CHAIR.2), x0L3

(PRESENCE.LIVING_ROOM.ARMCHAIR), x0L4 (USE.LIVING_
ROOM.TEL) and x0L5 (USE.LIVING_ROOM.TV); and so also, the
corresponding observation classes: C0

1029 = {(x0L2, false)},
C0

1030 = {(x0L2, true)}, C0
1025 = {(x0L3, false)}, C0

1026 =
{(x0L3, true)}, C0

1037 = {(x0L4, begin)}, C0
1038 = {(x0L4, end)},

C0
1039 = {(x0L5, begin)} and C0

1040 = {(x0L5, end)}.

Considering a priori knowledge on alternative activities in
the living room and a certain notion on them, watch TV is
proposed as a possible activity made up of sitting down and
turning on the TV. Hence, an abstract class C1

101 of level 1
can be specified to represent the activity watch TV and it
can be associated with behavioral models of level 0, which
are composed of at least the observation classes C0

1028, C
0
1030,

C0
1026 (linked to sit down) and C0

1039 (linked to turn on the
TV). Therefore, although the models in principle are not
known, some relation is supposed between the observation
class 101 and the classes 1028, 1030, 1026, 1039 as Figure 9
illustrates.

From data and given a particular observation class, the TOM4L
process allows to discovery the behavioral sequences that
finish in the given class, and to find the time constraints
[0, 2

λ
] where 1

λ
is the average times between two observation

class occurrences. Then, taking in account the relations that
would define watch TV (Figure 9), the study of the class
1039 (to turn on the TV) is carried out.

Figure 10 shows the behavioral model associated with the
class C0

1039 where the discovered model consists only of turn-
ing on and turning off the TV. This indicates that only the
variable x0L5 is involved in the behavior; that is to say, only
the use of the TV as Figure 12(a) graphics (where true and
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Level 1

1028

1030

101

1026

1039

Level 2

PRESENCE.LIVING_ROOM.CHAIR.1.true

PRESENCE.LIVING_ROOM.CHAIR.2.true PRESENCE.LIVING_ROOM.ARMCHAIR.true

USAGE.LIVING_ROOM.TV.begin

WATCH_TV.true

Figure 9: Activity Definition - Watch TV

USAGE.LIVING_ROOM.TV.begin

USAGE.LIVING_ROOM.TV.end

Figure 10: Behavioral model associated with the
class 1039

PRESENCE.LIVING_ROOM.ARMCHAIR.true

PRESENCE.LIVING_ROOM.ARMCHAIR.false

Figure 11: Behavioral model associated with the
class 1026

x0
L5
= 1 x0

L5
= 0

[0,0h21m38s]

[0,9h8m46s]turn on turn off 

(a) use of the TV

x0
L3
= 1 x0

L3
= 0

[0,0h8m6s]

[0,18h52m20s]sit down get up

(b) use of the armchair

Figure 12: Graphical representation of behavior as-
sociated with the classes 1039 and 1026

false are represented like 1 and 0).

A similar result on the use of the armchair is obtained by
studying the observation class C0

1026 where the found be-
havior consists only of sitting down and getting up of the
armchair (Figure 11). Once again, there is only one variable
(x0L3) involved in the discovered behavior as Figure 12(b)
graphics.

These outcomes do not represent the intuitive idea about
the behavior in a living room where if the resident actuates
in the environment should exist some relation between the
different variables (or sensors).

TOM4L defines the BJ-measure [12] that allows to establish
how strong is the relationship between the different obser-
vation classes. Figure 13 shows this measure between the
observation classes of the living room, calculated from the
available data, where columns and rows identify the men-
tioned classes. Note that the relations that exist are only
those between the classes linked with the same variable.

x0
L1 x0

L3 x0
L2 x0

L4 x0
L5

Figure 13: Strength of relationship between obser-
vation classes

This explains the previously obtained models (Figures 10,
11) and allows to suppose that the available logs are not
representative of a real-life watch TV activity.

The experts validated this deduction and thus, the robust-
ness of the TOM4L approach was verified. Therefore, an a
priori definition of activity can be proposed by experts and
collated with data in order to establish the adequacy of its
definition.

4.2 From Data Analysis to Activity Definition
For the analysis of data, behavior executed in the kitchen
is considered where there are 14 sensors and thus, 24 obser-
vation classes. The study is concerned with the use of the
stove (PRESENCE.KITCHEN.STOVE.true, classID=1024).

Figure 14: Model tree portion of the class observa-
tion 1024

The TOM4L process provides a set of 50 n-ary relations that
describes the occurrences of the class 1024 (Figure 14). The
figure 15 shows one of these 50 n-ary relations. The proposal
is then to use these relations in order to define activities in
other level of abstraction.

The n-ary relations and their observation classes are ana-
lyzed and then grouped with different criteria defined from
the mentioned analysis, according to the TOM4D methodol-
ogy. For example, the model m0

1 that describes the behavior



OPENCLOSE.KITCHEN.CUPBOARD.SINK.open

OPENCLOSE.KITCHEN.CUPBOARD.SINK.close OPENCLOSE.KITCHEN.REFRIGERATOR.close

OPENCLOSE.KITCHEN.REFRIGERATOR.open

PRESENCE.KITCHEN.STOVE.true

Figure 15: n-ary relation (behavioral sequence) associated with the class 1024

Signature 5

Signature 6

Signature 25

Signature 49

Signature 50

Figure 16: Models (n-ary relations) associated with
activity A1

Table 2: Activity definition at abstraction level 1
from n-ary relations

Signature
ID (model
M0)

Activity Observation
Classes

Abstract
Class

Level 0 Level 0 Level 1

5, 6, 25,
49, 50

A1
1023, 1035, 1035,
1024

111

2, 3, 7, 9,
12, 13, 14,
15, 17

A2
1003, 1004, 1017,
1018, 1024

112

0, 4, 8, 17,
24, 26, 27,
34

A3
1005, 1006, 1007,
1008, 1009, 1010,
1011, 1012, 1023,
1024

113

37, 43, 48
A4

1033, 1034, 1024 114
... ... ... ...

associated with using the stove is given in Figure 16, and
an activity identified as A1, is associated with this model.
An abstract observation class, let us say 111, representing
this activity is specified and is linked with the aforesaid
model. Table 2 shows different activities and their abstract
classes specified defining the level L1 =< X1,∆1, C1,M0 >.
ElpLab allows to record the occurrences of the classes C1 of
the level L1, and the same approach can be done to define
L2 =< X2,∆2, C2,M1 >.

5. CONCLUSION
In this paper, a general theoretical framework to model and
recognize resident activities was presented. Based on the
areas of Knowledge Engineering and Timed Data Mining,
this framework conceives human activities as entities at dif-
ferent levels of abstraction and generalizes thus, the notion
of activity. This generalization allows that the definitions
of resident activity and the process of activity recognition
are independent of any Data Mining technique or particular
implementation. Besides, a general procedure to define the
different abstraction levels and their behavioral models from
data and experts’ knowledge was described.

We applied our proposal to the GerHome’s timed data com-
ing from the sensors of a home prototype, in order to show
that a priori Expert’s knowledge can be collated with the
timed data of a data base and, inversely, when a priori Ex-
pert’s knowledge is not available, behavioral models can be
found from timed data and then validated by Experts. We
are now applying our approach to homes where activities
are made by residents in different real-life context such as
hospital or nursing room.
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Études et résultats. DRESS, (718), February 2010.

[30] R. Srikant and R. Agrawal. Mining sequential
patterns: generalizations and performance
improvements. In 5th International Conference on
Extending Database Technology. Advances in Database
Technology EDBT 96., pages 3–17, 1996.

[31] S. H. You, H. J. Park, T. S. Kim, J. W. Park, U. Burn,
J. A. Seol, and W. D. Cho. Developing intelligent
smart home by utilizing community computing. In
UCS’07: Proceedings of the 4th International
Conference on Ubiquitous Computing Systems, pages
59–71, Berlin, Heidelberg, 2007. Springer-Verlag.

[32] G. M. Youngblood and D. J. Cook. Data mining for
hierarchical model creation. IEEE Transactions on
Systems - Man, and Cybernetics. Part C: Applications
and Reviews, 37(4):561–572, 2007.

[33] N. Zouba, B. Boulay, F. Bremond, and M. Thonnat.
Cognitive vision. chapter Monitoring Activities of
Daily Living (ADLs) of Elderly Based on 3D Key
Human Postures, pages 37–50. Springer-Verlag, 2008.

[34] N. Zouba, F. Bremond, and M. Thonnat. Multisensor
fusion for monitoring elderly activities at home. In
Proceedings of the 2009 Sixth IEEE International
Conference on Advanced Video and Signal Based
Surveillance, AVSS ’09, pages 98–103. IEEE
Computer Society, 2009.

[35] N. Zouba, F. Bremond, M. Thonnat, A. Anfosso,
E. Pascual, P. Mallea, V. Mailland, and O. Guerin. A
computer system to monitor older adults at home:
Preliminary results. Gerontology. International journal
on the fundamental aspects of technology to serve the
ageing society, 8(3), Summer 2009.


