
Towards HARMONIA: automatic generation of
e-organisations from institution specifications

Daniel Jiménez Pastor
Department of Computer Science

University of Bath
BATH BA2 7AY, United Kingdom

dani@pitaweb.com

Julian Padget
Department of Computer Science

University of Bath
BATH BA2 7AY, United Kingdom

jap@cs.bath.ac.uk

ABSTRACT
There is a large gap between the emerging theory of institutions, or
to be more accurate the norms that characterize them, how agents
might reason about a symbolic representation of those norms and
software tools to realize agent-trading platforms from high level
specifications. We present an initial representation for institutions
written in XML and their ontologies written in DAML+OIL and
show how it has been used to specify aspects of simple auction
house (the FishMarket [12]) from which we are able to generate
automatically the components of the performative structure and the
agent skeletons for an implementation on top of the JADE plat-
form.

Keywords
Agents, ontology, multi-agent systems, institutions, norms, agent-
trading platforms, institution definition language, performative struc-
ture, dialogical framework.

1. INTRODUCTION
The work presented here is a continuation of the ideas first reported
in [22], in which a view was put forward of how implementations
of agent organizations1 could be generated from high-level descrip-
tions of the structure and their norms. The content of [22] was pre-
liminary in nature, in that the institution specification language was
used as a guide for the manual development of the skeletal JADE
[2] components, starting from the a description of the FishMarket
[19, 12, 18] written in the Islander language [5, 4]. The aim of that
paper was to extract parameterizable skeletal software components
which might then be re-used in the construction of new institutions,
and thus making a first step towards a tool for the rapid prototyp-
ing of institutions from their specifications. Since the main goal
of the software tools featured here is the automatic generation of
any kind of institution, we begin by completing the parameteriz-
able components extracted from the FishMarket implementation,
and then move on to describe progress towards creating a generic
tool for the generation of e-organizations.

There are few tools in this area at the moment. One is the Islander
agent institution graphical specification tool [7], which addresses
1Although it has become conventional to write of agent institutions,
both for kinds of institutions and their implementations, we feel it
is important to make the distinction between institutions as classes
and organizations as instances (see [5] for a diagrammatic presen-
tation of this argument), which is consistent with the defining work
on the subject from an economic perspective by Douglass North
[13]

aspects of organizational structure and dynamics. At a more techni-
cal level, there is the Bean Generator [17] plug-in for Protégé [16],
which is used to obtain the Java files for the JADE platform [8] from
an ontology specification. A more comprehensive solution, similar
in scope to ours is the frame-based ontology language developed
by Poggi et al [15], where a distinct ontology language inspired
by KIF has been defined for use in the context of JADE and from
which the implementation of agent systems in JADE has been gen-
erated. This is the closest in vision to what is described here. The
most notable difference is their use of a bespoke, and somewhat
simpler, ontology language in contrast to our use of DAML+OIL.
The gap we are attempting to fill is the provision of an integrated
tool for the automatic generation of an agent organization with its
associated ontologies from its specification while aiming to utilize
and to comply with current and emerging Semantic Web Group
standards [24].

There are three aspects to the tools we are developing: (i) the over-
all HARMONIA framework which unifies notions of norm, rule,
procedure and policy [5, 10, 21] and within this (ii) the specifi-
cation of ontologies for concepts related to the organization, for
example auction house, and for concepts related to the domain or
domains about which agents may discourse, for example fish (!)
(iii) the generation of agents to populate the organization and act
as proxies for external agents wishing to interact with the organi-
zation. Thus we are motivated to attempt to create a complete tool
for generating both the ontologies and the agents of the organiza-
tion, so that the generated agents could be designed to use only the
desired ontology, among other advantages. In the context of HAR-
MONIA we foresee the chance to generate e-organizations for dif-
ferent agent platforms, but at this stage we are using our own IDL
(Institution Definition Language) rather than Islander, JADE as the
target platform and DAML+OIL [3] as the ontology language.

For the medium term, we are considering how we may target a
range of agent platforms 2 and therefore a richer IDL will be re-
quired to accommodate these demands. Also, we are preparing for
migration to OWL [23], shortly expected to be approved by W3C.
In the longer term, a GUI tool for the graphical creation of the in-
stitution specification is planned as part of the HARMONIA frame-
work (currently under development).
2Despite the fact we have chosen JADE as agent platform, due to
the large user community, the scope for wide deployment of gener-
ated organizations and compliance with FIPA standards [6], there
is an large list of agent platforms as seen at [1], and among them
we highlight the following: FIPA-OS, AAP and Zeus.



Figure 1: Elements of the HARMONIA architecture for the
JADE platform

2. SYSTEM ARCHITECTURE
We begin with a description of the overall architecture of the tool-
set we are constructing – see figure 1 for an overview of the com-
ponents. The organizational structure is firmly based on the work
previously reported in Noriega’s thesis [12] and subsequently ex-
panded by Rodriguez Aguilar [18]. The final HARMONIA platform
will contain much more than is shown here, since it will encompass
norm specification and verification tools covering the range from
norm through rule to protocol and appropriate theorem provers and
model checkers as required.

2.1 Generic Institution Design
The idea norms that characterize institutions and the view of or-
ganisations as instantiations of institutions satisfying those norms
are both increasingly accepted as important aspects in the engineer-
ing of agent-based systems. The particular approach we take began
with the exposition by Noriega [12], and later Rodriguez Aguilar
[18], of a dialogical specification of agent interaction via sets of il-
locutions (speech acts), the identification of interaction sequences
(protocols) as so-called scenes and the linking of scenes to make a
graph called the performative structure. Subsequently these ideas
have been captured in the ISLANDER institution description lan-
guage [5] and a graphical toolkit [4]. At the same time, the original
ideas first put forward in the ISLANDER language have been re-
fined to focus more on norms as guides and constraints on agent
behaviour [14, 10] in contrast to the somewhat rigid conversation
structures conceived originally. What we are presenting here are
some of the preliminary thoughts on a second generation institu-
tion description language in which we are moving from the ad-hoc
syntax of ISLANDER to a widely recognized representation and

from the monolithic structure of ISLANDER specifications to one
of composable components in conjunction with the development of
the translation schemes from specification to implementation that
were first sketched by Vickers [22].

The construction of an electronic organization begins with a de-
scription written according to the XML schema we have developed
for the purpose. The corresponding ontology to ground the ele-
ments in this description is currently under construction.

Each institution has one or more dialogical frameworks, which de-
termine the illocutions that can be exchanged between the agents in
each scene. In order to do so, an ontology written in DAML+OIL
and a list of the possible roles that agents may play are defined for
each dialogic framework, which fixes what are the possible values
for the concepts in a given domain. This DAML+OIL ontology will
be parsed using the Jena toolkit [11].

Each agent role(see later), can have one or more behaviours, each
one able to contain multiple sub-behaviours, corresponding to the
functionality of JADE platform agents.

2.2 System Overview and Dependencies
Before sketching the key phases in this part of the HARMONIA ar-
chitecture, we will briefly mention two important third party APIs
we use in our tool: (i) Jena [11] is used to read the DAML+OIL
ontology and hence process the information to create all the files
related to the ontologies, used in the JADE environment. (ii) Jalopy
[9] is a source code formatter for Java and that is responsible for the
layout of all the code presented later in this paper.

2.3 Inputs
There are three inputs to this basic instantiation of the HARMONIA
framework:

• The name of the directory where the generated organization
files will be written.

• The institution description – written in the XML-based IDL.
• One or more ontology files.

The institution description is derived from the ISLANDER lan-
guage first described in [5], which develops the features described
in [18] and which has forms part of the institution editor reported in
[4]. Various shortcomings with the ISLANDER approach and rep-
resentation have lead us to develop a second generation IDL based
on DAML+OIL – with the intention to migrate to OWL [23] in the
very near future. In addition, for the purpose of this first exercise,
we have incorporated JADE platform specific features, see the ex-
ample in Figure 2, because in the short term we are focusing on
delivery on one platform. For the longer term, we are considering
how the XML schema may be parameterized to support a range of
platforms.

As seen in Figure 2, we follow the design set out in Section 2.1.
We use this file to create the data structure of the institution for
the JADE platform. Each dialogic framework, with the tag of the
same name, has one ontology, and as we see in the code, the tag
Ontology indicates where to find the ontology, the type of which
is defined in the specificationLanguage attribute (this ex-
ample uses a DAML+OIL ontology), so the system knows how to
parse it.



<?xml version="1.0" encoding="UTF-8" ?>
<Institution id="FM2003">

<DialogicFramework id="FishDialFrw"
contentLanguage="PROLOG">
<Ontology id="FishONTO"

specificationLanguage="DAML"
file="file:///C:/oasPaper/fish.daml" />

<Role id="Boss"
type="InternalRole">

<Behaviour id="Open"
type ="SimpleBehaviour"/>

<Behaviour id="Discuss"
type ="CompositeBehaviour">

<Behaviour id="InitialResolution"
type ="OneShotBehaviour"/>

<Behaviour id="FinalResolution"
type ="OneShotBehaviour"/>

</Behaviour>
</Role>
<Role id="Admitter"

type="InternalRole">
<Behaviour id="Admit"

type ="CyclicBehaviour"/>
</Role>

</DialogicFramework>
</Institution>

Figure 2: XML based IDL file for the JADE platform

A word of clarification is in order about the term “role”. Super-
ficially, this can be thought of as a synonym for type, but what it
actually captures is both deeper and more flexible. The principle
of role is borrowed from a line of research in security – both in
software and in physical organizations – called Role Based Access
Control (RBAC) [20] which associates ideas of responsibility, con-
straint and obligation with a given role and captures relationships
between roles, such as whether one subsumes another and whether
one role is incompatible with another, such as because it is either
impossible to fulfil the requirements of each role simultaneously
or because their combination may create a security hole. From the
norm perspective, where we recall that a norm is an expression of
a guide or constraint on behaviour, it becomes clear that a role is
a coherent subset of the norms of an institution that taken together
prescribe the limits of action when playing a particular role. Thus
it is that in describing an institution, a key part of the modelling
process also identifies roles that agents may play within that insti-
tution (e.g. buyer, seller, admitter, accountant, auctioneer, etc., see
Esteva et al [5] for more detail and Vazquez [10] for a comprehen-
sive treatment).

Hence we use the word “role” to refer to the constraints on an
agent’s behaviour. From past practice, we have found it conve-
nient to classify roles as one of two kinds: InternalRole if is
a staff agent, responsible for aspects of running the institution, like
the Boss or the Admitter agent in an auction or ExternalRole
for a client-agent written by a third party that visits the institution,
like the Buyer or Seller agents.

Finally, in the Behaviour tag, we have two attributes: the id
and the type, which identifies the Behaviour class of the JADE
platform from which we are inheriting.

As it stands, the IDL file contains enough information to describe
the gross behaviour of the agent, but not how it communicates, for
which we need the illocutions to be used in the conversation pro-
tocols of the scenes of the performative structure. These aspects

are currently under development and will be reported on separately
later.

To illustrate how the framework we have operates, instead of pro-
viding a long DAML+OIL ontology file, we will show the com-
plete UML diagram representation of the DAML+OIL file in the
Figure 3. Then, to show each aspect of the translation in detail,
some DAML+OIL code will be posted.

Finally, we provide solutions for the problems or constraints found
while dealing with the translation of a DAML+OIL ontology into a
Jade ontology, due to the particularities of the Jade platform and
model incompatibilities between DAML+OIL and Java, such as
multiple inheritance, multiple ranges, anonymous classes and some
aspects that will be discussed in the following subsections.

2.3.1 Multiple inheritance
MI is a key aspect of DAML+OIL, but is not a feature of Java,
because a class can only inherit from one class and from multi-
ple interfaces, and therefore only the methods inherited from the
superclass and not those from the interfaces may have an imple-
mentation.

But as an ontology is basically data, not operations, we just need
Java classes with their attributes and only accessor methods to rep-
resent it in the Jade platform. So, we can translate all the classes
of the DAML+OIL ontology into interfaces to obtain the multiple
inheritance capability, and then, for each interface, generate a wrap-
per class with the accessor methods to get and set their attributes.
The only issue we have to control is to rename attributes from dif-
ferent parents if they have the same name. This solution will be
fully working before summer 2003, but at present, if a class in the
input has more than one parent, we will only consider the first and
ignore the rest (with a suitable warning). Example:

<daml:Class rdf:ID="BabySquid">
<rdfs:subClassOf rdf:resource="#Squid"/>
<rdfs:subClassOf rdf:resource="#SmallFish"/>

</daml:Class>

Class BabySquid as specified above has two parents: Squid and
SmallFish. In the translation, only Squid class will appear as the
parent.

Some other solutions based on design patterns, as the Bridge, State
and Strategy design pattern have been studied, but they provide
solutions basically for different method implementations that work
in a plain environment, but not embedded in a framework like Jade,
because Jade can only know the accessor methods of the classes,
but no others.

Another solution that requires the collaboration of the ontology de-
signer would be using a delegation – “black-box” inheritance – ap-
proach, where BabySquid would have two attributes, one of class
Squid and one of class SmallFish, but we discarded it because we
want automatic generated solutions. We note that the ontology lan-
guage of Poggi et al [15] provides single inheritance making the job
of translation to Java/JADE somewhat less difficult than the task we
have here in working from DAML+OIL.

2.3.2 Multiple ranges
In Java, each variable can be only of one type. This contrasts
with the permitted multi-range properties in DAML+OIL. A way



Figure 3: UML class diagram corresponding to the DAML+OIL ontology

to work around this in Java is to have many properties each with
a different type instead of one property with many types. As with
multiple inheritance, if this constraint is not observed, we only con-
sider the first type given for that property and ignore the rest. Con-
sider the following object property declaration:

<daml:ObjectProperty rdf:ID="Weight">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource="#Grams"/>
<daml:range rdf:resource="#Pounds"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:ObjectProperty>

Here, only Grams will be recognized as the possible range class
(and therefore type) for the Weight object property. The conflict can
be resolved by creating two different object properties for the Fish-
Size class, named WeightGrams and WeightPounds respectively, as
follows:

<daml:ObjectProperty rdf:ID="WeightGrams">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource="#Grams"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="WeightPounds">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource="#Pounds"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:ObjectProperty>

Although the solution of splitting automatically a multiple range
can be done easily, in the OWL specifications they explain that a
multiple range has to be treated as the intersection of ranges, and
as we explain later (see section 2.3.5) with respect to class union,
intersection and negation, we do not generate any solutions for
logic/set operators.

2.3.3 Identifier syntax
This is a perennial problem in any language translation task when
the source language has a less restrictive identifier syntax than the
target language. Thus, the input:

<daml:Class rdf:ID="Mediterranean-Mackerel">
<rdfs:subClassOf rdf:resource="#Mackerel"/>

</daml:Class>

contains a variable which is not a valid as a Java variable because
it contains a hyphen. The variable will be renamed to Mediter-
ranean Mackerel and a warning will be echoed with the new
variable name. Also, variables cannot be reserved Java keywords,
cannot have a hyphen as in the example, or start with a number.
For all this cases, HARMONIA will rename the variable and print a
warning.



Agent Boss imports the ontologies the agent uses

package FM2003;
import FM2003.Behaviours.*;
import FM2003.Ontologies.FishONTO.*;

Standard agent header, followed by initialization of properties and
getting an instance of the ontology the agent uses.

public class Boss extends Agent {
private ServiceDescription sd;
private Codec codec;
private Ontology ontology;
private ContentManager manager;
private DFAgentDescription dfd;
private MessageTemplate mt;

public Boss() {
sd = new ServiceDescription();
codec = new SLCodec();
manager = (ContentManager) getContentManager();
dfd = new DFAgentDescription();
ontology = FishONTO.getInstance();

}

Here we see the setup method, where the agent registers with the
Service Descriptor as an internal agent and with the Directory Fa-
cilitator with FishONTO as ontology and FM2003 as ownership.
After registering in the DF, creates and adds the behaviours Open
and Discuss.

protected void setup() {
sd.setName(getName());
sd.setType("InternalRole");
sd.setOwnership("FM2003");
dfd.setName(getAID());
dfd.addServices(sd);
dfd.addOntologies("FishONTO");
try {

DFService.register(this, dfd);
} catch (FIPAException e) {

System.err.println(getLocalName() +
" registration with the DF failed because - "

+ e.getMessage());
doDelete();

}
manager.registerLanguage(codec, "PROLOG");
manager.registerOntology(ontology, "FishONTO");
Open behaviour_0 = new Open(this);
addBehaviour(behaviour_0);
Discuss behaviour_1 = new Discuss(this);
addBehaviour(behaviour_1);

}
...
}

Figure 4: Boss agent imports, initialization and setup

2.3.4 Root classes
As we want to generate automatically an ontology for the JADE
platform, each class must inherit from one of the following classes:
AID, AgentAction, Concept or Predicate, which must also be de-
fined in the ontology as we see below. We note that we have only
as yet worked with a few simple ontologies and this will have far
from demonstrated the full range of inputs – and problems – that
we will need to be able to handle.

<daml:Class rdf:ID="AgentAction">
</daml:Class>

<daml:Class rdf:ID="AID">
</daml:Class>

<daml:Class rdf:ID="Concept">

package FM2003.Behaviours;
import FM2003.*;
import FM2003.Ontologies.FishONTO.*;

As in the agent imports, we import their own ontology. And we
create the behaviour inside the package Behaviours.

public class Discuss extends CompositeBehaviour {
private InitialResolution subBehaviour_0;
private FinalResolution subBehaviour_1;

public Discuss(Agent a) {
super(a);

}

As is work for the programmer which order a behaviour uses their
subBehaviours, we only add as many properties as subBehaviours
the behaviour has, in this case one for InitialResolution and other
for FinalResolution.

public boolean checkTermination(
boolean currentDone,
int currentResult) {

//This method must be implemented
return false;

}
public Collection getChildren() {

//This method must be implemented
return null;

}
public Behaviour getCurrent() {

//This method must be implemented
return null;

}
public void scheduleFirst() {

//This method must be implemented
}
public void scheduleNext(

boolean currentDone,
int currentResult) {

//This method must be implemented
}

}

Figure 5: Behaviour Discuss methods

</daml:Class>

<daml:Class rdf:ID="Predicate">
</daml:Class>

<daml:Class rdf:ID="Fish">
<rdfs:subClassOf rdf:resource="#Concept"/>

</daml:Class>

<daml:Class rdf:ID="Mackerel">
<rdfs:subClassOf rdf:resource="#Fish"/>

</daml:Class>

From the perspective of Java generation, AID, AgentAction, Con-
cept and Predicate are interfaces. So, class Fish will extend the
Concept interface, and class Mackerel will inherit from Fish class.

2.3.5 Union, intersection and negation classes
This is one feature of DAML+OIL that is far too powerful to be
used at present with programming language such Java, so we can-
not provide a solution for this capability, but we will continue re-
searching all the possibilities to benefit from this richer expressive-
ness of DAML+OIL or OWL.



We create a new package for every ontology, inside the Ontologies package. Then we write the imports, although we do not show them.
Finally, we create many constants for the vocabulary, useful for the understanding of the code, although it is also possible not to create them,
but the code would be much more untidy and less clear.

package FM2003.Ontologies.FishONTO;
...
public class FishONTO extends jade.content.onto.Ontology {

protected static Ontology theInstance = new FishONTO();

// Vocabulary
public static final java.lang.String FISH = "Fish";
public static final java.lang.String FISH_FISHABLEREGIONS = "FishableRegions";
public static final java.lang.String FISH_PRICE = "Price";

We create all the primitive schemas at the beginning to make the code nicer, like the vocabulary. Then, we add the concepts classes to the
ontology. We only show how to add the concepts, but the AID, AgentAction and Predicates can be added the same way.

protected FishONTO() {
super("FishONTO", BasicOntology.getInstance(),

new ReflectiveIntrospector());

try {
PrimitiveSchema stringSchema = (PrimitiveSchema) getSchema(BasicOntology.STRING);
PrimitiveSchema integerSchema = (PrimitiveSchema) getSchema(BasicOntology.INTEGER);
PrimitiveSchema floatSchema = (PrimitiveSchema) getSchema(BasicOntology.FLOAT);
PrimitiveSchema dateSchema = (PrimitiveSchema) getSchema(BasicOntology.DATE);
PrimitiveSchema booleanSchema = (PrimitiveSchema) getSchema(BasicOntology.BOOLEAN);

// adding Concept(s)
ConceptSchema FishSchema = new ConceptSchema(FISH);
add(FishSchema, Fish.class);
ConceptSchema MackerelSchema = new ConceptSchema(MACKEREL);
add(MackerelSchema, Mackerel.class);

After creating all the schemas for every class of the ontology, we add to them all their fields. We only show how to add fields to the Fish
concept, to be brief.

// adding Fields
FishSchema.add(FISH_FISHABLEREGIONS, FishingRegionSchema, ObjectSchema.MANDATORY);
FishSchema.add(FISH_PRICE, integerSchema, ObjectSchema.MANDATORY);

For all the schemas, we add the inheritance expressed in the model. With this, the creation of the ontology is done. We also add the
getInstance method to get an instance of the ontology, used in the Agents files.

// adding Inheritance
MackerelSchema.addSuperSchema(FishSchema);

} catch (java.lang.Exception e) {
e.printStackTrace();

}
}

public static Ontology getInstance() {
return theInstance;

}
}

Figure 6: Translation of the FishONTO ontology

2.3.6 Anonymous classes
Although it is fairly easy to implement this DAML+OIL function-
ality in Java by using the old Lisp GENSYM technique, at present
we do not support DAML+OIL anonymous classes due to time con-
straints. These classes do not have meaning by themselves, rather
they are used to capture abstractions embedded in other classes,
and we are also mindful of the fact that OWL-Lite does not sup-
port anonymous classes, and depending on which version of OWL
becomes the preferred means of expression, the problem could po-
tentially go away.

2.3.7 Datatypes as types

Due to actual technical limitations of the Jena toolkit, and and bear-
ing in mind future compatibility with OWL, the ontology input
does not support the use of datatypes as types. In the next Datatype-
Property, we see that the range specifies a datatype, without refer-
encing the integer schema. Thus, the following is incorrect:

<daml:DatatypeProperty rdf:ID="Length">
<daml:domain rdf:resource="#FishSize"/>
<rdfs:range>

<xsd:integer />
</rdfs:range>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:DatatypeProperty>



The range part has to be rewritten with a reference to the integer
schema:

<daml:DatatypeProperty rdf:ID="Length">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#integer"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:DatatypeProperty>

2.3.8 Split properties
Again, due to current technical limitations, we require the multi-
plicity information of the property to be supplied in the type at-
tribute of the class tag, instead of having two tags: ObjectProp-
erty/DatatypeProperty and UniqueProperty. So, all the information
related to a property must be embedded in their tags, without split-
ting the information between siblings. For example:

<daml:DatatypeProperty rdf:ID="Price">
<daml:domain rdf:resource="#Fish"/>
<daml:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#integer"/>
</daml:DatatypeProperty>
<daml:UniqueProperty rdf:about =

"file:/C:/oasPaper/fish.daml#Price"/>

Has to be expressed this way:

<daml:DatatypeProperty rdf:ID="Price">
<daml:domain rdf:resource="#Fish"/>
<daml:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#integer"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:DatatypeProperty>

2.4 Outputs
The outputs of the system are the Java skeleton files of the organiza-
tion for the JADE platform. All the files are created in the specified
destination directory, while within the files, all the objects are in
a package named by the institution ID. So, if the institution ID is
FM2003, and we have as destination directory the root directory,
and the code from Figure 2 as the IDL input file, we will get four
kinds of files:

1. Agents – found in the root destination directory, belonging
to the package FM2003:
FM2003/Boss.java
FM2003/Admitter.java

2. Behaviours – found in the Behaviours directory and belong-
ing to the package FM2003.Behaviours:
FM2003/Behaviours/Open.java

FM2003/Behaviours/Discuss.java
FM2003/Behaviours/InitialResolution.java
...

3. An ontology file. In this case, is located inside package
FM2003.Ontologies.FishOnto, and in a directory equal to the
package name:
FM2003/Ontologies/FishONTO/FishONTO.java

4. Ontology classes, located in the same package and directory
as their own ontology file:
FM2003/Ontologies/FishONTO/BabySquid.java
FM2003/Ontologies/FishONTO/Mackerel.java
FM2003/Ontologies/FishONTO/Fish.java

...

We add this class to the same package as the ontology file. Again,
we have omitted all the imports. As we see in the DAML+OIL
examples, class Fish implements the Concept interface.

package FM2003.Ontologies.FishONTO;
...
public class Fish implements Concept {

protected int Price;
protected List FishableRegions = new ArrayList();

public void setPrice(int value) {
this.Price = value;

}
public int getPrice() {

return this.Price;
}
public void addFishableRegions(FishingRegion elem) {

List oldList = this.FishableRegions;
FishableRegions.add(elem);

}
public boolean removeFishableRegions(

FishingRegion elem) {
List oldList = this.FishableRegions;
boolean result = FishableRegions.remove(elem);
return result;

}
public void clearAllFishableRegions() {

List oldList = this.FishableRegions;
FishableRegions.clear();

}
public Iterator getAllFishableRegions() {

return FishableRegions.iterator();
}
public List getFishableRegions() {

return FishableRegions;
}
public void setFishableRegions(List l) {

FishableRegions = l;
}

}

Class Fish has two attributes: Price (single cardinality) and Fish-
ableRegions (multiple cardinality). Depending of the cardinality,
we well create accessor methods to access a list or to a single type.

Figure 7: Ontology class Fish

We will now take a closer look at the contents of these files. We
will start with the Boss agent file, although for brevity we omit
the code that is common to every agent (takeDown method, JADE
imports...). See Figure 4 and also the comments between the gener-
ated code fragments. Drilling down further we examine in more de-
tail the behaviour Discuss, where again, for brevity, we have omit-
ted the common code – see Figure 5 and the interpolated comments.

Depending on the JADE behaviour type we are inheriting, we must
implement one or more additional methods. As this class inherits
from CompositeBehaviour, me must implement the methods shown
in Figure 5.

At present, we only create skeletons of the behaviour, depending on
each behaviour type, but we shortly will complete the code for mes-
sage passing between agents, extracted from the illocutions given
in the institution description and then the bodies of these methods
will also be created automatically.

Next, it is the turn of the ontology file, the details of which along
with some commentary appear in Figure 6 and finally we have one
of the classes of the ontology in Figure 7.



3. CONCLUSIONS AND FUTURE WORK
We have described the translation into Java (JADE) of the specifica-
tion of aspects of an institution description written in DAML+OIL,
noting at the same time various generic issues with respect to trans-
lation from DAML+OIL to Java. Because of the very active and
changing nature of this area at the moment, a number of issues
remain open, in particular, we expect very soon to move the IDL
from DAML+OIL to OWL, more or less as soon as the support in
the Jena API is released. We have also listed a number of aspects
of DAML+OIL that could be, but are not translated yet, simply
for lack of time, such as facets, anonymous classes or multiple in-
heritance. What we have presented here is the translation of the
ontological aspects of electronic organizations: other aspects, such
as the performative structure, scenes, transitions and conversation
graphs are being finalized. Indeed, the completion of behaviour
generation for the JADE platform is intended to be fully working
before summer 2003, for which we will generate automatically the
code of message passing between agents from the information ex-
tracted from the illocutions.

For the longer term, we are considering how we might support mul-
tiple target agent platforms. A new GUI tool is also under devel-
opment which could be used to front end this, generating the OWL
representation of the institution, which combined with schema ver-
ification tools opens up a path to round-trip engineering of institu-
tional specifications.

4. ACKNOWLEDGEMENTS
Daniel Jiménez Pastor is a student of Computer Science Engineer-
ing at Facultat d’Informàtica de Barcelona, Universitat Politècnica
de Catalunya (Spain). His work has been partially supported by an
Agenticities scholarship while an Erasmus student at the Depart-
ment of Computer Science, University of Bath (United Kingdom).

5. REFERENCES
[1] AgentLink – European Network of Excellence for

Agent-Based Computing.
http://www.agentlink.org, March 2003.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A
FIPA-compliant agent framework. In Proceedings of the 4th
International Conference on the Practical Applications of
Agents and Multi-Agent Systems (PAAM-99), pages 97–108,
London, UK, 1999. The Practical Application Company Ltd.

[3] DAML+OIL – DARPA Agent Markup Language + Ontology
Inference Layer.
http://www.w3.org/TR/daml+oil-reference,
March 2003.

[4] M. Esteva, D. de la Cruz, and C. Sierra. Islander an
electronic institutions editor. In Proceedings of The First
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2002), 2002. to appear.

[5] M. Esteva, J. Padget, and C. Sierra. Formalizing a language
for institutions and norms. In J.-J. Meyer and M. Tambe,
editors, Intelligent Agents VIII, volume 2333 of Lecture
Notes in Artificial Intelligence, pages 348–366. Springer
Verlag, 2001. ISBN 3-540-43858-0.

[6] FIPA – The Foundation for Intelligent Physical Agents.
http://www.fipa.org, March 2003.

[7] Islander, a graphical editor for institution specifications
(software package).
http://e-institutor.iiia.csic.es/
e-institutor/software/islander.html (April
2002).

[8] Java agent development environment.
http://jade.cselt.it, March 2003.

[9] Jalopy. http://jalopy.sourceforge.net, March
2003.

[10] Javier Vázquez-Salceda. The role of Norms and Electronic
Institutionsin Multi-Agent Systems applied to complex
domains. The HARMONIA framework. PhD thesis,
Universitat Politècnica de Catalunya, 2003.

[11] Jena Semantic Web toolkit.
http://www.hpl.hp.com/semweb, March 2003.

[12] P. Noriega. Agent mediated auctions: The Fishmarket
Metaphor. PhD thesis, Universitat Autonoma de Barcelona,
1997.

[13] D. C. North. Institutions, Institutional Change and Economic
Performance. Cambridge University Press, 1991.

[14] J. Padget. Modelling simple market structures in process
algebras with locations. In L. Moreau, editor, AISB’01
Symposium on Software Mobility and Adaptive Behaviour,
pages 1–9. The Society for the Study of Artificial
Intelligence and the Simulation of Behaviour, AISB, 2001.
ISBN 1 902956 22 1.

[15] A. Poggi, F. Bergenti, and F. Bellifemine. An ontology
description language for FIPA agent systems. Technical
Report DII-CE-TR001-99, University of Parma, 1999.

[16] Protege, an editor for ontologies (software package).
http://protege.stanford.edu/ (April 2002).

[17] Bean generator plug/in for protégé.
http://gaper.wi.psy.uva.nl/beangenerator,
March 2003.

[18] J.-A. Rodrı́guez. On the Design and Construction of
Agent-mediated Institutions. PhD thesis, Universitat
Autonoma de Barcelona, July 2001.

[19] J.-A. Rodrı́guez, P. Noriega, C. Sierra, and J. Padget. FM96.5
A Java-based Electronic Auction House. In Proceedings of
2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM’97), pages
207–224, London, UK, Apr. 1997. ISBN 0-9525554-6-8.

[20] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for
role-based access control: Towards a unified standard. In
Proceedings of the 5th ACM Workshop on Role-Based
Access Control (RBAC-00), pages 47–64, N.Y., July 26–27
2000. ACM Press.

[21] J. Vázquez-Salceda and F. Dignum. Modelling electronic
organizations. accepted for the The 3rd International/Central
and Eastern European Conference on Multi-Agent Systems
-CEEMAS’03-, Prague, Czech Republic, June 2003, June
2003.

[22] O. Vickers and J. Padget. Skeletal JADE Components for the
Construction of Institutions. In J. Padget, D. Parkes,
N. Sadeh, O. Shehory, and W. Walsh, editors, Agent
Mediated Electronic Commerce IV, volume 2531 of Lecture
Notes in Artificial Intelligence, pages 174–192. Springer
Verlag, December 2002.

[23] Word Wide Web Consortium (W3C). OWL – Web Ontology
Language. http://www.w3.org/TR/owl-ref, March
2003.

[24] World Wide Web Consortium (W3C). Semantic web
(daml+oil and owl working drafts).
http://www.w3.org/2001/sw, March 2003.


